Microcontroller based speed control of three phase induction motor using v/f method



Similar documents
Simulation and Analysis of PWM Inverter Fed Induction Motor Drive

Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions Abstract INTRODUCTION

Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter

Principles of Adjustable Frequency Drives

Design and Simulation of Soft Switched Converter Fed DC Servo Drive

Speed Control of field oriented induction motor using DsPIC Controller

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions

Modified Cascaded Five Level Multilevel Inverter Using Hybrid Pulse Width Modulation

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor

AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. Accessed 22/12/09.

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family

Understanding Delta Conversion Online "Power Regulation" - Part 2

A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER

HT46R14A Single Phase AC Induction Motor Frequency Converter Application

Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME

DC Voltage Regulation by Buck Converter Applicable for Stand Alone Micro Hydro Power Generation

SIMULATION OF CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER

New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar

Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor

FREQUENCY CONTROLLED AC MOTOR DRIVE

Microcontroller based PWM Inverter for Speed Control of a Three Phase Induction Motor

Speed Control of Induction Motor Using Dspic30f2023

REMOTE HOST PROCESS CONTROL AND MONITORING OF INDUSTRY APPLIANCES

Real time MATLAB Interface for speed control of Induction motor drive using dspic 30F4011

Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I)

MULTI-LEVEL INVERTER WITH DC LINK SWITCHES FOR RENEWABLE ENERGY SOURCES

Micro-Step Driving for Stepper Motors: A Case Study

Discover the power of e-learning! The Quick Guide to AC Variable Frequency

Properties of electrical signals

Accurate Measurement of the Mains Electricity Frequency

The full wave rectifier consists of two diodes and a resister as shown in Figure

Control of a Three Phase Induction Motor using Single Phase Supply

Pulse Width Modulated (PWM)

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA

LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE

Pulse Width Modulated (PWM) Drives. AC Drives Using PWM Techniques

Variable Voltage Variable Frequency Speed Control of Induction Motor Using FPGA-Xilinx

Switch Mode Power Supply Topologies

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2

Hybrid Power System with A Two-Input Power Converter

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation

ETEC Digital Controls PIC Lab 10 Pulse Width Modulation

Design and Construction of Variable DC Source for Laboratory Using Solar Energy

CONVENTIONALLY reduced order models are being

Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement

Advance Electronic Load Controller for Micro Hydro Power Plant

Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

PowerFlex Dynamic Braking Resistor Calculator

Speed Control and Power factor Correction using Bridgeless Buck Boost Converter for BLDC Motor Drive

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

MICRO HYDRO POWER PLANT WITH INDUCTION GENERATOR SUPPLYING SINGLE PHASE LOADS

Frequency Converter Fv

POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS

Modeling Grid Connection for Solar and Wind Energy

AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION

OPTICAL COMMUNICATION BASED STEPPER MOTOR CONTROL USING PULSE WIDTH MODULATION

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS

Fig.1 block of PFC using PIC. Index Terms:-power factor, PIC, Hardware

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

Diode Applications. by Kenneth A. Kuhn Sept. 1, This note illustrates some common applications of diodes.

Frequency Response of Filters

MODELING AND SIMULATION OF A THREE-PHASE INVERTER WITH RECTIFIER-TYPE NONLINEAR LOADS

Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink

High Power Factor Boost Converter with Bridgeless Rectifier

Speed Control of Induction Motor using VHDL Implementation of PWM Technique

See Horenstein 4.3 and 4.4

Hands On ECG. Sean Hubber and Crystal Lu

What Is Regeneration?

Analysis of AC-DC Converter Based on Power Factor and THD

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

EET272 Worksheet Week 9

An Efficient AC/DC Converter with Power Factor Correction

High Intensify Interleaved Converter for Renewable Energy Resources

Parametric variation analysis of CUK converter for constant voltage applications

Chapter 4. LLC Resonant Converter

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Room Temperature based Fan Speed Control System using Pulse Width Modulation Technique

Smart Grid and Renewable Energy Grid Integration. Jian Sun, Professor and Director Department of ECSE & Center for Future Energy Systems

... Electronic Softstarter...

Experiment 2 Diode Applications: Rectifiers

Design of Solar Power Optimizer And Eliminating Leakage Current In Multi-Level Inverter For PV Systems

AC Induction Motor Slip What It Is And How To Minimize It

An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources

Power Analysis of PWM Motor Drives

WIND TURBINE TECHNOLOGY

Welcome to this presentation on Switch Mode Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at:

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

Online Tuning of Artificial Neural Networks for Induction Motor Control

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Real-Time Digital Simulator Enabled Hardware-in-the-Loop Electric Machine Drive Lab

Transcription:

International Journal of Scientific and Research Publications, Volume 3, Issue 2, February 2013 1 Microcontroller based speed control of three phase induction motor using v/f method Mrs.DeepaliS.Shirke, Prof. Mrs.Haripriya, H.Kulkarni Electrical Dept. PES s Modern College of Engg. Pune Abstract- Induction motors are widely used AC motors in industrial area. Advanced semiconductor technology & use of microcontroller have made the speed control of induction motor easier. The proposed paper represents variable speed control application of induction motor using v/f method. In this system, the speed of the induction motor can be adjusted to user defined speed. The actual speed & reference speed is compared & the difference is adjusted by changing the firing angles of IGBTs. The system is tested & experimental results are recorded for variable speed under various load conditions. Index Terms- Inverter, rectifier, microcontroller, squirrel cage induction motor. A I. INTRODUCTION n industrial drive system basically consists of a mechanical working equipment, or load, which can be kept in motion to turn out mechanical work with the help of prime mover. To transfer energy from prime mover to mechanical load gearing or belt may be used. The transmission may also be required to convert rotary to linear motion and vice versa. Thus a combination of prime mover, transmission equipment, and mechanical working load is called a DRIVE. An electric drive can be defined as a drive, using an electric motor as a prime mover. The electric motors used may require some types of control equipment to achieve speed control and torque control. These controls make the motor work on a specific speed torque curve and may be operated using open loop or closed loop control. II. PROPOSED WORK AND ANALYSIS The present work makes use of DSPIC30F2010 microcontroller, in order to operate induction motor using V/F method. The various factors which make the microcontroller based system attractive are, 1. Improved reliability and increased flexibility. 2. Simplicity of implementation in variable speed drives 3. Low cost and high accuracy 4. Possible to change torque speed characteristics of drive by software modification. The simplicity of this project is that it can be operate by any person who need not know microcontroller programming. Block Diagram: 1ph. AC Supply Rectifier Unit Bridge Inverter 3 ph. I. M. Speed Display Micro Controller Speed Sensor Fig. 1 Block diagram of system Fig.1 shows the block diagram of closed loop control of induction motor using microcontroller DSPIC30F2010. The hardware includes squirrel cage induction motor, rectifier, bridge inverter, microcontroller, speed sensor, and switches for user interface. As shown in the figure single phase A.C. supply is given to the rectifier, rectifier DC output is given to inverter & three phase squirrel cage induction motor is connected to the three phase supply, which is the output of the inverter. Speed of the motor is sensed by sensor and feedback is given to microcontroller, microcontroller generates error signal send it to inverter. Three phase supply generated by the inverter drives the motor at user defined speed. Design specification for each block are given below, Design Specifications:- 1. Rectifier Block: - A bridge of Diodes Diode Rating: - 3Amp/1000V

International Journal of Scientific and Research Publications, Volume 3, Issue 2, February 2013 2 375Watt Current passing through diodes = ------------- = 0.8 Amp. 440 V Output Voltage of bridge rectifier = 440V A.C. x 1.414 = 622 V D.C Diode PIV should be greater than 622V (with +/- 10% tolerance) 2. Capacitor Bank:- Selected Rating :- 470μF/450V 2series, 2parallel 375Watt D.C. Current = ----------- = 0.5 Amp. 622V for 1Amp 1000μF is used by thumb rule so for 0.5 Amp 500μF is used. Initially user select the speed range from three modes s1=1440 r.p.m. s2=1200 r.p.m, s3=500r.p.m with the help of start key. After selection of the speed range, with increase in the supply voltage motor reaches to reference speed at no-load. With increase in the load gradually the motor speed start to drop, this speed is sensed by speed sensor & converted to voltage in feedback circuit. The actual speed is compared with set speed in controller & if the speed is less than set speed, controller decrease the total time period (T) of PWM so t/t increases and the output voltage of PWM i.e. Vout = [( t/t) x Vin] increases. In this way the PWM waveform generated by inverter drives the induction motor at set speed by keeping v/f ratio constant. Fig.2 shows total period of the PWM pulse. t 3. IGBT:- Selected Rating: - 60A/900V IGBT voltage > 622V IGBT current > 0.5Amp. Fig.2 T 4. Three Phase Squirrel Cage Induction Motor with mechanical load arrangement 0.5 H.P.(375 watt), 3 Phase, 1Amp, 440V, 1440 rpm III. IMPLEMENTATION In this project we have selected uncontrolled bridge rectifier, voltage control inverter, and squirrel cage induction motor, DSpic2010 microcontroller. t PWM Output Voltage =------- * Vin T Where, t = ON time (which is constant) T = Total time period Vin = Supply Voltage The speed of the motor, terminal voltage of the motor, supply frequency & also v/f ratio has been displayed. Flowchart:-

International Journal of Scientific and Research Publications, Volume 3, Issue 2, February 2013 3 Main Circuit: START INITIALISE ALL PORTS A/E/C INITIALISE LCD (PORT A),PWM (PORT E) IS START KEY PRESSED IS STOP KEY PRESSED START PWM IS PWM ON CHANGE REF SPEED 1-2-3 F/B < SET RPM F/B > SET RPM STOP PWM PWM PWM IS STOP KEY PRESSED Fig.3

International Journal of Scientific and Research Publications, Volume 3, Issue 2, February 2013 4 Feedback Circuit: START INITIALISE PORT A,B&C A/E/C INITIALISE LCD (PORT A) INITIALISE INTRUPT FOR FRQ COMP. READ PULSES AT RB0 IS 1sec TMR OVER FLOW OUTPUT DIGITAL COUNT AT DAC & UPDATE DISPLAY CLEAR PULSE COUNTER, RESET TMR Fig.4

International Journal of Scientific and Research Publications, Volume 3, Issue 2, February 2013 5 IV. RESULTS The complete hardware system has been developed and tested. The motor with ratings of 1440 RPM, 230V, 1Amp, 0.5 H.P. has been tested on no load to full load at user defined speed. The results are tabulated below. Motor Speed range Selection Load (gms) Line voltage at motor terminal (Volts) Inverter frequency (Hz) v/f Ratio Motor Speed (R.P.M) Motor without load S3(500r.p.m) 0 94 17 5 505 S2(1200rpm) 0 144 35 4 1217 S1(1440rpm) 0 184 35 4 1428 Motor with load S3(500r.p.m) 500 132 36 3 504 S2(1200rpm) 500 162 44 3 1128 S1(1440rpm) 500 164 45 3 1156 Fig. 5

International Journal of Scientific and Research Publications, Volume 3, Issue 2, February 2013 6 V. CONCLUSION When induction motor is connected to the supply directly it runs at rated speed at no load. If the motor is loaded then speed of the motor starts to drop. So to run the motor below rated speed constantly with load and without load v/f method is used. For that to generate PWM waveform and to measure speed of the motor PIC microcontroller is used. The paper represents two algorithms one for measurement of motor speed and other to generate error signal from set speed and actual speed and to adjust the voltage and frequency of the PWM waveform. From the observation it is concluded that by maintaining constant v/f ratio motor runs at variable speed with load and without load below rated speed. Appendix Appendixes, if needed, appear before the acknowledgment. ACKWLEDGMENT I, the author of this paper express my foremost and deepest gratitude to PES s Modern College of Engineering and Marathwada Mitramandal s College of Engineering Pune(India) their help and encouragement. REFERENCES [1] P.S.Chaudhari, Dr. Pradeep M.Patil, Sharad S. Patil, P.P.Kulkarni, R.M.Holmukhe, Comparison Of Performance Characteristic of Squirrel Cage Induction Motor by Three Phase Sinusoidal and PWM Inverter Supply using MATLAB Digital Simulation, Third International Conference on Emerging Trends in Engineering and Technology, 2010 IEEE. Fig. 6 [2] F.A.Ramirez, M.A.Arjona, and C.Hernandez, Mexico, Space-Vector PWM Voltage-Source Inverter for a Tree-Phase Induction Motor based on the dspic30f3011, Electronics, Robotics and Automation Mechanics Conference, 2009 IEEE. [3] K.Sandeep Kumar, K.Pritam Satsangi, Microcontroller Based Closed Loop Control of Induction Motor Using V/f Method, IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), Dr. M.G.R.University, Chennai, Tamilnadu, India. Dec. 20-22, 2007. [4] G.K.Singh, D.K.P.Singh, K.Nam, A Simple Indirect Field-Oriented Control Scheme for Multiconverter-Fed Induction Motor, IEEE Transaction on Industrial Electronics, vol.52, No.6, December 2005. [5] katsunori Taniguchi, member, IEEE, Yasumasa Ogino, and Hisaichi IRIE, PWM Technique for Power MOSFET Inverter, IEEE transaction on Power Electronics, vol.3, no.3, July 1988. [6] S.Flora Viji Rose, Mr. B.V.Manikandan, Simulation and Implementation of Multilevel Inverter Based Induction Motor Drive. [7] Vedam Subrahmanyam, Electric drives Tata McGraw-Hill 2005. AUTHORS First Author Shirke Deepali S., B.E.Electrical, PES smodern College of Engineering Pune, shirke.deepali@rediffmail.com Second Author Prof. Kulkarni Haripriya K., M.E.Electrical, PES smodern College of Engineering Pune, electricalmcoe@yahoo.com Correspondence Author Shirke Deepali S. shirke.deepali@rediffmail.com, contact no. 9371638464