3 CHEMICAL FOUNDATIONS: ELEMENTS, ATOMS AND IONS



Similar documents
Elements, Atoms & Ions

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Daytona State College (Science 120, Page 1 of 39)

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

Atomic Structure Chapter 5 Assignment & Problem Set

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

The Periodic Table: Periodic trends

UNIT (2) ATOMS AND ELEMENTS

Trends of the Periodic Table Diary

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

CHAPTER 4: ATOMS AND ELEMENTS

EXPERIMENT 4 The Periodic Table - Atoms and Elements

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

Chapter 2 Atoms, Ions, and the Periodic Table

Chapter Five: Atomic Theory and Structure

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

Periodic Table Questions

Chapter 5 TEST: The Periodic Table name

Class Notes Standards Addressed:

Chapter 2 Atoms and Molecules

Atomic Theory: History of the Atom

Tro's "Introductory Chemistry", Chapter 4

Atoms, Elements, and the Periodic Table (Chapter 2)

NOTES ON The Structure of the Atom

Unit 2 Periodic Behavior and Ionic Bonding

Chapter 2 Atoms, Molecules, and Ions

CHEM 1411 Chapter 5 Homework Answers

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element

Unit 3 Study Guide: Electron Configuration & The Periodic Table

******* KEY ******* Atomic Structure & Periodic Table Test Study Guide

Trends of the Periodic Table Basics

ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

APS Science Curriculum Unit Planner

Atoms, Ions and Molecules The Building Blocks of Matter

History of the Atom & Atomic Theory

47374_04_p25-32.qxd 2/9/07 7:50 AM Page Atoms and Elements

Development of the Atomic Theory

Chapter 7 Periodic Properties of the Elements

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table

2 The Structure of Atoms

PERIODIC TABLE. reflect

Atoms, Ions and Molecules The Building Blocks of Matter

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework

CHM 1311: General Chemistry 1, Fall 2004 Exam #1, September 8, Name (print) SSN

PERIODIC TABLE OF THE ELEMENTS

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

PROTONS AND ELECTRONS

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test

Unit 3.2: The Periodic Table and Periodic Trends Notes

Chapter 7. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

Department of Physics and Geology The Elements and the Periodic Table

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

EARLY ATOMIC THEORY AND STRUCTURE

Answers to Review Questions for Atomic Theory Quiz #1

Name Date Class CHAPTER 1 REVIEW. Answer the following questions in the space provided.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

Periodic Table. 1. In the modern Periodic Table, the elements are arranged in order of increasing. A. atomic number B. mass number

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

19.1 Bonding and Molecules

Bonding Practice Problems

Unit 1 Practice Test. Matching

The Models of the Atom

Atomic Theory Part 1

Instructors Guide: Atoms and Their Isotopes

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

About the course GENERAL CHEMISTRY. Recommended literature: Chemistry: science of the matter. Responsible for the course: Dr.

TOPIC 7. CHEMICAL CALCULATIONS I - atomic and formula weights.

F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom

Sample Exercise 2.1 Illustrating the Size of an Atom

Review for Atomic Theory Quiz #1

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

THE PERIODIC TABLE O F T H E E L E M E N T S. The Academic Support Daytona State College (Science 117, Page 1 of 27)

Chapter 3. Elements, Atoms, Ions, and the Periodic Table

Structure and Properties of Atoms


KEY for Unit 1 Your Chemical Toolbox: Scientific Concepts, Fundamentals of Typical Calculations, the Atom and Much More

EXAMPLE EXERCISE 4.1 Change of Physical State

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

Chapter 3, Elements, Atoms, Ions, and the Periodic Table

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

ATOMS. Multiple Choice Questions

Unit 1 Chemical Changes and Structure Revision Notes

4.1 Studying Atom. Early evidence used to develop models of atoms.

TRENDS IN THE PERIODIC TABLE

Transcription:

3 CHEMICAL FOUNDATIONS: ELEMENTS, ATOMS AND IONS All matter is built up from chemical combinations of elements. As of 2003, there are 114 known elements, of which 88 are naturally occurring; the remaining 26 elements are synthetic. The term element is used by chemists in several different ways. One way is to refer to atoms of an element. Atoms are the smallest indivisible form of an element. Another way is to refer to the natural chemical state of the element. For example, the element oxygen is found naturally in the microscopic state as a chemical association (molecule) of 2 oxygen atoms. Care must be taken when referring to an element to indicate whether the reference is to an atom or a molecule of the element. 3.1 An Introduction to Atomic Theory The first (relatively) modern theory of the atom was introduced by the English scientist John Dalton in 1808. 3.1.1 DALTON S ATOMIC THEORY (1808) 1. Elements are made up of tiny indivisible particles called atoms. 2. The atoms of each element are identical. 3. The atoms of any element are different from those of other elements. 4. Atoms of one element combine with atoms of other elements to form compounds. A given compound always has the same relative number and types of atoms. 5. Atoms are neither created nor destroyed in chemical processes. A chemical reaction simply changes the ways atoms are grouped together. Dalton s atomic theory turned out to be incorrect in its details. However, it did provide a starting point for understanding the nature of matter and of chemical reactions. 3.1.2 THE STRUCTURE OF THE ATOM By the late 19 th century, studies on the interaction of light with matter revealed that the atom has a more complicated structure than Dalton had imagined. 1897: Plum-pudding Model The English scientist J.J. Thomson discovered that atoms contained tiny negatively charged particles that are now referred to as electrons (literally, particles that carry electricity). On the principle that there must be positive charges to counterbalance the negative charges, Thomson postulated that the atom must also contain an overall positive charge of exactly the same magnitude but opposite in sign from the electrons. Lord Kelvin (William Thomson) then proposed that the atom consists of a uniform pudding of positive charge with electrons dotted like raisins throughout. 1911: Nuclear Model of the Atom Ernest Rutherford and Neils Bohr 1909 Hans Geiger and Ernest Marsden (Rutherford s students) studied the scattering patterns of -particle off a gold foil. In 1911, Rutherford proposed that: 1. The atom is mostly empty space. 2. Most of the mass and all of the positive charge is concentrated in a small densely packed volume called the nucleus. 3. The electrons are moving around in the (mostly) empty space outside the nucleus. In 1919, Rutherford concluded that the positive charge of the nucleus was provided by particles called protons. In 1932, Rutherford and a co-worker, James Chadwick were able to show that page 25

some atomic nuclei contained small neutrally charged particles called neutrons. Each neutron has approximately the same mass as a proton. 1913 Neils Bohr, on the basis of experiments on the light emitted by gaseous atoms, proposed the so-called planetary model of the atom. In this model, the electrons do not move at random in the space outside of the nucleus. Rather, they may be found in orbits at fixed distances from their nucleus. Introduction to the Modern Concept of Atomic Structure (1926) For the purposes of chemistry, there are three particles that constitute the atom: 1. electron (e ) this is the fundamental unit of negative charge (e = 1.602 x 10 19 C); its mass is almost zero (m e = 9.109 x 10 31 kg). 2. proton (p + ) this is the fundamental unit of positive charge (e = 1.602 x 10 19 C); its mass is 1.6726 x 10 27 kg. 3. neutron (n 0 ) this is a fundamental unit carrying no charge; its mass is approximately the same as that of a proton, 1.6749 x 10 27 kg. The electrons move at random outside of the nucleus, although they do occupy preferred regions in space. Although the electrons move at random, they each have a very definite fixed energy. The physical and chemical properties of an atom really depend on the energy, number and arrangement of the electrons in the space outside of the nucleus. When atoms combine to form molecules, the electrons of the different atoms intermingle to hold the nuclei together. 3.2 Isotopes We know that the chemical properties and many of the physical properties of an atom depend on the energy, number and arrangement of its electrons. We also know that the number of protons must equal the number of electrons in a free atom. Thus the character of an atom is defined through its protons and electrons. The number of protons present in the nucleus identifies the atom uniquely as one of a particular element. Unlike the electrons and protons, the neutrons do not contribute to the chemical or most of the physical properties of the atoms. Atoms of an element can have variable number of number of neutrons. Thus, for example, a sample of pure carbon atoms can contain carbon atoms having 6, 7, 8 or more neutrons (see the second-to-last column in the table below). e.g. Name Symbol Atomic Number Number of Protons Carbon-8 Carbon-9 Carbon-10 Carbon-11 Carbon-12 Carbon-13 Carbon-14 Carbon-15 Carbon-20 Number of electrons Number of neutrons Mass Number 8 6 C 6 6 6 2 8 9 6C 6 6 6 3 9 10 6 C 6 6 6 4 10 11 6 C 6 6 6 5 11 12 6C 6 6 6 6 12 13 6 C 6 6 6 7 13 14 6 C 6 6 6 8 14 15 6C 6 6 6 9 15 20 6C 6 6 6 14 20 page 26

Note that all of these atoms are equally as carbon as any other (although the carbon atom having 6 neutrons is by far the most abundant). These different types of atoms of carbon, having different numbers of neutrons are called isotopes. The conventional notation for writing isotopes is as follows: Z A Sy Here, Sy = the one to two letter symbol for the atom; Z = the atomic number of the atom (the number of protons, also equalling the number of electrons in the free atom); and A = the mass number of the isotope. For each type of atom of an element, Sy and Z are always the same. The mass number, A, can vary depending on the number of neutrons present in the isotope. A equals the sum of the number of protons (Z) and the number of neutrons (N n ). A = Z + N n 3.3 The Periodic Table of Elements The Periodic Table of Elements is an organisation of atoms according to their properties. It was devised in 1867 by the Russian chemist, Dimitry Mendeleev and independently that same year by the German, Lothar Meyer. Mendeleev gets the title of Father of Modern Chemistry because Meyer did not make any further use of his table. Mendeleev (and Meyer) noted that many of the known elements have very similar physical and chemical properties. Those atoms with such similar properties were put in columns. Thus, for example, atoms such as Na and K were soft, silvery, greyish metals which reacted explosively with water to form extremely strong alkaline solutions. These were placed in a column, called a group in the Periodic Table. This group is known as the alkali metals. Other metals such as Mg and Ca found in the ground also formed alkaline solutions with water, but not in nearly the same explosive fashion as Na and K. These metals were known as the alkaline-earth metals. This arrangement of atoms according to their properties soon proved its value. Gaps in Mendeelev s Table soon began to appear, and he was able to predict the existence of as yet unknown elements. Chemists began to search for these missing elements and found several of them. The modern Periodic Table has three basic characteristics that provide information about the atom. The example of the carbon atom is shown below. Atomic Number (number of protons and electrons present in the free atom) Mass Number (the average mass of a carbon atom in atomic mass units) 6 C 12.011 Symbol of the atom The elements may be classified according to whether they are metals, nonmetals or metalloids (or semimetals). Students are expected to know the name and chemical symbol of the following elements (listed by atomic number): 1 38, 40, 42, 46 51, 53 57, 74, 78 80, 82. page 27

3.3.1 METALS The majority of the elements are metals. Metals have the following characteristics. They are: Lustrous (shiny) Malleability (they can be hammered into thin sheets) Ductile (they can be drawn out into thin wires) Good conductors of heat and electricity The only metal which is not a solid at room temperature and normal atmospheric pressure is mercury, Hg, which is a liquid under these conditions. 3.3.2 NONMETALS Nonmetals lack the properties that characterise metals. They also show a wider variation in their properties. Thus some nonmetals such as carbon are solid, others, like oxygen are gases and one nonmetalllic element, bromine, is liquid. The nonmetals are found to the right of the Periodic Table, past the step-line beginning between the atoms B and Al. 3.3.3 METALLOIDS Elements lying near to the step-line are known as metalloids or semimetals, because their properties are intermediate between the metals and nonmetals. They have a mixture of metallic and nonmetallic properties. 3.4 Natural States of the Elements Matter almost always is found as mixtures of different chemical compounds. Elements are rarely found in their pure forms. However, some elements are relatively unreactive and, on occasion, may be found in pure form. Examples include: the noble metals such as gold (Au), silver (Ag) and platinum (Pt) the noble gases (Group 8) consists of He, Ne, Ar, Kr, Xe The noble gases are single atom elements. That is, the element is the same as the atom. On the other hand, some other elements are chemical combinations of two atoms of the same element. These are the diatomic elements and include hydrogen (H 2 ), nitrogen (N 2 ), oxygen (O 2 ), fluorine (F 2 ), chlorine(cl 2 ), bromine (Br 2 ) and iodine(i 2 ). Note that of these seven diatomic elements, five are gases. Of the remaining two diatomic elements, one is a liquid (Br 2 ) and the other is a solid (I 2 ). The list of diatomic elements must be memorized. The element sulphur, S, is found as a ring structure consisting if 8 S-atoms. Its correct designation, S 8, is not often used; usually as shorthand the symbol S is (incorrectly) used. The atom symbol shorthand is commonly used for all of the metal atoms. There are only two elements that are liquid in their natural state at 25 C and normal atmospheric pressures: bromine (Br 2 ) and mercury (Hg). Some elements may be found in different forms. When this occurs, the different forms are known as allotropes. Thus, for example, the element carbon has three known allotropes: graphite (the stablest form of carbon is greyish and forms sheets), diamond (hard, crystallline and colourless) and buckminsterfullerene (a spherical molecule consisting of alternating five- and six- member rings of carbon atoms; the shape is much like a soccer ball). page 28

3.5 Formulas of Compounds A compound is a pure substance that: 1. composed of atoms of two or more different elements; and 2. always has the same relative masses of those elements. The chemical formula of a compound is most conveniently expressed by the number and type of each atom present. Thus the compound water, a chemical combination of two atoms of hydrogen with one atom of oxygen, can be written as follows: The compound consists of two types of atoms: hydrogen and oxygen H 2 O The subscript 2 following the H indicates that hydrogen contributes two atoms to the compound. Exercise: For the following compounds, state the number of each type of atom present. 6. Dinitrogen monoxide: 7. Aluminium chloride: 8. Carbon monoxide: 9. Carbon tetrachloride: 10. Sulphur trioxide: 11. Dinitrogen pentoxide: 12. Periodic acid: 13. Nitric acid: 14. Potassium dichromate: 15. Glucose: Exercise: Write the formulas for the following compound. 1. A compound consists of one atom of carbon and four atoms of hydrogen. 2. A compound consists of one atom of silicon and two atoms of oxygen. 3. A compound consists of two atoms of nitrogen and five atoms of oxygen 4. A compound consists of two atoms of carbon, two atoms of hydrogen and two atoms of chlorine. 5. A compound consists of two atoms of hydrogen, one atom of phosphorous and three atoms of oxygen. page 29