Kernel methods for complex networks and big data Johan Suykens KU Leuven, ESAT-STADIUS Kasteelpark Arenberg 10 B-3001 Leuven (Heverlee), Belgium Email: johan.suykens@esat.kuleuven.be http://www.esat.kuleuven.be/stadius/ STATLEARN 2015, Grenoble Kernel methods for complex networks and big data - Johan Suykens
Introduction and motivation Kernel methods for complex networks and big data - Johan Suykens
Data world (a) C 1 4 8 14 22 3 2 13 1 12 20 18 5 11 C 2 17 16 19 21 23 9 33 31 34 27 26 6 29 7 24 30 15 10 28 25 32 C 3 C 4 Kernel methods for complex networks and big data - Johan Suykens 1
Challenges data-driven general methodology scalability need for new mathematical frameworks Kernel methods for complex networks and big data - Johan Suykens 2
Sparsity big data requires sparsity Kernel methods for complex networks and big data - Johan Suykens 3
Different paradigms SVM & Kernel methods Convex Optimization Sparsity & Compressed sensing Kernel methods for complex networks and big data - Johan Suykens 4
Different paradigms SVM & Kernel methods Convex Optimization? Sparsity & Compressed sensing Kernel methods for complex networks and big data - Johan Suykens 4
Sparsity through regularization or loss function Kernel methods for complex networks and big data - Johan Suykens 4
Sparsity: through regularization or loss function through regularization: model ŷ = w T x + b min j w j + γ i e 2 i sparse w through loss function: model ŷ = i α ik(x, x i ) + b min w T w + γ i L(e i ) sparse α ε 0 +ε Kernel methods for complex networks and big data - Johan Suykens 5
Function estimation in RKHS Find function f such that min f H 1 N N L(y i, f(x i )) + λ f 2 K i=1 with L(, ) the loss function. f K is norm in RKHS H defined by K. Representer theorem: for convex loss function, solution of the form f(x) = NX α i K(x, x i ) i=1 Reproducing property f(x) = f, K x K with K x ( ) = K(x, ) [Wahba, 1990; Poggio & Girosi, 1990; Evgeniou et al., 2000] Kernel methods for complex networks and big data - Johan Suykens 6
Learning with primal and dual model representations Kernel methods for complex networks and big data - Johan Suykens 6
Learning models from data: alternative views - Consider model ŷ = f(x; w), given input/output data {(x i, y i )} N i=1 : min w wt w + γ N (y i f(x i ;w)) 2 i=1 - Rewrite the problem as min w,e w T w + γ N i=1 (y i f(x i ;w)) 2 subject to e i = y i f(x i ;w), i = 1,...,N - Construct Lagrangian and take condition for optimality - For a model f(x;w) = h j=1 w jϕ j (x) = w T ϕ(x) one obtains then ˆf(x) = N i=1 α ik(x, x i ) with K(x, x i ) = ϕ(x) T ϕ(x i ). Kernel methods for complex networks and big data - Johan Suykens 7
Learning models from data: alternative views - Consider model ŷ = f(x; w), given input/output data {(x i, y i )} N i=1 : min w wt w + γ N (y i f(x i ; w)) 2 i=1 - Rewrite the problem as min w,e w T w + γ N i=1 e2 i subject to e i = y i f(x i ;w),i = 1,...,N - Express the solution and the model in terms of Lagrange multipliers α i - For a model f(x;w) = h j=1 w jϕ j (x) = w T ϕ(x) one obtains then ˆf(x) = N i=1 α ik(x, x i ) with K(x, x i ) = ϕ(x) T ϕ(x i ). Kernel methods for complex networks and big data - Johan Suykens 7
Least Squares Support Vector Machines: core models Regression Classification min w,b,e wt w + γ i min w,b,e wt w + γ i e 2 i e 2 i s.t. y i = w T ϕ(x i ) + b + e i, i s.t. y i (w T ϕ(x i ) + b) = 1 e i, i Kernel pca (V = I), Kernel spectral clustering (V = D 1 ) min w,b,e wt w + γ i v i e 2 i s.t. e i = w T ϕ(x i ) + b, i Kernel canonical correlation analysis/partial least squares min w,v,b,d,e,r wt w + v T v + ν i (e i r i ) 2 s.t. { ei = w T ϕ (1) (x i ) + b = v T ϕ (2) (y i ) + d r i [Suykens & Vandewalle, 1999; Suykens et al., 2002; Alzate & Suykens, 2010] Kernel methods for complex networks and big data - Johan Suykens 8
Probability and quantum mechanics Kernel pmf estimation Primal: 1 min w,p 2 w, w subject to p i = w,ϕ(x i ), i = 1,...,N and N i=1 p i = 1 i Dual: p i = P Nj=1 K(x j,x i ) P Ni=1 P Nj=1 K(x j,x i ) Quantum measurement: state vector ψ, measurement operators M i Primal: 1 min w,p 2 w w subject to p i = Re( w M i ψ ), i = 1,...,N and N i=1 p i = 1 i Dual: p i = ψ M i ψ (Born rule, orthogonal projective measurement) [Suykens, Physical Review A, 2013] Kernel methods for complex networks and big data - Johan Suykens 9
SVMs: living in two worlds... Primal space x x x x x o o o o Feature space ϕ(x) x x x o oo x x o Input space Parametric Dual space ŷ = sign[w T ϕ(x) + b] Nonparametric ŷ K(x i, x j ) = ϕ(x i ) T ϕ(x j ) (Mercer) ŷ = sign[ P #sv i=1 α iy i K(x, x i ) + b] ŷ w 1 w nh α 1 ϕ 1 (x) ϕ nh (x) K(x, x 1 ) x x α #sv K(x, x #sv ) Kernel methods for complex networks and big data - Johan Suykens 10
SVMs: living in two worlds... Primal space x x x x x o o o o Feature space ϕ(x) x x x o oo x x o Input space Parametric Dual space ŷ = sign[w T ϕ(x) + b] Nonparametric ŷ K(x i, x j ) = ϕ(x i ) T ϕ(x j ) ( Kernel trick ) ŷ = sign[ P #sv i=1 α iy i K(x, x i ) + b] ŷ w 1 w nh α 1 ϕ 1 (x) ϕ nh (x) K(x, x 1 ) x x Parametric Non parametric α #sv K(x, x #sv ) Kernel methods for complex networks and big data - Johan Suykens 10
Linear model: solving in primal or dual? inputs x R d, output y R training set {(x i, y i )} N i=1 Model ր ց (P) : ŷ = w T x + b, w R d (D) : ŷ = i α i x T i x + b, α RN Kernel methods for complex networks and big data - Johan Suykens 11
Linear model: solving in primal or dual? inputs x R d, output y R training set {(x i, y i )} N i=1 Model ր ց (P) : ŷ = w T x + b, w R d (D) : ŷ = i α i x T i x + b, α RN Kernel methods for complex networks and big data - Johan Suykens 11
Linear model: solving in primal or dual? few inputs, many data points: d N primal : w R d dual: α R N (large kernel matrix: N N) Kernel methods for complex networks and big data - Johan Suykens 12
Linear model: solving in primal or dual? many inputs, few data points: d N primal: w R d dual : α R N (small kernel matrix: N N) Kernel methods for complex networks and big data - Johan Suykens 12
From linear to nonlinear model: Feature map and kernel Model ր ց (P) : (D) : ŷ = w T ϕ(x) + b ŷ = i α i K(x i, x) + b Mercer theorem: K(x, z) = ϕ(x) T ϕ(z) Feature map ϕ(x) = [ϕ 1 (x); ϕ 2 (x);...;ϕ h (x)] Kernel function K(x, z) (e.g. linear, polynomial, RBF,...) Use of feature map and positive definite kernel [Cortes & Vapnik, 1995] Optimization in infinite dimensional spaces for LS-SVM [Signoretto, De Lathauwer, Suykens, 2011] Kernel methods for complex networks and big data - Johan Suykens 13
Sparsity by fixed-size kernel method Kernel methods for complex networks and big data - Johan Suykens 13
Fixed-size method: steps 1. selection of a subset from the data 2. kernel matrix on the subset 3. eigenvalue decomposition of kernel matrix 4. approximation of the feature map based on the eigenvectors (Nyström approximation) 5. estimation of the model in the primal using the approximate feature map (applicable to large data sets) [Suykens et al., 2002] (ls-svm book) Kernel methods for complex networks and big data - Johan Suykens 14
Selection of subset random quadratic Renyi entropy Kernel methods for complex networks and big data - Johan Suykens 15
Subset selection using quadratic Renyi entropy: example 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 2.5 2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 Kernel methods for complex networks and big data - Johan Suykens 16
Fixed-size method: using quadratic Renyi entropy Algorithm: 1. Given N training data 2. Choose a working set with fixed size M (i.e. M support vectors) (typically M N). 3. Randomly select a SV x from the working set of M support vectors. 4. Randomly select a point x t from the training data and replace x by x t. If the entropy increases by taking the point x t instead of x then this point x t is accepted for the working set of M SVs, otherwise the point x t is rejected (and returned to the training data pool) and the SV x stays in the working set. 5. Calculate the entropy value for the present working set. The quadratic Renyi entropy equals H R = log 1 P M 2 ij Ω (M,M) ij. [Suykens et al., 2002] Kernel methods for complex networks and big data - Johan Suykens 17
Nyström method big kernel matrix: Ω (N,N) R N N small kernel matrix: Ω (M,M) R M M (on subset) Eigenvalue decompositions: Ω (N,N) Ũ = Ũ Λ and Ω (M,M) U = U Λ Relation to eigenvalues and eigenfunctions of the integral equation K(x, x )φ i (x)p(x)dx = λ i φ i (x ) with ˆλ i = 1 M λ i, ˆφi (x k ) = M u ki, ˆφi (x ) = M λ i M u ki K(x k,x ) k=1 [Williams & Seeger, 2001] (Nyström method in GP) Kernel methods for complex networks and big data - Johan Suykens 18
Fixed-size method: estimation in primal For the feature map ϕ( ) : R d R h obtain an approximation ϕ( ) : R d R M based on the eigenvalue decomposition of the kernel matrix with ϕ i (x ) = ˆλi ˆφi (x ) (on a subset of size M N). Estimate in primal: min w, b 1 2 wt w + γ 1 2 N (y i w T ϕ(x i ) b) 2 i=1 Sparse representation is obtained: w R M with M N and M h. [Suykens et al., 2002; De Brabanter et al., CSDA 2010] Kernel methods for complex networks and big data - Johan Suykens 19
Fixed-size method: performance in classification pid spa mgt adu ftc N 768 4601 19020 45222 581012 N cv 512 3068 13000 33000 531012 N test 256 1533 6020 12222 50000 d 8 57 11 14 54 FS-LSSVM (# SV) 150 200 1000 500 500 C-SVM (# SV) 290 800 7000 11085 185000 ν-svm (# SV) 331 1525 7252 12205 165205 RBF FS-LSSVM 76.7(3.43) 92.5(0.67) 86.6(0.51) 85.21(0.21) 81.8(0.52) Lin FS-LSSVM 77.6(0.78) 90.9(0.75) 77.8(0.23) 83.9(0.17) 75.61(0.35) RBF C-SVM 75.1(3.31) 92.6(0.76) 85.6(1.46) 84.81(0.20) 81.5(no cv) Lin C-SVM 76.1(1.76) 91.9(0.82) 77.3(0.53) 83.5(0.28) 75.24(no cv) RBF ν-svm 75.8(3.34) 88.7(0.73) 84.2(1.42) 83.9(0.23) 81.6(no cv) Maj. Rule 64.8(1.46) 60.6(0.58) 65.8(0.28) 83.4(0.1) 51.23(0.20) Fixed-size (FS) LSSVM: good performance and sparsity wrt C-SVM and ν-svm Challenging to achieve high performance by very sparse models [De Brabanter et al., CSDA 2010] Kernel methods for complex networks and big data - Johan Suykens 20
Two stages of sparsity stage 1 primal FS model estimation reweighted l 1 dual subset selection Nyström approximation Synergy between parametric & kernel-based models [Mall & Suykens, IEEE-TNNLS, in press], reweighted l 1 [Candes et al., 2008] Other possible approaches with improved sparsity: SCAD [Fan & Li, 2001]; coefficientbased l q (0 < q 1) [Shi et al., 2013]; two-level l 1 [Huang et al., 2014] Kernel methods for complex networks and big data - Johan Suykens 21
Two stages of sparsity stage 1 primal FS model estimation reweighted l 1 dual subset selection Nyström approximation Synergy between parametric & kernel-based models [Mall & Suykens, IEEE-TNNLS, in press], reweighted l 1 [Candes et al., 2008] Other possible approaches with improved sparsity: SCAD [Fan & Li, 2001]; coefficientbased l q (0 < q 1) [Shi et al., 2013]; two-level l 1 [Huang et al., 2014] Kernel methods for complex networks and big data - Johan Suykens 21
Two stages of sparsity stage 1 stage 2 primal FS model estimation reweighted l 1 dual subset selection Nyström approximation Synergy between parametric & kernel-based models [Mall & Suykens, IEEE-TNNLS, in press], reweighted l 1 [Candes et al., 2008] Other possible approaches with improved sparsity: SCAD [Fan & Li, 2001]; coefficientbased l q (0 < q 1) [Shi et al., 2013]; two-level l 1 [Huang et al., 2014] Kernel methods for complex networks and big data - Johan Suykens 21
Two stages of sparsity stage 1 stage 2 primal FS model estimation reweighted l 1 dual subset selection Nyström approximation Synergy between parametric & kernel-based models [Mall & Suykens, IEEE-TNNLS, in press], reweighted l 1 [Candes et al., 2008] Other possible approaches with improved sparsity: SCAD [Fan & Li, 2001]; coefficientbased l q (0 < q 1) [Shi et al., 2013]; two-level l 1 [Huang et al., 2014] Kernel methods for complex networks and big data - Johan Suykens 21
Big data: representative subsets using k-nn graphs (1) Convert the large scale dataset into a sparse undirected k-nn graph using a distributed network generation framework Julia language (http://julialang.org/) Large N N kernel matrix Ω for data set D with N data points Batch cluster-based approach: a batch subset D p D is loaded per node with P p=1d p = D; related matrix slice X p and Ω p. MapReduce and AllReduce settings implementable using Hadoop or Spark (see also [Agarwal et al., JMLR 2014] Terascale linear learning) Computational complexity: complexity for construction of the kernel matrix reduced from O(N 2 ) to O(N 2 (1 + log N)/P) for P nodes [Mall, Jumutc, Langone, Suykens, IEEE Bigdata 2014] Kernel methods for complex networks and big data - Johan Suykens 22
Big data: representative subsets using k-nn graphs (2) Map: for Silverman s Rule of Thumb, compute mean and standard deviation of the data per node; compute slice Ω p ; sort in ascending order the columns of Ω p (sortperm in Julia); pick indices for top k values. Reduce: merge k-nn subgraphs into aggregated k-nn graph [Mall, Jumutc, Langone, Suykens, IEEE Bigdata 2014] Kernel methods for complex networks and big data - Johan Suykens 23
Big data: representative subsets using k-nn graphs (3) Steps: 1. MapReduce for representative subsets using k-nn graphs 2. Subset selection using FURS [Mall et al., SNAM 2013] (which aims for good modelling of dense regions; deterministic method) 3. Use in fixed-size LS-SVM ([Mall & Suykens, IEEE-TNNLS, in press]) Dataset N SR SRE FURS k=10 FURS k=100 FURS k=500 Generalization or Test Error ± Standard Deviation 4G 28,500 0.395±0.235 0.898±0.375 0.252±0.023 0.331±0.063 0.414±0.070 5G 81,000 0.264±0.225 0.298±0.142 0.358±0.296 0.082±0.016 0.086±0.009 Magic 19,020 25.32±3.913 28.44±4.446 33.07±2.076 31.05±4.143 36.13±3.062 Shuttle 58,000 2.437±1.104 2.330±0.958 4.223±0.998 1.482±0.600 1.980±0.715 Skin 245,057 0.578±0.387 0.254±0.078 3.277±1.133 0.494±0.078 0.772±0.080 SR: stratified random sampling; SRE: stratified Renyi entropy FURS k=10 : FURS based on k-nn graphs with k = 10 [Mall, Jumutc, Langone, Suykens, IEEE Bigdata 2014] Kernel methods for complex networks and big data - Johan Suykens 24
Kernel-based models for spectral clustering Kernel methods for complex networks and big data - Johan Suykens 24
Spectral graph clustering (1) Minimal cut: given the graph G = (V,E), find clusters A 1, A 2 min q i { 1,+1} 1 2 w ij (q i q j ) 2 i,j with cluster membership indicator q i (q i = 1 if i A 1, q i = 1 if i A 2 ) and W = [w ij ] the weighted adjacency matrix. 1 4 5 2 3 cut of size 1 (minimal cut) 6 cut of size 2 Kernel methods for complex networks and big data - Johan Suykens 25
Spectral graph clustering (2) Min-cut spectral clustering problem min q T q=1 q T L q with L = D W the unnormalized graph Laplacian, degree matrix D = diag(d 1,...,d N ), d i = j w ij, giving L q = λ q. Cluster member indicators: ˆq i = sign( q i θ) with threshold θ. Normalized cut L q = λd q [Fiedler, 1973; Shi & Malik, 2000; Ng et al. 2002; Chung, 1997; von Luxburg, 2007] Discrete version to continuous problem (Laplace operator) [Belkin & Niyogi, 2003; von Luxburg et al., 2008; Smale & Zhou, 2007] Kernel methods for complex networks and big data - Johan Suykens 26
Kernel Spectral Clustering (KSC): case of two clusters Primal problem: training on given data {x i } N i=1 1 min w,b,e 2 wt w γ 1 2 et V e subject to e i = w T ϕ(x i ) + b, i = 1,...,N with weighting matrix V and ϕ( ) : R d R h the feature map. Dual: V M V Ωα = λα with λ = 1/γ, M V = I N 1 1 1 T N V 1 N 1 T NV weighted centering matrix, N Ω = [Ω ij ] kernel matrix with Ω ij = ϕ(x i ) T ϕ(x j ) = K(x i, x j ) Taking V = D 1 with degree matrix D = diag{d 1,...,d N } and d i = N j=1 Ω ij relates to random walks algorithm. [Alzate & Suykens, IEEE-PAMI, 2010] Kernel methods for complex networks and big data - Johan Suykens 27
Kernel Spectral Clustering (KSC): case of two clusters Primal problem: training on given data {x i } N i=1 1 min w,b,e 2 wt w γ 1 2 et V e subject to e i = w T ϕ(x i ) + b, i = 1,...,N with weighting matrix V and ϕ( ) : R d R h the feature map. Dual: V M V Ωα = λα with λ = 1/γ, M V = I N 1 1 1 T N V 1 N 1 T NV weighted centering matrix, N Ω = [Ω ij ] kernel matrix with Ω ij = ϕ(x i ) T ϕ(x j ) = K(x i, x j ) Taking V = D 1 with degree matrix D = diag{d 1,...,d N } and d i = N j=1 Ω ij relates to random walks algorithm. [Alzate & Suykens, IEEE-PAMI, 2010] Kernel methods for complex networks and big data - Johan Suykens 27
Kernel spectral clustering: more clusters Case of k clusters: additional sets of constraints 1 min w (l),e (l),b l 2 k 1 l=1 w (l)t w (l) 1 2 k 1 l=1 γ l e (l)t D 1 e (l) subject to e (1) = Φ N nh w (1) + b 1 1 N e (2) = Φ N nh w (2) + b 2 1 N. e (k 1) = Φ N nh w (k 1) + b k 1 1 N where e (l) = [e (l) 1 ;...;e(l) N ] and Φ N n h = [ϕ(x 1 ) T ;...;ϕ(x N ) T ] R N n h. Dual problem: M D Ωα (l) = λdα (l), l = 1,...,k 1. [Alzate & Suykens, IEEE-PAMI, 2010] Kernel methods for complex networks and big data - Johan Suykens 28
Primal and dual model representations k clusters k 1 sets of constraints (index l = 1,...,k 1) M ր ց (P) : sign[ê (l) ] = sign[w (l)t ϕ(x ) + b l ] (D) : sign[ê (l) ] = sign[ j α(l) j K(x,x j ) + b l ] Kernel methods for complex networks and big data - Johan Suykens 29
Advantages of kernel-based setting model-based approach out-of-sample extensions, applying model to new data consider training, validation and test data (training problem corresponds to eigenvalue decomposition problem) model selection procedures sparse representations and large scale methods Kernel methods for complex networks and big data - Johan Suykens 30
Out-of-sample extension and coding 8 8 6 6 4 4 2 2 x (2) 0 2 x (2) 0 2 4 4 6 6 8 8 10 12 10 8 6 4 2 0 2 4 6 x (1) 10 12 10 8 6 4 2 0 2 4 6 x (1) Kernel methods for complex networks and big data - Johan Suykens 31
Out-of-sample extension and coding 8 8 6 6 4 4 2 2 x (2) 0 2 x (2) 0 2 4 4 6 6 8 8 10 12 10 8 6 4 2 0 2 4 6 x (1) 10 12 10 8 6 4 2 0 2 4 6 x (1) Kernel methods for complex networks and big data - Johan Suykens 31
Model selection: toy example 0.4 0.3 0.2 0.1 e (2) i,val 0 0.1 0.2 0.3 σ 2 = 0.5, BLF = 0.56 0.4 0.4 0.2 0 0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2 e (2) i,val 0 0.2 0.4 0.6 e (1) i,val σ 2 = 0.16, BLF = 1.0 0.8 0.4 0.2 0 0.2 e (1) i,val validation set x (2) x (2) 25 20 15 10 5 0 5 10 15 20 x (1) 25 30 20 10 0 10 20 30 25 20 15 10 5 0 5 10 15 20 x (1) 25 30 20 10 0 10 20 30 train + validation + test data BAD GOOD Kernel methods for complex networks and big data - Johan Suykens 32
Example: image segmentation 4 3 2 i,val e (3) 1 0 1 2 3 2 1 0 1 e (2) i,val 2 3 5 4 3 2 e (1) i,val 1 0 1 2 Kernel methods for complex networks and big data - Johan Suykens 33
Kernel spectral clustering: sparse kernel models original image binary clustering Incomplete Cholesky decomposition: Ω GG T with G R N R and R N Image (Berkeley image dataset): 321 481 (154, 401 pixels), 175 SV Time-complexity O(R 2 N 2 ) in [Alzate & Suykens, 2008] Time-complexity O(R 2 N) in [Novak, Alzate, Langone, Suykens, 2014] Kernel methods for complex networks and big data - Johan Suykens 34
Kernel spectral clustering: sparse kernel models original image sparse kernel model Incomplete Cholesky decomposition: Ω GG T with G R N R and R N Image (Berkeley image dataset): 321 481 (154, 401 pixels), 175 SV Time-complexity O(R 2 N 2 ) in [Alzate & Suykens, 2008] Time-complexity O(R 2 N) in [Novak, Alzate, Langone, Suykens, 2014] Kernel methods for complex networks and big data - Johan Suykens 34
Incomplete Cholesky decomposition and reduced set For KSC problem M D Ωα = λdα, solve the approximation U T M D UΛ 2 ζ = λζ from Ω GG T, singular value decomposition G = UΛV T and ζ = U T α. A smaller matrix of size R R is obtained instead of N N. Pivots are used as subset { x i } for the data Reduced set method [Scholkopf et al., 1999]: approximation of w = N i=1 α iϕ(x i ) by w = M j=1 β jϕ( x j ) in the sense min w w 2 2 β j β j Sparser solutions by adding l 1 penalty, reweighted l 1 or group Lasso. [Alzate & Suykens, 2008, 2011; Mall & Suykens, 2014] Kernel methods for complex networks and big data - Johan Suykens 35
Incomplete Cholesky decomposition and reduced set For KSC problem M D Ωα = λdα, solve the approximation U T M D UΛ 2 ζ = λζ from Ω GG T, singular value decomposition G = UΛV T and ζ = U T α. A smaller matrix of size R R is obtained instead of N N. Pivots are used as subset { x i } for the data Reduced set method [Scholkopf et al., 1999]: approximation of w = N i=1 α iϕ(x i ) by w = M j=1 β jϕ( x j ) in the sense min β w w 2 2 + ν j β j Sparser solutions by adding l 1 penalty, reweighted l 1 or group Lasso. [Alzate & Suykens, 2008, 2011; Mall & Suykens, 2014] Kernel methods for complex networks and big data - Johan Suykens 35
Big data: representative subsets using k-nn graphs Steps: 1. MapReduce for representative subsets using k-nn graphs 2. Subset selection using FURS [Mall et al., SNAM 2013] (which aims for good modelling of dense regions; deterministic method) 3. Use in Kernel Spectral Clustering KSC Dataset Points M Random Rènyi entropy FURS DB SIL DB SIL DB SIL 4G 28,500 285 0.804 ± 0.167 0.667 ± 0.059 2.909 ± 2.820 0.594 ± 0.148 0.616 0.765 5G 81,000 810 2.011 ± 0.998 0.649 ± 0.049 0.885 ± 0.276 0.601 ± 0.054 0.808 0.764 Batch 13,910 139 4.287 ± 0.764 0.503 ± 0.066 3.969 ± 0.783 0.460 ± 0.134 1.868 0.669 House 34,112 342 0.612 ± 0.154 0.679 ± 0.073 0.507 ± 0.028 0.579 ± 0.006 0.407 0.751 Mopsi Finland 13,467 135 0.897 ± 0.935 0.824 ± 0.085 0.526 ± 0.223 0.886 ± 0.010 0.568 0.920 DB DB DB KDDCupBio 145,751 1458 2.932 ± 1.205 4.233 ± 1.82 3.883 Power 2,049,280 2,050 2.558 ± 1.374 2.0619 ± 0.760 1.921 (quality metrics: Davies-Bouldin (DB) and silhouette (SIL)) [Mall, Jumutc, Langone, Suykens, IEEE Bigdata 2014] Kernel methods for complex networks and big data - Johan Suykens 36
Semi-supervised learning using KSC (1) N unlabeled data, but additional labels on M N data X = {x 1,...,x N,x N+1,...,x M } Kernel spectral clustering as core model (binary case [Alzate & Suykens, WCCI 2012], multi-way/multi-class [Mehrkanoon et al., TNNLS in press]) min w,e,b 1 2 wt w γ 1 2 et D 1 e + ρ 1 2 M m=n+1 subject to e i = w T ϕ(x i ) + b, i = 1,...,M (e m y m ) 2 Dual solution is characterized by a linear system. Suitable for clustering as well as classification. Other approaches in semi-supervised learning and manifold learning, e.g. [Belkin et al., 2006] Kernel methods for complex networks and big data - Johan Suykens 37
Semi-supervised learning using KSC (2) Dataset size n L /n U test (%) FS semi-ksc RD semi-ksc Lap-SVMp Spambase 4597 368/736 919 (20%) 0.885 ± 0.01 0.883 ± 0.01 0.880 ± 0.03 Satimage 6435 1030/1030 1287 (20%) 0.864 ± 0.006 0.831 ± 0.009 0.834 ± 0.007 Ring 7400 592/592 1480 (20%) 0.975 ± 0.005 0.974 ± 0.005 0.972 ± 0.006 Magic 19020 761/1522 3804 (20%) 0.836 ± 0.006 0.829 ± 0.006 0.827 ± 0.005 Cod-rna 331152 1325/1325 66230 (20%) 0.957 ± 0.006 0.947 ± 0.008 0.951 ± 0.001 Covertype 581012 2760/2760 29050 (5%) 0.715 ± 0.005 0.684 ± 0.008 0.697 ± 0.001 2760/27600 0.729 ± 0.04 0.709 ± 0.05 2760/82800 0.739 ± 0.04 0.716 ± 0.03 2760/138000 0.742 ± 0.05 0.723 ± 0.06 FS semi-ksc: Fixed-size semi-supervised KSC RD semi-ksc: other subset selection related to [Lee & Mangasarian, 2001] Lap-SVM: Laplacian support vector machine [Belkin et al., 2006] [Mehrkanoon & Suykens, 2014] Kernel methods for complex networks and big data - Johan Suykens 38
Semi-supervised learning using KSC (3) original image KSC given a few labels semi-supervised KSC [Mehrkanoon, Alzate, Mall, Langone, Suykens, IEEE-TNNLS, in press] Kernel methods for complex networks and big data - Johan Suykens 39
Fixed-kernel methods for complex networks Kernel methods for complex networks and big data - Johan Suykens 39
Modularity and community detection Modularity for two-group case [Newman, 2006]: Q = 1 4m i,j (A ij d id j 2m )q iq j with A adjacency matrix, d i degree of node i, m = 1 2 i d i, q i = 1 if node i belongs to group 1 and q i = 1 for group 2. Use of modularity within kernel spectral clustering [Langone et al., 2012]: use modularity at the level of model validation finding representative subgraph using a fixed-size method by maximizing the expansion factor [Maiya, 2010] N(G) G with a subgraph G and its neighborhood N(G). definition data in unweighted networks: x i = A(:, i); use of a community kernel function [Kang, 2009]. Kernel methods for complex networks and big data - Johan Suykens 40
Protein interaction network (1) Pajek Yeast interaction network: 2114 nodes, 4480 edges [Barabasi et al., 2001] Kernel methods for complex networks and big data - Johan Suykens 41
Protein interaction network (2) - Yeast interaction network: 2114 nodes, 4480 edges [Barabasi et al., 2001] - KSC community detection, representative subgraph [Langone et al., 2012] 7 detected clusters 0.45 0.4 modularity 0.35 0.3 0.25 0.2 0.15 0.1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 number of clusters Kernel methods for complex networks and big data - Johan Suykens 42
Power grid network (1) Pajek Western USA power grid: 4941 nodes, 6594 edges [Watts & Strogatz, 1998] Kernel methods for complex networks and big data - Johan Suykens 43
Power grid network (2) - Western USA power grid: 4941 nodes, 6594 edges [Watts & Strogatz, 1998] - KSC community detection, representative subgraph [Langone et al., 2012] 16 detected clusters 0.55 0.5 modularity 0.45 0.4 0.35 20 40 60 80 100 120 140 160 180 200 220 240 number of clusters Kernel methods for complex networks and big data - Johan Suykens 44
KSC for big data networks (1) YouTube Network: YouTube social network where users form friendship with each other and the users can create groups where others can join. RoadCA Network: a road network of California. Intersections and endpoints are represented by nodes and the roads connecting these intersections are represented as edges. Livejournal Network: free online social network where users are bloggers and they declare friendship among themselves. Dataset Nodes Edges YouTube 1,134,890 2,987,624 roadca 1,965,206 5,533,214 Livejournal 3,997,962 34,681,189 [Mall, Langone, Suykens, Entropy, special issue Big data, 2013] Kernel methods for complex networks and big data - Johan Suykens 45
BAF-KSC: KSC for big data networks (2) Select representative training subgraph using FURS (FURS = Fast and Unique Representative Subset selection [Mall et al., 2013]: selects nodes with high degree centrality belonging to different dense regions, using a deactivation and activation procedure) Perform model selection using BAF (BAF = Balanced Angular Fit: makes use of a cosine similarity measure related to the e-projection values on validation nodes) Train the KSC model by solving a small eigenvalue problem of size min(0.15n, 5000) 2 Apply out-of-sample extension to find cluster memberships of the remaining nodes [Mall, Langone, Suykens, Entropy, special issue Big data, 2013] Kernel methods for complex networks and big data - Johan Suykens 46
KSC for big data networks (3) BAF-KSC [Mall, Langone, Suykens, 2013] Louvain [Blondel et al., 2008] Infomap [Lancichinetti, Fortunato, 2009] CNM [Clauset, Newman, Moore, 2004] Dataset BAF-KSC Louvain Infomap CNM Cl Q Con Cl Q Con Cl Q Con Cl Q Con Openflight 5 0.533 0.002 109 0.61 0.02 18 0.58 0.005 84 0.60 0.016 PGPnet 8 0.58 0.002 105 0.88 0.045 84 0.87 0.03 193 0.85 0.041 Metabolic 10 0.22 0.028 10 0.43 0.03 41 0.41 0.05 11 0.42 0.021 HepTh 6 0.45 0.0004 172 0.65 0.004 171 0.3 0.004 6 0.423 0.0004 HepPh 5 0.56 0.0004 82 0.72 0.007 69 0.62 0.06 6 0.48 0.0007 Enron 10 0.4 0.002 1272 0.62 0.05 1099 0.37 0.27 6 0.25 0.0045 Epinion 10 0.22 0.0003 33 0.006 0.0003 17 0.18 0.0002 10 0.14 0.0 Condmat 6 0.28 0.0002 1030 0.79 0.03 1086 0.79 0.025 8 0.38 0.0003 Flight network (Openflights), network based on trust (PGPnet), biological network (Metabolic), citation networks (HepTh, HepPh), communication network (Enron), review based network (Epinion), collaboration network (Condmat) [snap.stanford.edu] Cl = Clusters, Q = modularity, Con = Conductance BAF-KSC usually finds a smaller number of clusters and achieves lower conductance Kernel methods for complex networks and big data - Johan Suykens 47
Multilevel Hierarchical KSC for complex networks (1) Generating a series of affinity matrices over different levels: communities at level h become nodes for next level h + 1 Kernel methods for complex networks and big data - Johan Suykens 48
Multilevel Hierarchical KSC for complex networks (2) Start at ground level 0 and compute cosine similarities on validation nodes S (0) val (i, j) = 1 et i e j/( e i e j ) Select projections e j satisfying S (0) val (i, j) < t(0) with t (0) a threshold value. Keep these nodes as the first cluster at level 0 and remove the nodes from matrix S (0) val to obtain a reduced matrix. Iterative procedure over different levels h: Communities at level h become nodes for the next level h+1, by creating a set of matrices at different levels of hierarchy: S (h) val (i, j) = 1 C (h 1) i C (h 1) j m C (h 1) i l C (h 1) j S (h 1) val (m, l) and working with suitable threshold values t (h) for each level. [Mall, Langone, Suykens, PLOS ONE, 2014] Kernel methods for complex networks and big data - Johan Suykens 49
Multilevel Hierarchical KSC for complex networks (3) MH-KSC on PGP network: fine intermediate intermediate coarse Multilevel Hierarchical KSC finds high quality clusters at coarse as well as fine and intermediate levels of hierarchy. [Mall, Langone, Suykens, PLOS ONE, 2014] Kernel methods for complex networks and big data - Johan Suykens 50
Multilevel Hierarchical KSC for complex networks (4) Louvain Infomap OSLOM Louvain, Infomap, and OSLOM seem biased toward a particular scale in comparison with MH-KSC, based upon ARI, V I, Q metrics Kernel methods for complex networks and big data - Johan Suykens 51
Conclusions Synergies parametric and kernel based-modelling Sparse kernel models using fixed-size method Supervised, semi-supervised and unsupervised learning applications Large scale complex networks and big data Software: see ERC AdG A-DATADRIVE-B website www.esat.kuleuven.be/stadius/adb/software.php Kernel methods for complex networks and big data - Johan Suykens 52
Acknowledgements (1) Current and former co-workers at ESAT-STADIUS: M. Agudelo, C. Alzate, A. Argyriou, R. Castro, M. Claesen, A. Daemen, J. De Brabanter, K. De Brabanter, J. de Haas, L. De Lathauwer, B. De Moor, F. De Smet, M. Espinoza, T. Falck, Y. Feng, E. Frandi, D. Geebelen, O. Gevaert, L. Houthuys, X. Huang, B. Hunyadi, A. Installe, V. Jumutc, Z. Karevan, P. Karsmakers, R. Langone, Y. Liu, X. Lou, R. Mall, S. Mehrkanoon, Y. Moreau, M. Novak, F. Ojeda, K. Pelckmans, N. Pochet, D. Popovic, J. Puertas, M. Seslija, L. Shi, M. Signoretto, P. Smyth, Q. Tran Dinh, V. Van Belle, T. Van Gestel, J. Vandewalle, S. Van Huffel, C. Varon, X. Xi, Y. Yang, S. Yu, and others Many others for joint work, discussions, invitations, organizations Support from ERC AdG A-DATADRIVE-B, KU Leuven, GOA-MaNet, OPTEC, IUAP DYSCO, FWO projects, IWT, iminds, BIL, COST Kernel methods for complex networks and big data - Johan Suykens 53
Acknowledgements (2) Kernel methods for complex networks and big data - Johan Suykens 54
Thank you Kernel methods for complex networks and big data - Johan Suykens 55