Research on solid state lasers in Poland; status, applications, prospects



Similar documents
Millijoules high master-slave pulse ratio 532 nm picosecond laser

DIODE PUMPED CRYSTALASER

High Brightness Fiber Coupled Pump Laser Development

Infrared Fiber Lasers

High power fiber lasers and amplifiers

Radiant Dyes Laser Accessories GmbH

High Power Fiber Laser Technology

Scalable Frequency Generation from Single Optical Wave

Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

LIEKKI. Optical Fibers. Features. Applications

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

High-Performance Wavelength-Locked Diode Lasers

Installation, Commissioning and Operation of the Master Laser Oscillator at FLASH

Development of MEMS micromirrors for intracavity laser control

Real-world applications of intense light matter interaction beyond the scope of classical micromachining.

Experiment 5. Lasers and laser mode structure

Quasi-Continuous Wave (CW) UV Laser Xcyte Series

University of Pécs in ELI

A More Efficient Way to De-shelve 137 Ba +

Defense & Security Symposium 2004, Kigre Er:glass Publication #144. Eye-Safe Erbium Glass Laser Transmitter Study Q-Switched with Cobalt Spinel

Limiting factors in fiber optic transmissions

Short overview of TEUFEL-project

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

HIGH POWER FREE SPACE AND FIBER PIGTAILED ISOLATORS

Zecotek S Light Projection Network Marketing

SpectraTec II. Polarized Multi-Laser Source BLUE SKY RESEARCH WAVELENGTHS. The SpectraTec II

FIBRE OPTICS & LASERS

Recent developments in high bandwidth optical interconnects. Brian Corbett.

Status of the Free Electron Laser

FIBER LASER STRAIN SENSOR DEVICE

Pump-probe experiments with ultra-short temporal resolution

Ti:Sapphire Terawatt Laser Systems

Vertical Cavity Surface Emitting Laser OPV300, OPV310, OPV310Y, OPV314, OPV314Y

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko

Acousto-optic modulator

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer

Measuring Laser Power and Energy Output

Creating a Cavity-Dumped Helium Neon Laser

LBS-300 Beam Sampler for C-mount Cameras. YAG Focal Spot Analysis Adapter. User Notes

PROGRESS ON LASER SOURCES FOR DIRCM APPLICATION AT CILAS

Attenuator Integrated With Input Tap (voltage control)

HIGH VOLTAGE POWER SUPPLY FOR ELECTRO-OPTICS APPLICATIONS

Un-cooled Multimode Pump Laser Module for Telecom Applications

Laser Concepts for Industrial Thin Film PV Production

Mode-Locked Femtosecond Titanium:Sapphire Laser. Version Trestles-50

RAY TRACING UNIFIED FIELD TRACING

Fiber optic communication

Wavelength stabilized high-power diode laser modules

Wideband Driver Amplifiers

Volumes. Goal: Drive optical to high volumes and low costs

Self-Mixing Differential Laser Vibrometer

38 Series - Relay interface modules A

OM2210 Coherent Receiver Calibration Source OM2210 Datasheet

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

Single Mode Fiber Lasers

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability

DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)

arxiv: v1 [physics.optics] 11 Sep 2012

Modeling and Performance Analysis of DWDM Based 100 Gbps Low Power Inter-satellite Optical Wireless Communication (LP-IsOWC) System

Design and Test of Fast Laser Driver Circuits

A simple and low-power optical limiter for multi-ghz pulse trains

Important Types of Lasers

Lab 9: The Acousto-Optic Effect

APSYN420A/B Specification GHz Low Phase Noise Synthesizer

SENSORS. Miniature Sensors - S3Z. Advanced line of miniature Asian style of photoelectric sensors mm background suppression

Single-frequency-mode Q-switched Nd:YAG and Er:glass lasers controlled by volume Bragg gratings

Amplified High Speed Fiber Photodetectors

Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides

Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m

Fundamentals of Optical Communications

High Power Infrared Emitting Diode, 940 nm, GaAlAs, MQW

K817P/ K827PH/ K847PH. Optocoupler with Phototransistor Output. Vishay Semiconductors. Description. Applications. Features.

- thus, the total number of atoms per second that absorb a photon is

HP 70950B OPTICAL SPECTRUM ANALYZER

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION

14.5GHZ 2.2KW CW GENERATOR. GKP 22KP 14.5GHz WR62 3x400V

ILX Lightwave Corporation

Micro-optical switches for future telecommunication payloads : achievements of the SAT 'N LIGHT Project

Michalina Góra, Jan Marczak, Antoni Rycyk, Piotr Targowski APPLICATION OF OPTICAL COHERENCE TOMOGRAPHY TO MONITORING OF LASER ABLATION OF VARNISH

Optical Amplifiers. Ericsson

MASW T. HMIC TM PIN Diode SP2T 13 Watt Switch for TD-SCDMA Applications. Features. Functional Diagram (TOP VIEW)

Ultrafast Optical Characterization of Novel Mid-Infrared Nanoscale Structures

Solid State Lasers and Nonlinear Optics Sources for Remote Sensing and Imaging: Past, Present and Future

Optocoupler, Phototransistor Output, AC Input

Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money

Market requirements for next generation fiber lasers for medical applications. SwissPhotonics Workshop DUERR/

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

A Guide to Acousto-Optic Modulators

Plastic Optical Fiber for In-Home communication systems

An optical readout configuration for advanced massive GW detectors

Transcription:

Research on solid state lasers in Poland; status, applications, prospects WAT Jan K. Jabczyński Institute of Optoelectronics Military University of Technology 00 908 Warszawa, ul Kaliskiego jjabczynski@wat.edu.pl www.ztl.wat.edu.pl 1

Contents Q-switched Er laser @ IOE Ultrafast Lasers @ Warsaw University Fibre Lasers: - 1.5-µm fibre lasers @ Wroclaw University of Technology - doubled clad pulsed MOFPA @ IOE Microchips - 1.06 µm stabilised microchips @ WUT - green, eye safe microchips @ MUT - 1.3 µm V:YAG Q-switched microchips @ CTU & CRYTUR Side pumped, multi-wavelength laser @ IOE - 8 - mj Q-switched oscillator - 2 - mj eye safe intracavity OPO - Raman lasers QML lasers @ IOE + CTU Prospects: - CW & Q-switched diode pumped infrared lasers for medicine - hybrid lasers for remote sensing 2

3-µm Q-switched Er:YAG laser up 140 mj single shot high rep rate, 20 mj, 90 Output energy[mj]... 80 70 60 50 40 30 20 10 free running Q-switching 0 440 450 460 470 480 490 500 Supply voltage[v] group of prof. A. Zając: azajac@wat.edu.pl 3

Output energy [mj] 140 120 100 80 60 40 20 Upc = 1.35 kv Upc = 2.4 kv 0 35 40 45 50 55 60 Pump energy [J] Pulse output energy vs. pump energy for two values of voltage applied to Pockels cell Hypothetical Er:YAG laser interaction with gelatine. The crater on the left was achieved for free-running pulses, and on the right for Q-switch pulses. Oscilloscope picture of the shortest Q-switch pulse generated by Er:YAG laser. Lower trace laser pulse, upper trace voltage course applied to Pockels cell group of prof. A. Zając: azajac@wat.edu.pl 4

Contents Q-switched Er laser @ IOE Ultrafast Lasers @ Warsaw University Fibre Lasers: - 1.5 µm fibre Lasers @ Wroclaw University of Technology - double-clad MOPFA @ IOE Microchips - 1.06 µm stabilised microchips @ WTU - green, eye safe microchips @ MUT - 1.3 µm V:YAG Q-switched microchips @ CTU & CRYTUR Side pumped, multi-wavelength laser @ IOE - 8-mJ Q-switched oscillators - 2-mJ eye safe intracavity OPO - Raman lasers QML lasers @ IOE + CTU Prospects: - Q-switched Tm lasers for medicine - hybrid lasers for remote sensing 5

Femtosecond oscillators at Warsaw University & Institute of Physical Chemistry Ti:Al 2 O 3 multipass amplifier, 10 Hz, 1-2mJ, 60fs, Ti:Al 2 O 3 regenerative amplifier, cryogenics cooling, 1-10kHz, 0.5-2mJ, 80fs, group of prof. Cz. Radzewicz: Czeslaw.Radzewicz@fuw.edu.pl 6

Femtosecond NOPCPA s Non collinear Optical Parametric Chirped Pulse Amplifiers Pump beam: II harm Q-switched Nd laser seed beam: stretched pulse of Ti:Al 2 O 3 MLlaser non collinear optical parametric amplification in BBO crystal Aim: > 50 mj, < 30 fs Demonstrated in 1st stage 4-pass amplifier 6 mj @ 10 Hz after compression 4.5 mj & 30 fs 0.15 TWatt group of prof. Cz. Radzewicz: Czeslaw.Radzewicz@fuw.edu.pl 7

8

Contents Q-switched Er laser @ IOE Ultrafast Lasers @ Warsaw University Fibre Lasers: - 1.5 µm fibre lasers @ Wrocław University of Technology - double-clad MOFPA @ IOE Microchips - 1.06 µm stabilised microchips @ WTU - green, eye safe microchips @ MUT - 1.3 µm V:YAG Q-switched microchips @ CTU & CRYTUR Side pumped, multi-wavelength laser @ IOE - 8-mJ Q-switched oscillators - 2-mJ eye safe intracavity OPO - Raman lasers QML lasers @ IOE + CTU Prospects: - Q-switched Tm lasers for medicine - hybrid lasers for remote sensing 9

1.55-µ µm CW fiber lasers CW Tunable, narrow bandwidth fiber lasers 5 0 Moc wyjściowa [dbm] -5-10 -15-20 -25-30 -35-40 -45-50 1545 1546 1547 1548 1549 1550 1551 1552 Długość fali [nm] CW multi-wavelength fiber lasers -10 Moc wyjściowa [dbm] -20 I =32 ma d -30-40 -50-60 -70 1520 1530 1540 1550 1560 1570 1580 Długość fali [nm] group of prof. K. Abramski: krzysztof.abramski@pwr.wroc.pl 10 1553 1554 1555

1.55-µm ML fiber lasers Światłowodowe lasery erbowe pracy impulsowej Active ML laser ps pulses, frequency muliplying up to GHz Passive ML laser 0.1 ps pulses, coupled solitons, soliton packets -20 Moc optyczna [dbm] -25-30 -35-40 -45 30.52 nm -50 1530 1540 1550 1560 1570 1580 1590 1600 Długość fali [nm] group of prof. K. Abramski: krzysztof.abramski@pwr.wroc.pl 11

Pulsed double-clad MOFPA system HT @ 940 nm HR @ 1064 nm S3 y z y z HT @ 940 nm HR @ 1064 nm x x nonabsorbed pump power Yb-doped LMA fiber S2 HR @ 1064 nm S1 amplified signal oscilloscope Nd:YVO laser: f r = 10-40 khz 3,5 W (85 µj) dla 40 khz 2,5 W (250 µj) dla 10 khz t pulse (min.) = 10,6 ns diaphragm power meter pulse generator polarizer Faraday rotator optical isolator group of prof. A. Zając: azajac@wat.edu.pl λ 2 polarizer HR@1064 nm HT@ 808 nm 12

Contents Q-switched Er laser @ IOE Ultrafast Lasers @ Warsaw University Fibre Lasers: - 1.5 µm fibre Lasers @ Wroclaw University of Technology - double-clad MOFPA @ IOE Microchips - 1.06 µm stabilised micochips @ WUT - green, eye safe microchips @ MUT - 1.3 µm V:YAG Q-switched microchips @ CTU & CRYTUR Side pumped, multi-wavelength laser @ IOE - 8-mJ oscillators - 2-mJ eye safe intracavity OPO - Raman lasers QML lasers @ IOE + CTU Prospects: - Q-switched Tm lasers for medicine - hybrid lasers for remote sensing 13

1.06-µm stabilised, tunable microchips for metrology 8 7 6 5 4 3 54,9 2 1 42,0 110GHz 1 TEC, 2 dioda, 3 GRIN, 4 SSDPL, 5 Brewster plate,, 6 KTP, 7- mirror,, 8 tables (XY), a) SF operation b) temperature change T=19,2 o C up T=24,5 o C T=5,3 o C enables tunig in the range: ν 0 ~ 110GHz@1064nm Laser stabilizowany Nd:YAG/KTP Radiator 1064nm&532nm Lustro dichroiczne 1064nm Sprzęgacz światłowodowy 532nm Fotodetektor (sygnał R) Moduł Peltier'a (Przestrajanie termiczne) Układ automatycznej regulacji Siatka Bragga @1064nm Fotodetektor (sygnał T) 14

Microchip lasers @ IOE Types of microchips developed in last years: - 1.06-µm epitaxial Cr:YAG/Nd:YAG µchips - pigtailed, 0.532 µm/1.064 µm CW Nd:YVO 4 µchips - 1.54-µm SELG µchips; CW or Q-switched Applications: - interferometry - range finders - remote sensing - special group of dr K. Kopczyński: kkopczynski@wat.edu.pl 15

Pigtailed CW SF microchip lasers 532 nm cw 8 mw 1064 nm cw 10 mw 4 mm FSR=500GHz FSR=150GHz 20 mm 90 mm FSR=50GHz group of dr K. Kopczyński: kkopczynski@wat.edu.pl 16

Pulse train generation of Cr 4+: YAG/Nd:YAG Repetition rate up to 15 khz Pulse length 0.8-2 ns Pulse energy < 6µJ Peak power 3 kw group of dr K. Kopczyński: kkopczynski@wat.edu.pl 17

1.5-µm CW generation in Strong Erbium Laser Glass µchip Yb 1.7 x 10 21 cm -3 Er 0.75 x 10 20 cm -3 1.0 x 10 20 cm -3 1.3 x 10 20 cm -3 g e n e r o w a n a m o c ś r e d n ia [m W ] 180 160 140 120 100 80 60 40 20 0 SELG - 1 SELG - 2 SELG - 3 0 0,2 0,4 0,6 0,8 1 moc średnia diody padaj ąca na ośrodek aktywny [W] P out = 150 mw cw η = 0.16, P out = 300 mw q-cw η = 0.194. group of dr K. Kopczyński: kkopczynski@wat.edu.pl 18

1.34-µm Nd:YAG/V:YAG microchips Nd:YAG gain medium V:YAG saturable absorber Undoped YAG for better thermal management Mirrors are deposited directly on crystal end faces PUMP BEAM YAG Nd:YAG group of prof.h. Jelinkova: Hjelin@trojafjfi.cvut.cz 19

1.34-µm Nd:YAG/V:YAG microchips; summary t E out P peak P mean L rez CW 6.2 ns 37 µj 6 kw 420 mw 16.7 mm Higher pulse energy and laser mean power Stable linearly polarized output emission at 1338 nm CW 1.7 ns 15 µj 9 kw 120 mw 4.7 mm Shorter pulse length and higher peak power group of prof.h. Jelinkova: Hjelin@trojafjfi.cvut.cz 20

Contents Q-switched Er laser @ IOE Ultrafast Lasers @ Warsaw University Fibre Lasers: - 1.5 µm fibre Lasers @ Wroclaw Technical University - double-clad MOPA @ IOE Microchips - 1.06 µm stabilised microchips @ WTU - green, eye safe microchips @ MUT - 1.3 µm V:YAG Q-switched microchips @ CTU & CRYTUR Side pumped, multi-wavelength laser @ IOE - 8- mj, Q-switched 2.1-ns oscillator - 2- mj eye safe intracavity OPO - intracavity Raman lasers QML lasers @ IOE + CTU Prospects: - Q-switched Tm lasers for medicine - hybrid lasers for remote sensing 21

Side pumped Nd:YAG slab oscillator intracavity Raman lasers KTP intracavity OPO resonator up to 2 mj /5ns @ 1.57 µm Nd:YAG slab 600-W qcw FAC LD stack Pockels cell (or Cr:YAG) Q-switched) 8 mj / 2.1 ns, 50 Hz @1.064 µm 4 mj / 2 ns, 50 Hz @ 0.532 µm group of prof. Jabczyński, jjabczynski@wat.edu.pl 22

Crystals for Raman lasers BaWO 4 KGd(WO 4 ) 2 (KGW) Dimensions 6 mm x 6 mm x 33 mm 4 mm x 4 mm x 40 mm Raman shift 925 cm -1 901 cm -1 (E C 2 ) 768 cm -1 (E//C 2 ) Raman gain (1.06 µm) 39.4 cm/gw 18.6 cm/gw group of prof. Jabczyński, jjabczynski@wat.edu.pl group of prof.h. Jelinkova: Hjelin@trojafjfi.cvut.cz 23

Nd:YAP/KGW Raman triangle laser D Nd:YAP Cr:YAG KGW 1.St Stokes E//C2 1.1756 µm E C2 1.1957 µm Raman pulse length ~1 ns Raman output energy 90 µj Peak power 90 kw Mean power 1.3 mw KGW E// //C2 1.08 µm 1.176 µm KGW E C2 1.08 µm 1.196 µm 24

Nd:YAG vs. Nd:YAP Raman triangle-slab lasers Wavelength (first Stokes) Energy Nd:YAG/BaWO 4 1.180 µm 1.46 mj Nd:YAP/BaWO 4 1.199 µm 165 µj Pulse length 3.5 ns 1.7 ns 25

Contents Q-switched Er laser @ IOE Ultrafast Lasers @ Warsaw University Fiber Lasers: - Mode Locked Lasers @ Wroclaw Technical University - MOPA @ IOE Microchips - 1.06 µm stabilised microchips @ WTU - green, eye safe microchips @ MUT - 1.3 µm V:YAG Q-switched microchips @ CTU & CRYTUR Side pumped, multi-wavelength laser @ IOE - 8-mJ oscillators - 2-mJ eye safe intracavity OPO - Raman lasers QML lasers @ IOE + CTU Prospects: - Q-switched Tm lasers for medicine - hybrid lasers for remote sensing 26

Types of QML lasers Passive QML: - bulk saturable absorbers (Cr 4+ :YAG, V 3+ :YAG) - multi quantum wells saturable absorbers (MQW-SA) - Stankov s nonlinear mirror + Q-switch Active QML: - AO Mode Locker + EO Q-switch - AO Q-switch Mode Locker (AO-QML) group of prof. Jabczyński, jjabczynski@wat.edu.pl 27

AO-QML Nd:YVO 4 laser pumped by 20 W FCB 4 3 P cw = 0.2357( P - 2.16) T oc = 66% ; best case P qcw = 0.1848(P - 2.16) Z-cavity, 40.6 MHz, R=1000, R=1000 Output Power [ W ] 2 1 0 0 5 10 15 Pump Power [ W ] Output power vs. Pump power AOM LDBS 25W laser diode with beam shaper, AM- 0.3% Nd:YVO 4, AOM- acousto-optic cell, cavity frequency match to radio frequency c/2l cav =40.7 MHz, L cav = 3690 mm group of prof. Jabczyński, jjabczynski@wat.edu.pl 28

Results of AO-QML Nd:YVO 4 laser Best case: - 3 W average power @ 30 khz rep.rate - 130 µj QML envelope; 120-150 ns FWHM - 30 µj ML pulse with τ < 1 ns FWHM 1GHz DSA 601 scope 500 MHz TDS3052 scope group of prof. Jabczyński, jjabczynski@wat.edu.pl 29

MQW-SA-QML side pumped Nd:YAG slab laser M2 A LD M1 r=1m Nd:YAG M3 MQW 758D R= 50 % (40%) Pump: 600-W qcw LD @ 123 A, 33 Hz, 200 us gain medium : single bounce triangle Nd:YAG slab V-type cavity of 140 cm E out = 2 mj, 6 pulses, 95 ps, 0.8 mj/single pulse 0.65 mj, 3 pulses, 65 ps, 0.2 mj/ single pulse group of prof. Jabczyński, jjabczynski@wat.edu.pl group of prof. V. Kubecek, kubecek@troja.fjfi.cvut.cz 30

MQW-SA-QML side pumped Nd:YAG slab laser 700 600 500 SH intensity 400 300 200 100 Shortest 3-pulse enevelope 0 10 20 30 40 50 60 translation [mm] Autocorrelation trace Passive negative feedback E out = 2 mj, 6 pulses, 95 ps, 0.8 mj/single pulse 0.65 mj, 3 pulses, 65 ps, 0.2 mj/ single pulse group of prof. Jabczyński, jjabczynski@wat.edu.pl group of prof. V. Kubecek, kubecek@troja.fjfi.cvut.cz 31

WAT Summary & Prospects R-D focused on definite applications 1.9-µm diode pumped CW & Q-switched Tm laser for medicine: preliminary results CW: up to 6 W Q- switched: 2 mj / 15 ns, 300 Hz Diode pumped CW & Q-switched Er laser for medicine Hybrid eye safe Q-switched lasers for special applications - tunable Q-switched Ho:YAG laser pumped by Tm fiber laser - Q-switched Er:YAG laser pumped by Er fiber laser 32

WAT Acknowledgment to: prof. H. Jelinkova, Czech Technical University, Prague prof. V. Kubecek, Czech Technical University, Prague dr K. Nejezchleb, CRYTUR, Turnov, Czech Republik prof. Cz. Radzewicz, Warsaw University prof. K. Abramski, Wrocław University of Technology prof. A. Zając, Military University of Technology dr K. Kopczyński, Military University of Technology 33