NETZCOPE - a tool to analyze and display complex R&D collaboration networks

Size: px
Start display at page:

Download "NETZCOPE - a tool to analyze and display complex R&D collaboration networks"

Transcription

1 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots NETZCOPE - a tool to analyze and display complex R&D collaboration networks L. Streit & O. Strogan BiBoS, Univ. Bielefeld and CCM, Univ. da Madeira ZiF Conference Complexity, Mathematics and Socio-Economic Problems August 31 - September 12, 2009 L. Streit & O. Strogan Complex Networks

2 Outline The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots 1 The Task 2 Concepts from Spectral Graph Theory 3 EU R&D Network Analysis 4 Netzcope Screenshots L. Streit Complex Networks

3 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Collaborative R&D in the EU Framework Programmes The empirical infrastructure sysres EUPRO Framework Programme (FP) Period Projects Projects > 1 partner Organisations Subentities FP FP FP FP FP FP Total Based on information from CORDIS, with major standardisation and cleaning process applied Current release January 2008 Covering FP 1 to FP 6 systems research L. Streit Complex Networks

4 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots The consortium NEMO partners and website CCM, Universidade da Madeira systems research L. Streit Complex Networks

5 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots NEMO Tasks L. Streit Complex Networks

6 The Introduction Task Concepts Concepts from Spectral from Spectral Graph Graph Theory Theory EU R&D EU R&D Network Network Analysis Analysis Netzcope Screenshots The State Sizeof of the the art Problem Weighted Graphs Spectral Gaps Comparison of Centralities The Effect of Fiedler Ordering Visualizing the EU Research Networks L. Streit with T. Krueger Spectral Properties of a Real World Network l L. Streit Complex Networks

7 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Adjacency Matrix A simple graph G = (V,E) is descibed by an adjacency matrix indicating whether verices i and k are connected by an edge: { 1 i k a ik = 0 otherwise The degree of edge k is and we shall set d k = a ik i D = diag {d 1,...,d n } L. Streit Complex Networks

8 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Bipartite Graphs Two types of vertices V = {V 1,V 2 } No edges between vertices of the same type. L. Streit Complex Networks

9 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots The Laplacian(s) The Laplacian and the normalized Laplacian L = D A L = 1 D 1/2 AD 1/2 play a central role, in particular L is (up to a similarity transformation) the generator of a continuous time random walk on the graph, with equal probability 1/d k along each edge. L. Streit Complex Networks

10 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Eigenvalues of L Have 0 = λ 0 λ 1...λ n 2 The multiplicity of λ 0 equals the number of disconnected subgraphs in G. Fully connected graphs with n vertices are characterized by λ 1 =... = λ n = Bipartite graphs are characterized by λ n = 2 n n 1 and have a symmetric spectrum: with λ k, 2 λ n is also an eigenvalue. L. Streit Complex Networks

11 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots A Variational Formula Consider the map on R n x ˆx = D 1/2 x Have (x,l x) = 1 2 a ik (ˆx i ˆx k ) 2 Hence one eigenvector, corresponding to the minimal eigenvalue λ 0 = 0, is given by ê k 1. L. Streit & O. Strogan Complex Networks

12 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots I.e. and hence Theorem e k = d 1/2 k The invariant distribution for the random walk is p k = d k d k L. Streit Complex Networks

13 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Keeping the Little Guy Waiting (Previously r B A = 1, r A B = 1/3) ( 1 Now : r A B = r B A = 1/3 = min, 1 ) d A d B L. Streit Complex Networks

14 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots The Laplacian For this random walk with waiting, the normalized Laplacian will be ) min( 1 d i L ik =, 1 d k i k L ik i = k k:k i L. Streit Complex Networks

15 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Spectral Gap For a connected graph the spectral gap λ 1 measures the rate of knowledge diffusion through the network. Note that λ 1 = min (x,l x) Definition x e, x =1 The minimizing vector f is called the Fiedler vector (1). L. Streit Complex Networks

16 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots The Fiedler Vector (2, normalized) Recall (f,l f ) = 1 2 a ik (ˆfi ˆf k ) 2 Imagine having arranged the vertices of the graph at points y k on the real line, attracting each other by an elastic force acting between them along each edge. Then the total energy of the configuration is E = 1 2 a ik (y i y k ) 2 We recognize the positions y k = ˆf k as the configuration of minimal energy, subject to the constraints y = D 1/2 ŷ = 1, y e which fix the extension of the configuration and its localization L. Streit Complex Networks

17 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Let us say that the centrality c k of vertex k is proportional to the centrality of all its neighbors in the network: c k = 1 λ a kl c l. (A web page, e.g., is important if it is linked to other important pages.) In other words, Ac = λc By Perron-Frobenius, there is a solution with non negative c k, corresponding to the largest eigenvalue of the adjacency matrix A. Definition The resulting c k are called eigenvalue centralities. L. Streit Complex Networks

18 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Newman s Modularity "A good division of a network into communities is not merely one in which there are few edges between communities; it is one in which there are fewer than expected edges between communities". Newman, Modularity is - up to a normalization constant - the number of edges within communities c minus those for a null model: Q 1 2 E c (A ij P ij ). i,j c L. Streit Complex Networks

19 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots The Null Model The standard choice for the null model will be dictated by the degrees of the vertices i and j: P ij d id j 2 E corresponding to a random graph models with a fixed set of vertices and the constraint that on average they should reproduce a given degree distribution (Chung,Lu 2002). The goal now is to find a division of the vertices into communities such that the modularity Q is maximal. An exhaustive search for a decomposition is out of the question: even for moderately big graphs there are far too many ways to decompose them into communities; fast approximate algorithms do exist. L. Streit Complex Networks

20 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Barber s BRIM For bipartite graphs the null model should be modified, to reproduce the characteristic form of bipartite adjacency matrices ( ) 0 B A = B T 0 also for the null model. Recently M. Barber (2007) proposed an appropriate algorithm ("BRIM": bipartite, recursively induced modules) to find communities for bipartite networks. Starting from a (more or less) ad hoc partition of the vertices of type 1 it is straightforward to optimize a corresponding decomposition of the verices of type 2. From there, optimize the decomposition of vertices of type 1, and iterate. In this fashion, modularity will increase until a (local) maximum is reached. L. Streit Complex Networks

21

22

23

24

25

26

27

28

29

30 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Organization Graph Spectra FP1, FP2, FP3 L. Streit Complex Networks

31 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots A Simulated Network L. Streit Complex Networks

32 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Weighted vs. Unweighted, FP 2 L. Streit Complex Networks

33 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Spectrum with the Little Guy waiting L. Streit Complex Networks

34

35

36

37

38

39

40

41

42

43

44 Zooming in

45

46

47

48

49

50

51

52 A Small Community

53 Geographic Profile of a Community

54 Organization Profile

55 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots Summary of Netzcope Features Netzcope extracts the connected components produces 2D plot of the networks displays the adjacency matrix same after re-ordering the nodes w.r.t. their strength of interaction finds communities within the network following Newman uses the BRIM algorithm to enhance the modularity computes mutual information of different decompositions produces a scatter plot to identify central players and gate keepers displays the composition of communities exhibits degree and eigenvalue centralities within communities displays the graph portrait following Bagrow et al. permits iterative decomposition and analysis ( zooming into communities ) L. Streit Complex Networks

56 The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots M. J. Barber: Modularity and community detection in bipartite networks. Phys. Rev. E 76, (2007). F. Chung and L. Lu: Connected components in random graphs with given degree sequences. Annals of Combinatorics 6, (2002). M. E. J. Newman and M. Girvan: Finding and evaluating community structure in networks. Phys. Rev. E 69, (2004). M. E. J. Newman: Finding community structure in networks using the eigenvectors of matrices. arxiv:physics/ v3 23 Jul 2006 M. E. J. Newman: Modularity and community structure in networks. URL L. Streit Complex Networks

Netzcope - A Tool to Display and Analyze Complex Networks

Netzcope - A Tool to Display and Analyze Complex Networks NEMO Working Paper #16 Netzcope - A Tool to Display and Analyze Complex Networks Oleg Strogan and Ludwig Streit (CCM, University of Madeira) Supported by the EU FP6-NEST-Adventure Programme Contract n

More information

Part 2: Community Detection

Part 2: Community Detection Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu

More information

A scalable multilevel algorithm for graph clustering and community structure detection

A scalable multilevel algorithm for graph clustering and community structure detection A scalable multilevel algorithm for graph clustering and community structure detection Hristo N. Djidjev 1 Los Alamos National Laboratory, Los Alamos, NM 87545 Abstract. One of the most useful measures

More information

USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS

USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu ABSTRACT This

More information

Small Maximal Independent Sets and Faster Exact Graph Coloring

Small Maximal Independent Sets and Faster Exact Graph Coloring Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

Walk-Based Centrality and Communicability Measures for Network Analysis

Walk-Based Centrality and Communicability Measures for Network Analysis Walk-Based Centrality and Communicability Measures for Network Analysis Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, Georgia, USA Workshop on Innovative Clustering

More information

Francesco Sorrentino Department of Mechanical Engineering

Francesco Sorrentino Department of Mechanical Engineering Master stability function approaches to analyze stability of the synchronous evolution for hypernetworks and of synchronized clusters for networks with symmetries Francesco Sorrentino Department of Mechanical

More information

An Empirical Study of Two MIS Algorithms

An Empirical Study of Two MIS Algorithms An Empirical Study of Two MIS Algorithms Email: Tushar Bisht and Kishore Kothapalli International Institute of Information Technology, Hyderabad Hyderabad, Andhra Pradesh, India 32. tushar.bisht@research.iiit.ac.in,

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

Complex Networks Analysis: Clustering Methods

Complex Networks Analysis: Clustering Methods Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich nefedov@isi.ee.ethz.ch 1 Outline Purpose to give an overview of modern graph-clustering methods and their applications

More information

A Spectral Clustering Approach to Validating Sensors via Their Peers in Distributed Sensor Networks

A Spectral Clustering Approach to Validating Sensors via Their Peers in Distributed Sensor Networks A Spectral Clustering Approach to Validating Sensors via Their Peers in Distributed Sensor Networks H. T. Kung Dario Vlah {htk, dario}@eecs.harvard.edu Harvard School of Engineering and Applied Sciences

More information

Split Nonthreshold Laplacian Integral Graphs

Split Nonthreshold Laplacian Integral Graphs Split Nonthreshold Laplacian Integral Graphs Stephen Kirkland University of Regina, Canada kirkland@math.uregina.ca Maria Aguieiras Alvarez de Freitas Federal University of Rio de Janeiro, Brazil maguieiras@im.ufrj.br

More information

COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS

COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS Alexander Burstein Department of Mathematics Howard University Washington, DC 259, USA aburstein@howard.edu Sergey Kitaev Mathematics

More information

ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS. Mikhail Tsitsvero and Sergio Barbarossa

ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS. Mikhail Tsitsvero and Sergio Barbarossa ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS Mikhail Tsitsvero and Sergio Barbarossa Sapienza Univ. of Rome, DIET Dept., Via Eudossiana 18, 00184 Rome, Italy E-mail: tsitsvero@gmail.com, sergio.barbarossa@uniroma1.it

More information

The spectra of random graphs with given expected degrees

The spectra of random graphs with given expected degrees Classification: Physical Sciences, Mathematics The spectra of random graphs with given expected degrees by Fan Chung Linyuan Lu Van Vu Department of Mathematics University of California at San Diego La

More information

Rank one SVD: un algorithm pour la visualisation d une matrice non négative

Rank one SVD: un algorithm pour la visualisation d une matrice non négative Rank one SVD: un algorithm pour la visualisation d une matrice non négative L. Labiod and M. Nadif LIPADE - Universite ParisDescartes, France ECAIS 2013 November 7, 2013 Outline Outline 1 Data visualization

More information

A Tutorial on Spectral Clustering

A Tutorial on Spectral Clustering A Tutorial on Spectral Clustering Ulrike von Luxburg Max Planck Institute for Biological Cybernetics Spemannstr. 38, 7276 Tübingen, Germany ulrike.luxburg@tuebingen.mpg.de This article appears in Statistics

More information

LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING. ----Changsheng Liu 10-30-2014

LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING. ----Changsheng Liu 10-30-2014 LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING ----Changsheng Liu 10-30-2014 Agenda Semi Supervised Learning Topics in Semi Supervised Learning Label Propagation Local and global consistency Graph

More information

Practical Graph Mining with R. 5. Link Analysis

Practical Graph Mining with R. 5. Link Analysis Practical Graph Mining with R 5. Link Analysis Outline Link Analysis Concepts Metrics for Analyzing Networks PageRank HITS Link Prediction 2 Link Analysis Concepts Link A relationship between two entities

More information

Social Media Mining. Network Measures

Social Media Mining. Network Measures Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

More information

Protein Protein Interaction Networks

Protein Protein Interaction Networks Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics

More information

Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations

Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations Roy D. Williams, 1990 Presented by Chris Eldred Outline Summary Finite Element Solver Load Balancing Results Types Conclusions

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7

(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7 (67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition

More information

SCAN: A Structural Clustering Algorithm for Networks

SCAN: A Structural Clustering Algorithm for Networks SCAN: A Structural Clustering Algorithm for Networks Xiaowei Xu, Nurcan Yuruk, Zhidan Feng (University of Arkansas at Little Rock) Thomas A. J. Schweiger (Acxiom Corporation) Networks scaling: #edges connected

More information

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff Nimble Algorithms for Cloud Computing Ravi Kannan, Santosh Vempala and David Woodruff Cloud computing Data is distributed arbitrarily on many servers Parallel algorithms: time Streaming algorithms: sublinear

More information

How To Understand The Network Of A Network

How To Understand The Network Of A Network Roles in Networks Roles in Networks Motivation for work: Let topology define network roles. Work by Kleinberg on directed graphs, used topology to define two types of roles: authorities and hubs. (Each

More information

A modularity-based spectral graph analysis

A modularity-based spectral graph analysis A modularity-based spectral graph analysis Dario Fasino (Udine), Francesco Tudisco (Roma TV) Cagliari, VDM60 D. Fasino, F. Tudisco Modularity-based spectral graph analysis 1/ 18 Introduction Graphs and

More information

Network Algorithms for Homeland Security

Network Algorithms for Homeland Security Network Algorithms for Homeland Security Mark Goldberg and Malik Magdon-Ismail Rensselaer Polytechnic Institute September 27, 2004. Collaborators J. Baumes, M. Krishmamoorthy, N. Preston, W. Wallace. Partially

More information

Lecture 12: Partitioning and Load Balancing

Lecture 12: Partitioning and Load Balancing Lecture 12: Partitioning and Load Balancing G63.2011.002/G22.2945.001 November 16, 2010 thanks to Schloegel,Karypis and Kumar survey paper and Zoltan website for many of today s slides and pictures Partitioning

More information

Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

Application of Graph Theory to

Application of Graph Theory to Application of Graph Theory to Requirements Traceability A methodology for visualization of large requirements sets Sam Brown L-3 Communications This presentation consists of L-3 STRATIS general capabilities

More information

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 Self-Adjoint and Normal Operators

More information

Efficient Load Balancing by Adaptive Bypasses for the Migration on the Internet

Efficient Load Balancing by Adaptive Bypasses for the Migration on the Internet Efficient Load Balancing by Adaptive Bypasses for the Migration on the Internet Yukio Hayashi yhayashi@jaist.ac.jp Japan Advanced Institute of Science and Technology ICCS 03 Workshop on Grid Computing,

More information

Analysis of Internet Topologies

Analysis of Internet Topologies Analysis of Internet Topologies Ljiljana Trajković ljilja@cs.sfu.ca Communication Networks Laboratory http://www.ensc.sfu.ca/cnl School of Engineering Science Simon Fraser University, Vancouver, British

More information

Performance Metrics for Graph Mining Tasks

Performance Metrics for Graph Mining Tasks Performance Metrics for Graph Mining Tasks 1 Outline Introduction to Performance Metrics Supervised Learning Performance Metrics Unsupervised Learning Performance Metrics Optimizing Metrics Statistical

More information

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

More information

Studying E-mail Graphs for Intelligence Monitoring and Analysis in the Absence of Semantic Information

Studying E-mail Graphs for Intelligence Monitoring and Analysis in the Absence of Semantic Information Studying E-mail Graphs for Intelligence Monitoring and Analysis in the Absence of Semantic Information Petros Drineas, Mukkai S. Krishnamoorthy, Michael D. Sofka Bülent Yener Department of Computer Science,

More information

Key words. cluster analysis, k-means, eigen decomposition, Laplacian matrix, data visualization, Fisher s Iris data set

Key words. cluster analysis, k-means, eigen decomposition, Laplacian matrix, data visualization, Fisher s Iris data set SPECTRAL CLUSTERING AND VISUALIZATION: A NOVEL CLUSTERING OF FISHER S IRIS DATA SET DAVID BENSON-PUTNINS, MARGARET BONFARDIN, MEAGAN E. MAGNONI, AND DANIEL MARTIN Advisors: Carl D. Meyer and Charles D.

More information

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan

More information

A FAST AND HIGH QUALITY MULTILEVEL SCHEME FOR PARTITIONING IRREGULAR GRAPHS

A FAST AND HIGH QUALITY MULTILEVEL SCHEME FOR PARTITIONING IRREGULAR GRAPHS SIAM J. SCI. COMPUT. Vol. 20, No., pp. 359 392 c 998 Society for Industrial and Applied Mathematics A FAST AND HIGH QUALITY MULTILEVEL SCHEME FOR PARTITIONING IRREGULAR GRAPHS GEORGE KARYPIS AND VIPIN

More information

YILUN SHANG. e λi. i=1

YILUN SHANG. e λi. i=1 LOWER BOUNDS FOR THE ESTRADA INDEX OF GRAPHS YILUN SHANG Abstract. Let G be a graph with n vertices and λ 1,λ,...,λ n be its eigenvalues. The Estrada index of G is defined as EE(G = n eλ i. In this paper,

More information

Expansion Properties of Large Social Graphs

Expansion Properties of Large Social Graphs Expansion Properties of Large Social Graphs Fragkiskos D. Malliaros 1 and Vasileios Megalooikonomou 1,2 1 Computer Engineering and Informatics Department University of Patras, 26500 Rio, Greece 2 Data

More information

Factor analysis. Angela Montanari

Factor analysis. Angela Montanari Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

More information

Expander Graph based Key Distribution Mechanisms in Wireless Sensor Networks

Expander Graph based Key Distribution Mechanisms in Wireless Sensor Networks Expander Graph based Key Distribution Mechanisms in Wireless Sensor Networks Seyit Ahmet Çamtepe Computer Science Department Rensselaer Polytechnic Institute Troy, New York 12180 Email: camtes@cs.rpi.edu

More information

Random graphs with a given degree sequence

Random graphs with a given degree sequence Sourav Chatterjee (NYU) Persi Diaconis (Stanford) Allan Sly (Microsoft) Let G be an undirected simple graph on n vertices. Let d 1,..., d n be the degrees of the vertices of G arranged in descending order.

More information

Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization

Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization Jérôme Kunegis Stephan Schmidt Andreas Lommatzsch Jürgen Lerner Ernesto W. De Luca Sahin Albayrak Abstract We study the application

More information

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering

More information

Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

More information

SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH NATIONAL UNIVERSITY OF SINGAPORE

SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH NATIONAL UNIVERSITY OF SINGAPORE SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH NATIONAL UNIVERSITY OF SINGAPORE 2012 SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH (M.Sc., SFU, Russia) A THESIS

More information

Analysis of Internet Topologies: A Historical View

Analysis of Internet Topologies: A Historical View Analysis of Internet Topologies: A Historical View Mohamadreza Najiminaini, Laxmi Subedi, and Ljiljana Trajković Communication Networks Laboratory http://www.ensc.sfu.ca/cnl Simon Fraser University Vancouver,

More information

The mathematics of networks

The mathematics of networks The mathematics of networks M. E. J. Newman Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109 1040 In much of economic theory it is assumed that economic agents interact,

More information

Weighted Spectral Distribution for Internet Topology Analysis: Theory and Applications

Weighted Spectral Distribution for Internet Topology Analysis: Theory and Applications IEEE/ACM TRANSACTIONS ON NETWORKING 1 Weighted Spectral Distribution for Internet Topology Analysis: Theory and Applications Damien Fay, Hamed Haddadi, Andrew Thomason, Andrew W. Moore, Richard Mortier,

More information

Mining Social-Network Graphs

Mining Social-Network Graphs 342 Chapter 10 Mining Social-Network Graphs There is much information to be gained by analyzing the large-scale data that is derived from social networks. The best-known example of a social network is

More information

Feature Point Selection using Structural Graph Matching for MLS based Image Registration

Feature Point Selection using Structural Graph Matching for MLS based Image Registration Feature Point Selection using Structural Graph Matching for MLS based Image Registration Hema P Menon Department of CSE Amrita Vishwa Vidyapeetham Coimbatore Tamil Nadu - 641 112, India K A Narayanankutty

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

Differential Privacy Preserving Spectral Graph Analysis

Differential Privacy Preserving Spectral Graph Analysis Differential Privacy Preserving Spectral Graph Analysis Yue Wang, Xintao Wu, and Leting Wu University of North Carolina at Charlotte, {ywang91, xwu, lwu8}@uncc.edu Abstract. In this paper, we focus on

More information

Degree distribution in random Apollonian networks structures

Degree distribution in random Apollonian networks structures Degree distribution in random Apollonian networks structures Alexis Darrasse joint work with Michèle Soria ALÉA 2007 Plan 1 Introduction 2 Properties of real-life graphs Distinctive properties Existing

More information

Entropy Waves, The Zig-Zag Graph Product, and New Constant-Degree Expanders

Entropy Waves, The Zig-Zag Graph Product, and New Constant-Degree Expanders Entropy Waves, The Zig-Zag Graph Product, and New Constant-Degree Expanders Omer Reingold Salil Vadhan Avi Wigderson. August 1, 2001 Abstract The main contribution of this work is a new type of graph product,

More information

Search engines: ranking algorithms

Search engines: ranking algorithms Search engines: ranking algorithms Gianna M. Del Corso Dipartimento di Informatica, Università di Pisa, Italy ESP, 25 Marzo 2015 1 Statistics 2 Search Engines Ranking Algorithms HITS Web Analytics Estimated

More information

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

More information

Fast Multipole Method for particle interactions: an open source parallel library component

Fast Multipole Method for particle interactions: an open source parallel library component Fast Multipole Method for particle interactions: an open source parallel library component F. A. Cruz 1,M.G.Knepley 2,andL.A.Barba 1 1 Department of Mathematics, University of Bristol, University Walk,

More information

1 Example of Time Series Analysis by SSA 1

1 Example of Time Series Analysis by SSA 1 1 Example of Time Series Analysis by SSA 1 Let us illustrate the 'Caterpillar'-SSA technique [1] by the example of time series analysis. Consider the time series FORT (monthly volumes of fortied wine sales

More information

Statistical and computational challenges in networks and cybersecurity

Statistical and computational challenges in networks and cybersecurity Statistical and computational challenges in networks and cybersecurity Hugh Chipman Acadia University June 12, 2015 Statistical and computational challenges in networks and cybersecurity May 4-8, 2015,

More information

arxiv:1201.3120v3 [math.na] 1 Oct 2012

arxiv:1201.3120v3 [math.na] 1 Oct 2012 RANKING HUBS AND AUTHORITIES USING MATRIX FUNCTIONS MICHELE BENZI, ERNESTO ESTRADA, AND CHRISTINE KLYMKO arxiv:1201.3120v3 [math.na] 1 Oct 2012 Abstract. The notions of subgraph centrality and communicability,

More information

Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel

Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel Tai Qin Department of Statistics University of Wisconsin-Madison Madison, WI qin@stat.wisc.edu Karl Rohe Department of Statistics

More information

Conductance, the Normalized Laplacian, and Cheeger s Inequality

Conductance, the Normalized Laplacian, and Cheeger s Inequality Spectral Graph Theory Lecture 6 Conductance, the Normalized Laplacian, and Cheeger s Inequality Daniel A. Spielman September 21, 2015 Disclaimer These notes are not necessarily an accurate representation

More information

Data Fusion Enhancing NetFlow Graph Analytics

Data Fusion Enhancing NetFlow Graph Analytics Data Fusion Enhancing NetFlow Graph Analytics EMILIE PURVINE, BRYAN OLSEN, CLIFF JOSLYN Pacific Northwest National Laboratory FloCon 2016 Outline Introduction NetFlow Windows Event Log data Remote Desktop

More information

Soft Clustering with Projections: PCA, ICA, and Laplacian

Soft Clustering with Projections: PCA, ICA, and Laplacian 1 Soft Clustering with Projections: PCA, ICA, and Laplacian David Gleich and Leonid Zhukov Abstract In this paper we present a comparison of three projection methods that use the eigenvectors of a matrix

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

LINEAR-ALGEBRAIC GRAPH MINING

LINEAR-ALGEBRAIC GRAPH MINING UCSF QB3 Seminar 5/28/215 Linear Algebraic Graph Mining, sanders29@llnl.gov 1/22 LLNL-PRES-671587 New Applications of Computer Analysis to Biomedical Data Sets QB3 Seminar, UCSF Medical School, May 28

More information

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

Maximum Likelihood Graph Structure Estimation with Degree Distributions

Maximum Likelihood Graph Structure Estimation with Degree Distributions Maximum Likelihood Graph Structure Estimation with Distributions Bert Huang Computer Science Department Columbia University New York, NY 17 bert@cs.columbia.edu Tony Jebara Computer Science Department

More information

How To Find Influence Between Two Concepts In A Network

How To Find Influence Between Two Concepts In A Network 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation Influence Discovery in Semantic Networks: An Initial Approach Marcello Trovati and Ovidiu Bagdasar School of Computing

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

Max Flow, Min Cut, and Matchings (Solution)

Max Flow, Min Cut, and Matchings (Solution) Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes

More information

The Open University s repository of research publications and other research outputs

The Open University s repository of research publications and other research outputs Open Research Online The Open University s repository of research publications and other research outputs The degree-diameter problem for circulant graphs of degree 8 and 9 Journal Article How to cite:

More information

Warshall s Algorithm: Transitive Closure

Warshall s Algorithm: Transitive Closure CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

More information

Structural and functional analytics for community detection in large-scale complex networks

Structural and functional analytics for community detection in large-scale complex networks Chopade and Zhan Journal of Big Data DOI 10.1186/s40537-015-0019-y RESEARCH Open Access Structural and functional analytics for community detection in large-scale complex networks Pravin Chopade 1* and

More information

Graph Processing and Social Networks

Graph Processing and Social Networks Graph Processing and Social Networks Presented by Shu Jiayu, Yang Ji Department of Computer Science and Engineering The Hong Kong University of Science and Technology 2015/4/20 1 Outline Background Graph

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES

NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES Silvija Vlah Kristina Soric Visnja Vojvodic Rosenzweig Department of Mathematics

More information

Cycle transversals in bounded degree graphs

Cycle transversals in bounded degree graphs Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.

More information

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

More information

Distributed network topology reconstruction in presence of anonymous nodes

Distributed network topology reconstruction in presence of anonymous nodes Distributed network topology reconstruction in presence of anonymous nodes Thi-Minh Dung Tran, Alain Y Kibangou To cite this version: Thi-Minh Dung Tran, Alain Y Kibangou Distributed network topology reconstruction

More information

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices

More information

An Introduction to APGL

An Introduction to APGL An Introduction to APGL Charanpal Dhanjal February 2012 Abstract Another Python Graph Library (APGL) is a graph library written using pure Python, NumPy and SciPy. Users new to the library can gain an

More information

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics INTERNATIONAL BLACK SEA UNIVERSITY COMPUTER TECHNOLOGIES AND ENGINEERING FACULTY ELABORATION OF AN ALGORITHM OF DETECTING TESTS DIMENSIONALITY Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

Cluster detection algorithm in neural networks

Cluster detection algorithm in neural networks Cluster detection algorithm in neural networks David Meunier and Hélène Paugam-Moisy Institute for Cognitive Science, UMR CNRS 5015 67, boulevard Pinel F-69675 BRON - France E-mail: {dmeunier,hpaugam}@isc.cnrs.fr

More information

Clustering Social Networks

Clustering Social Networks Clustering Social Networks Nina Mishra 1,4, Robert Schreiber, Isabelle Stanton 1, and Robert E. Tarjan,3 {nmishra,istanton}@cs.virginia.edu, {rob.schreiber,robert.tarjan}@hp.com 1 Department of Computer

More information

Semester Project Report

Semester Project Report Semester Project Report Data Mining and Analysis on Twitter Pulkit Goyal (pulkit.goyal@epfl.ch) Sapan Diwakar (sapan.diwakar@epfl.ch) January 14, 2011 Professor: Prof. Pascal Frossard Supervisor: Xiaowen

More information