Power Analysis of PWM Motor Drives
|
|
|
- Jason McBride
- 9 years ago
- Views:
Transcription
1 Power Analysis of PWM Motor Drives Application Note 1. Introduction Three-phase ac motors have been the workhorse of industry since the earliest days of electrical engineering. They are reliable, efficient, cost-effective and need little or no maintenance. In addition, ac motors such as induction and reluctance motors need no electrical connection to the rotor, so can easily be made flameproof for use in hazardous environments such as in mines. In order to provide proper speed control of an ac motor, it is necessary to supply the motor with a three phase supply of which both the voltage and the frequency can be varied. Such a supply will create a variable speed rotating field in the stator that will allow the rotor to rotate at the required speed with low slip as shown in Figure 1. This ac motor drive can efficiently provide full torque from zero speed to full speed, can overspeed if necessary, and can, by changing phase rotation, easily provide bi-directional operation of the motor. A drive with these characteristics is known as a PWM (Pulse Width Modulated) motor drive.
2 Application Note Figure 1. An overview of an AC motor drive system. Although the principles of PWM drives have been understood for some years, advances in the technology of power semiconductors, control electronics, and microprocessors have greatly stimulated the use of such drives. This has been further accelerated by the use of Vector control methods which give the ac drive the capability and flexibility of a full dc motor drive. PWM motor drives are now becoming the dominant method of variable speed motor control, and are being used not only in industry, but in applications as diverse as electric vehicles and domestic air conditioners. PWM drives produce complex waveforms, both on their output to the motor, and also on the electrical supply to the drive. This Application Note is designed to explain electrical measurements commonly performed on these drives. 2
3 Power Analysis of PWM Motor Drives Figure 2. PWM motor drive. 2. Principles of PWM Motor Drives A block diagram of the essential elements of a PWM motor drive is shown in Figure 2. The three phase supply is rectified and filtered to produce a dc bus which powers the inverter section of the drive. The inverter consists of three pairs of semiconductor switches (MOSFET, GTO, power transistor, IGBT, etc.) with associated diodes. Each pair of switches provides the power output for one phase of the motor. Figure 3. Carrier pulse waveform at each of the phase outputs. Each pair of semiconductor switches is driven by the control electronics Figure 3 shows the generated high frequency square wave carrier pulse waveform at each of the phase outputs. 3
4 Application Note Figure 4. Identical pulse waveform on all three phases results in zero voltage. Figure 5a. Modulated carrier waveform. As shown in Figure 4. the carrier pulse waveform is identical on all three phases; therefore, the net voltage appearing across any phase of the motor windings due to the carrier alone will be zero. The carrier is said to be unmodulated, and no drive power is applied to the motor. In order to drive the motor, the control electronics generates three low-frequency sinewaves, 120 apart, which modulate the carrier pulses to each pair of switches. The width of positive and negative pulse within each carrier cycle is modulated according to the amplitude of the low frequency sine waveform of that phase, shown in Figure 5a and 5b. Figure 5b. Modulated carrier waveform. The voltage across one motor winding is the difference between the voltage waveforms shown in Figures 5a and 5b. This difference is shown in Figure 6. You will notice that the average voltage presented to the motor winding is approximately sinusoidal. The two other phases of the motor winding will have similar average voltages spaced 120 apart. Figure 6. The net voltage across one motor winding. 4
5 Power Analysis of PWM Motor Drives Figure 7. Frequency spectrum of modulated voltage waveform. Figure 8. Sinusoidal output current waveform. Although the pulse-width-modulated voltage waveform applied to a motor winding contains a component at the required frequency, it also contains a number of other, higher frequency components. For example, the phase-to-phase waveform in Figure 6 has a frequency spectrum as shown in Figure 7. Fortunately, to a large extent, the motor appears as an inductor to the output voltages of the inverter. As an inductor has higher impedances to higher frequencies, most of the current drawn by the motor is due to the lower frequency components in the PWM output waveshape Figure 8 shows. This results in the current drawn by the motor being approximately sinusoidal in shape. By controlling the amplitude and frequency of the modulating waveforms, the PWM drive can output to the motor a three phase supply at the necessary voltage and frequency to drive the motor at any required speed. 5
6 Application Note Figure 9. Equivalent circuit of one motor phase. Figure 10. Drive voltage/frequency characteristics. 3. Electrical Characteristics of a PWM Motor Drive Voltage-frequency Relationship The characteristics of a PWM motor drive can best be understood by considering a simplified equivalent circuit of one motor phase as shown in Figure 9. In this circuit, R and L represent the resistance and inductance of the motor as seen by the supply, and E represents the back EMF produced by motor rotation. The magnitude of the back emf, and its frequency, is proportional to the motor speed. The PWM drive must therefore adjust both the voltage and the frequency to adjust the speed, with an output voltage slightly higher than the back emf to force current through the impedance of R and L. In fact the drive electronics need to produce a voltage/frequency characteristics as shown in Figure 10. The offset in this characteristic is to overcome the voltage drop in this impedance and allow the drive to deliver the required current even at low or zero speed. 6
7 Power Analysis of PWM Motor Drives High Carrier Frequencies Advantages Lower losses in motor (current more sinusoidal) No audible noise due to carrier Disadvantages Choice of Carrier Frequencies Higher switching losses in inverter Potential for more radiated radio frequency noise. Table 1. Advantages and disadvantages of high carrier frequency. Most PWM drives operate with a fixed carrier frequency that is several times higher than the highest output frequency that is to be used. As industrial drives operate with an output frequency from a few Hertz up to about 100 Hz, they use a carrier frequency in the range of 2 khz up to about 10 khz. As power semiconductors improve, the trend is to increase carrier frequencies up to ultrasonic frequencies (> 18 khz) but this brings both advantages and disadvantages, see Table 1. The choice of carrier frequency is therefore a compromise, and careful measurements must be made on both the input and the output of the drive to make the optimum choice. Effect of Harmonic and Carrier Frequency Components in the PWM Output Although the PWM output voltage contains a large number of frequency components other than the fundamental, these components are generally of higher frequency and suppressed by the inductance of the motor winding. However, as shown by the equivalent circuit of Figure 9, the motor is not a simple inductor, but also generates back emf. Unfortunately, since the back emf generated by the motor is a sinusoidal voltage at the fundamental frequency, it provides no opposition to the flow of current at the harmonic and higher frequencies. For this reason these currents are larger when compared to the fundamental than would be the case if the motor were a pure inductor. It is important, therefore, that the modulation of the carrier frequency be designed to produce in the windings a current that is as sinusoidal as possible. In particular, care must be taken to minimize the level of low order harmonic voltages produced, as the impedance of the motor to these voltages will be very low. In practice then the drive produces in the motor: a) A 'wanted' component of current at the fundamental frequency. b) 'Unwanted' components of current at frequencies that are multiples of the fundamental frequency (these are harmonics) and also components of current at frequencies related to the carrier frequency. The 'unwanted' components in the motor current have two effects on the motor: 1. Components of current other than the fundamental represent additional currents in the motor stator and rotor windings, creating additional heat and reducing motor efficiency. 2. The 'unwanted' components create magnetic fields in the stator that may have negative or zero phase sequence, producing negative or braking torque. This can substantially reduce the amount of power available from the motor. The effects of these unwanted components on the operation of the motor can be expressed by measurements of the fundamental and total output power of the inverter, by harmonic analysis of the voltage and current waveforms, and by torque/ speed measurements on the motor. The only useful power delivered to the motor is at the fundamental frequency. Any power associated with the harmonics or carrier frequency does not contribute to the useful work done by the motor. The most efficient PWM drives are those that not only minimize losses in the converter, but also generate the most pure current waveforms to minimize power and torque losses in the motor itself. 7
8 Application Note Figure 11. Measurement stages within a PWM drive and motor system. Drive Section Parameters Application Note Section Motor Output Measurements Speed, Torque, Shaft Power Section 5 Drive Output Measurements Table 2. Measurements commonly made on PWM motor drives. Total Output Power & Power Factor Fundamental Output Power & PF RMS Output Voltage and Current Fundamental Output Voltage and Current Harmonic voltages, currents & powers Output Frequency Section 6 Drive DC Bus Measurements DC Bus Voltage, Current and Power Section 7 Drive Input Measurements Efficiency Measurements Input Voltage and Current Input Power and Power Factor Input VA and VARs Input Harmonic Currents (including checking to harmonic specifications such as IEC ) Efficiency of each section of PWM drive, motor efficiency and overall efficiency Section 8 Section 9 Making Connections Connecting a power analyzer to a PWM drive Section 10 Measurements Under Dynamic Load Conditions Real-time analog outputs representing voltage, current, watts and power factor of drive output Section Measurements on PWM Motor Drives Table 2 shows the typical measurements made on PWM motor drives and motors. 8
9 Power Analysis of PWM Motor Drives Figure 12. Motor output measurements. 5. Motor Output Measurements Figure 12 shows motor output measurements can be made by installing speed and torque transducers on the output shaft of the motor. 5.1 Torque and Speed Sensors Torque and speed transducers produce electrical signals that are proportional to the motor torque and the motor speed. By measuring these signals the motor speed and the motor torque can be determined, and from these measurements the motor output power can be calculated: 5.2 Torque The torque of a motor is the rotary force produced on its output shaft, it is a twisting force that is measured in Newtonmeters (Nm) or Foot-pounds (1 foot-lb = Nm). Torque ratings range from less than 1 Nm for small motors, to several thousand Nm for large motors. Torque can be measured by rotating strain gauges as well as by stationary proximity, magnetorestrictive and magnetoelestic sensors. All are temperature sensitive. Rotary sensors must be mounted on the shaft, which may not always be possible because of space limitations. To measure torque, a strain gauge is often installed directly on a shaft. Since the shaft rotates, the torque sensor must be coupled to the outside world by slip rings, wireless communications, or inductive coupling. 5.3 Speed Motor speed is commonly described as revolutions per minute (RPM) which is the number of full rotations completed in one minute around a fixed axis. A speed sensor output may be an analog voltage that is proportional to speed. More commonly the output of the speed sensor is a TTL pulse produced by a disc on the motor shaft. By measuring the frequency of the TTL signal and applying a scaling factor, the motor speed can be determined. For example, if the rotating disc produces n pulses per revolution, the RPM can be calculated as: 5.4 Combining Torque and Speed Measurements with Electrical Measurements In order to determine the efficiency of a motor and drive combination, you must consider both the electrical input to the system, and the mechanical power produced on the output of the motor. The motor output power is the product of the torque and speed: The system efficiency is calculated from the formula: η= In order to make these measurements, the PA4000 includes sensor inputs designed to connect torque and speed transducers. By measuring both the electrical power consumed on the input to the drive, as well as torque and speed on the motor s output, the efficiency of the system can be measured using a single instrument. 9
10 Application Note Figure 13. PA4000 measurement techniques for high accuracy. Filter Application 5Hz to 500Hz PWM Drives down to 5Hz output 0.5Hz to 25Hz Low speed measurement down to 0.5Hz 0.1Hz to 25Hz Very low speed measurement down to 0.1Hz Table 3. Application filter for each frequency range within the PWM motor drive system. Figure 14. The net measured voltage across one motor winding. 6. Drive Output Measurements The output waveform of a PWM drive is very complex, consisting of a mixture of high frequency components due to the carrier and components at low frequency due to the fundamental. The problem this poses for most power analyzers is that they can either measure at high frequencies, in which case low frequency information in the waveform is lost; or else they filter the PWM waveform to measure at low frequencies, in which case high frequency data is lost. The difficulty occurs because the waveform is being modulated at low frequency. High frequency measurements, such as total rms voltage, total power etc, must therefore be made at high frequency but over an integral number of cycles of the low frequency component in the output waveform. The Tektronix PA4000 power analyzer overcomes this problem by using a special operating mode for PWM output measurements. The data is sampled at high speed, and TOTAL quantities, including all harmonic and carrier components, are computed in real time. At the same time, the sampled data is digitally filtered to provide low frequency measurements such as FUNDAMENTAL and measurement of output frequency. In addition to getting both low and high frequency results from the same measurement, this technique allows the high frequency measurements to be synchronized to the low frequency signal, which is the only way of providing high frequency measurement results that are both accurate and stable. There is a choice of three filters to select according to the output frequency range to be measured, see Table 3. The choice of filter does not affect measurement of the higher frequency components since these measurements are made on unfiltered data. However, to optimize low frequency measurement results, you should choose the correct filter for your application. 10
11 Power Analysis of PWM Motor Drives The PA4000 input circuitry is optimized to give excellent results from its current shunts, in spite of extremely high common mode voltages that occur on PWM drive outputs. The voltage across the shunt may be only a few millivolts, but the shunt potential is moving up and down with respect to the ground by hundreds of volts at several kv per microsecond. Figure 15. PA4000A\ Output Measurements. 6.1 Drive Output Measurements Using the PA4000 The instrument is wired to the output in the 3 phase 3 wire configuration. (Also known as two wattmeter method - see the application note Fundamentals of Three-Phase Measurements for more on the two-wattmeter method.) For PWM drives with up to 30A of output current, the PA4000 may be connected directly to the output of the drive via its internal current shunts as shown in Figure 15. For PWM drives with more than 30 A of output current, you can use either external current transducers or external current shunts. Tektronix offers a range of fixed core current transducers up to 1000 A. These transducers include a cable that allows for quick connection to the PA4000 and takes advantage of the instruments optional 15 VDC power supply. To use the PA4000 Power Analyzer with external shunts, you connect the shunts to the external shunt voltage inputs. These input can measure shunt outputs from X V to Y V. For both current transducers and external shunts, it s important to remember to set the scaling correctly. Especially for lower current drives, the PA4000 should be wired directly to PWM outputs if possible. This is because, while AC current transformers and Hall-effect CT's provide good accuracy with higher currents, they tend to give poor results with currents of just a few amps. Although only two channels of the PA4000 are used for measurements using the two wattmeter method, the instrument will vectorially compute and display values for the current in the third (unmeasured) wire. This provides a valuable check on the balance of the load. In addition, because the third channel of the analyzer is not required for the two wattmeter method, it is available as an independent channel to measure, for example, the dc bus within the PWM drive, as described in section 7. Once the analyzer is connected and configured, it will measure the drive output power with the selected filter. If the PA4000 has difficulty measuring frequency, ensure that the correct filter frequency range has been specified. Note that the Vrms, Arms, and Watts figures are measured from pre-filtered values and therefore include all high frequency components, whereas the fundamental values only consider contributions to work in the motor. It is normal to have a significant difference between the rms and fundamental voltage. Normally there is a smaller difference in current and watts because the inductive motor filters the current. High frequency losses may be estimated by the difference between the total watts and the fundamental watts read on the SUM channel. This represents electrical power delivered by the PWM drive which does not contribute to mechanical output power and therefore adds to the heating of the motor: High Frequency Losses = Total Watts - Fundamental Watts This is a useful measurement when comparing PWM drives. 11
12 Application Note 7. Drive DC Bus Measurements Although the link between the input and the output section of the PWM drive is referred to as the dc bus, the voltage and current in this bus are far from pure dc, so care must be taken in making the necessary measurements. DC bus measurements are best made on the input side of the storage capacitors, as shown in Figure 16, since the current here is essentially low-frequency capacitor charging pulses from the ac supply, and free from the high frequency current pulses that may be drawn by the inverter section. If dc bus measurements are made on their own, CH1 of the analyzer can be used. However, dc bus measurements are often made in conjunction with three-phase two-wire measurements of either the input or output of a drive. In this case the dc bus should be measured using one of the remaining channels operating independently. For example, CH1 and CH2 are connected to make either input or output measurements as described in sections 6 and 8. CH3 is connected to the dc bus as shown in Figure 16. Select the PWM motor drive input or output mode using F[7], and enable independent CH3. Figure 16. Setup for DC Bus Measurement. Measurement W Arms AH0 VH0 Vpk Reason Table 4. Critical Measurement parameters for DC bus. Total power in dc bus. Can be used in efficiency calculations. RMS charging current in d.c. bus. Useful for sizing conductor or fuses. DC component of current in dc bus. This is smaller than Arms. Mean voltage across storage capacitor. Peak voltage across storage capacitor. 12
13 Power Analysis of PWM Motor Drives Figure 17. Input rectifier and filter stages of a PWM drive. 8. Drive Input Measurements The input circuitry of most PWM motor drives is essentially a three-phase diode rectifier bridge with capacitor filter, as shown in Figure 17. Figure 18. Voltage and current waveforms at input to PWM drive. 13
14 Application Note Figure 19. Input current waveform with no modulation. Figure 20. Input current waveform with modulation at output frequency. The current waveform on each input phase is made up of pulses that charge the storage capacitor. The current waveform for one phase is shown in Figure 18. It consists of a fundamental component at the supply frequency, but with considerable harmonic content. If the inverter section of the drive presented a constant-current load to the input circuitry, the input current on each phase and would be a distorted waveform at constant amplitude, as shown in Figures 18 and 19. Unfortunately, the inverter section of a PWM drive may not present a constant load to the input circuit; in which case the load current drawn from the capacitor is influenced by components of the output frequency. This means that the current drawn from the ac supply is a complex, distorted current waveform at the line frequency, modulated by components of the drive s motor frequency. This waveform is shown in Figure 20. The modulation can significantly influence measurements, especially at low drive speeds, however this can be addressed by using an extended measurement interval over an integral number of cycles of the drive output waveform. The PA4000 enables precise measurement of input power to a PWM drive, even at low motor frequencies. The input power measurement is synchronized to the ac line frequency but measurements can be made over an extended interval by adjusting the display update rate and averaging settings. Drive Output Frequency Display Update Time Averaging f out > 2 Hz 0.5 s 10 5 Hz > f out > 20 Hz s For output frequency of greater than 20 Hz, the default PA4000 settings will generally provide stable results. The default settings are: Display update rate: 0.5 s Averaging: 10 For output frequencies of between 5 Hz and 20 Hz, set the averaging to 10 to improve stability and set the display update time to include an integral number of measured PWM output periods (1/f). Providing 10 periods is a good rule of thumb. For example: f out f out < 5 Hz 2 s 10 Table 5. Choosing Display Update Time and Averaging to minimize effects of drive output frequency on drive input power measurements. Output frequency = 5.5 Hz Display update rate = 10/(5.5 Hz)= 1.8 s For output frequencies below 5 Hz, use the longest display update rate (2 s) together with averaging of
15 Power Analysis of PWM Motor Drives If the readings vary too much, for example, when measuring on single-phase drives, set the averaging to 10 or greater to help stabilize the measurements. The analyzer is wired to the input in 3-phase 3-wire configuration as shown in Figure 21 (also known as two wattmeter method - refer to the application note Fundamentals of Three-phase Measurements for the proof that the power delivered to a system via 'n' wires may be measured with 'n-1' wattmeters). In this wiring configuration it is possible to use the third and fourth channels of the analyzer to measure the output of the drive or the DC bus within the drive. Figure 21. Three phase three wire connection. 15
16 Application Note For example: Set up Number 1 Measure Input. Switch off system, reconnect for output measurements, and switch on again:- Figure 22. Efficiency Measurement diagram. Set up Number 2 Measure Output (but conditions have slightly changed). 9. Loss and Efficiency Measurements On any system, measurements of losses and efficiency are always best made by making simultaneous measurements on the input and output of the system as shown in Figure 22. This is particularly important for systems with high efficiency, such as PWM drives. This is because, if separate measurements are made on input and output, and the system is shut down between measurements to transfer instrumentation, one cannot always be certain that exactly the same load conditions exist for both measurements. Any unnoticed difference in load conditions will appear as an error in measured losses. Apparent losses = W W = 32.6 W Actual losses = W W = 53.7 W This represents a very substantial error in measured losses! In order to avoid such errors, you can use a four-channel instrument like the PA4000 which is capable of performing two-wattmeter measurements on both the drive input and output simultaneously, as shown in Figure
17 Power Analysis of PWM Motor Drives Using this method will ensure accurate measurements even though conditions may have changed slightly between input and output measurements. Slight changes in conditions do not matter since each efficiency measurement is made using simultaneous measurements. Figure 23. PA4000 connected using two wattmeter methods on drive inputs and outputs. 17
18 Application Note 10. Making Connections Making voltage connections to a motor drive is generally a simple task since the voltage is measured between phases. Making current connections is more challenging. There are 2 main ways of making a current connection. The first is to break the conductor and pass the current through a current shunt, and then measure the voltage drop across the shunt. While this may be practical in low power situations, it is not feasible where large currents are involved. For large currents, current transducers may be used. In general, this involves passing the primary current carrying conductor through a current measuring device. The measuring device creates a secondary current which is proportional to the primary current. Why Use a Current Transducer? There are three main reasons for using a current transducer. 1. The signal you are measuring may not be compatible with your measuring equipment. For example, most bench instruments are unable to measure currents greater than 100 A, which are often found in larger motors and drives. 2. To decouple the measurement instrument from the signal being measured. In Pulse Width Modulated (PWM) drives, the output signal being measured often has a very high common mode component caused by fast switching voltages (dv/dt). High common mode voltage introduces uncertainty in current measurements. Using a current transducer isolates the current inputs of the analyzer from the voltage swings, thus removing the uncertainly caused by common mode. 3. For convenience and safety. High voltages often exist in motor systems and are often supplied by extremely low source impedances. Large amounts of energy can flow if connections are not made correctly. Picking the Right Current Transducer There are many types of current transducers, but the 4 most common for motor measurements are: 1. Current clamp 2. Closed Loop Hall Effect 3. IT-type closed loop 4. Current transformer For best performance over the typical bandwidth of signals found in a motor drive, closed loop transducers offer the best performance. Current transformers and clamps can be used on the drive input, but will not work well on the drive output. This is because current transformers perform poorly at low frequencies (low drive speeds) and also limit your ability to measure high frequencies associated with switching. When choosing a transducer, it is very important to consider the signal being measured and the measuring equipment. Pick a transducer with a maximum input range that corresponds closely to the maximum signal (including peaks) you need to measure. This will make the best use of the range of the transducer. You also want to have a transducer output signal that is as large as possible for the measuring equipment, without causing an over-range. The larger the input signal, the greater the signal to noise ratio, and the better your measurements will be. Using a Current Transducer For a closed loop Hall Effect current transducer, care should be taken in making the connections. Power will need to be provided to the transducer. The power usually consists of both positive and negative supplies and must provide sufficient current, typically 10mA to 50mA. The transducers should be placed as close to the measurement instrument as possible to reduce coupling of voltage and magnetic fields in the secondary leads. The output of the transducer is a single current output with a common return for the signal and power supplies. The output should be connected directly to the high terminal of the current input on the measuring instrument. The low terminal of the current input on the measuring instrument should be connected to the same return as the transducer power supply. Again, all leads should be kept short. The output should be kept in close proximity to the power supply connection. Ideally the 3 wires should be twisted together. 18
19 Power Analysis of PWM Motor Drives Figure 24. Connecting a PA4000 Power Analyzer using a closed loop current transducer. In a PWM drive environment it is good practice to allow for further ground bonding and shielding in case it is required. Using a stackable 4mm on the low connection will allow the low connection to be easily grounded. Shielding the cable will also improve performance. The shield would be grounded to the common terminal of the transducer power supply and, if applicable, to the ground on the transducer. The shielding should surround both the power supply connections and the signals. If the current in the primary is a small percentage of the rated current, or the output of the transducer is low compared to the current ranges available on the measuring instrument, the performance of the circuit can be improved by passing the current through the core of the transducer more than once. For example, if the only transducer you have is 1000A in to 1A out (1000:1), but you want to measure 10A, the output current would only be 10mA. To make better use of the measuring system, passing the primary conductor through the transducer 10 times would increase the output current to 100mA. From a primary perspective, the primary current has been increased from 10A to 100A. For all styles of current transducers, the measuring instrument will need to be scaled to read current correctly. Taking the example of a 1000:1 current transducer, the actual current being measured is 1000th of the real current. Therefore, the current input needs to be scaled within the instrument by a factor of Using Current Transducers with a PM4000 The PA4000 is designed to be used with external transducers. Design features include: 1. Optional +/-15V supply that works with many commonly used closed loop current transducers 2. Individual scaling for current on each channel 3. Rear panel earth connections to simplify connection of shielding and grounding the current measurement low connection 4. Built-in 1 A rms shunt which is ideally suited for current transducer outputs. If you are using a Tektronix current clamp or transformer, the outputs of these devices are 4mm safety banana connections. The cables can be plugged directly in to the appropriate current shunt on the PA4000. Since the typical output of a current transformer or clamp is less than 1A, the built-in 1A shunt is a perfect choice. To get accurate measurements, only 2 parameters need to be configured in the instrument: 1. The shunt selection. This is set on a per-group basis. 2. The scaling factor for the current input. This is set on a perchannel basis. The scaling factor is: If you are using a closed loop current transducer, then power needs to be provided to the transducer. The optional +/- 15V supply built into the PA4000 is ideal for this function. The +15V and the -15V supplies need to be wired from the PA4000 to the current transducer. See Figure 24. The output of the transducer must be connected to the AHi or A1A connector on the channel. Since the output of closed loop transducers are often less than 1A, then the A1A connection is usually the better connection. The Alo connection of the current channel then needs to be connected to the common terminal of the transducer power supply connector. To give the best performance, the 3 connections should be twisted together and then shielded, with the shield connected to the common terminal of the transducer power supply. The transducer power supply common should in turn be connected to the earth ground terminal on the rear of the PA
20 Application Note Figure 25. PWRVIEW Software shows multiple power parameters for a PWM motor drive. 11. Drive Performance Under Dynamic Load Conditions The power consumption and output characteristics of a PWM drive vary with motor load. While your test protocols will probably call for measurements under specific line or load conditions, it s also likely that you will need to check power characteristics under changing conditions. Analyzing power characteristics during changing loads can result in large amounts of data, but with the right software and matched analyzer, you can use your PC to collect and analyze the measurements as loading or other conditions vary. Figure 26. Measurements can be logged over time, and plotted (shown here in Microsoft Excel). These plots show measurements taken during motor startup. In these applications, the power analyzer behaves like a precision measurement system, rapidly feeding data to the PC where it can be stored for further analysis. Figure 25 shows Tektronix PWRVIEW software collecting measurements from a PA4000 Power Analyzer connected to a PWM drive with a single-phase line input and three-phase drive output. In addition to collecting data, the software allows you to control the analyzer so you can configure it right on your PC. Figure 26 shows an example of reading made on a three phase input, with detailed graphs of the voltage, current and watts harmonics. 20
21 Power Analysis of PWM Motor Drives 12. Conclusion PWM motor drives are now becoming the dominant method of variable speed motor control, and are being used not only in industry, but in applications as diverse as electric vehicles and domestic air conditioners. PWM drives produce complex waveforms, both on their output to the motor, and also in the electrical supply to the drive. The Tektronix PA4000 Power Analyzer overcomes this problem with the industry s first Spiral Shunt technology coupled with dynamic frequency synchronization for stable tracking of the drive's fundamental frequency. This technology combined with a special operating mode for PWM output delivers consistently accurate measurements. The data is sampled at high speed, and TOTAL quantities, including all harmonic and carrier components, are computed in real time. At the same time, the sampled data is digitally filtered to provide low frequency measurements such as FUNDAMENTAL and measurement of output frequency, making the PA4000 an ideal solution for measurements on PWM drives. 21
22 Contact Tektronix: ASEAN / Australasia (65) Austria* Balkans, Israel, South Africa and other ISE Countries Belgium* Brazil +55 (11) Canada 1 (800) Central East Europe and the Baltics Central Europe & Greece Denmark Finland France* Germany* Hong Kong India Italy* Japan 81 (3) Luxembourg Mexico, Central/South America & Caribbean 52 (55) Middle East, Asia and North Africa The Netherlands* Norway People s Republic of China Poland Portugal Republic of Korea Russia & CIS +7 (495) South Africa Spain* Sweden* Switzerland* Taiwan 886 (2) United Kingdom & Ireland* USA 1 (800) * If the European phone number above is not accessible, please call Contact List Updated 10 February 2011 For Further Information Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit Copyright 2013, Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies. 06/13 EA/WWW 55W
The VOLTECH HANDBOOK of PWM MOTOR DRIVES. Andrew Tedd
The VOLTECH HANDBOOK of PWM MOTOR DRIVES Andrew Tedd Product: App-Note 108 Issue 1.0 VPN: 86-646 Contents 1. Introduction... 3 2. Principles of PWM motor drives... 7 3. Characteristics of PWM motor drive...
High-voltage Differential Probes TMDP0200 - THDP0200 - THDP0100 - P5200A - P5202A - P5205A - P5210A
High-voltage Differential Probes TMDP0200 - THDP0200 - THDP0100 - P5200A - P5202A - P5205A - P5210A BNC interface (P5200A probes) TekVPI interface (TMDP and THDP Series probes) TekProbe interface (P5202A,
The Fundamentals of Three-Phase Power Measurements. Application Note
The Fundamentals of - Power Measurements pplication ote pplication ote 0 120 240 360 Figure 1. -phase voltage wavefm. Figure 2. -phase voltage vects. 100Ω 100Ω Figure 4. -phase supply, balanced load -
TekConnect Adapters. TCA75 TCA-BNC TCA-SMA TCA-N TCA-292MM Data Sheet. Applications. Features & Benefits
TekConnect Adapters TCA75 TCA-BNC TCA-SMA TCA-N TCA-292MM Data Sheet TCA-N TekConnect-to-N DC to 11 GHz (Instrument Dependent) 50 Ω Input (Only) TCA-SMA TekConnect-to-SMA DC to 18 GHz (Instrument Dependent)
Time-Correlated Multi-domain RF Analysis with the MSO70000 Series Oscilloscope and SignalVu Software
Time-Correlated Multi-domain RF Analysis with the MSO70000 Series Oscilloscope and SignalVu Software Technical Brief Introduction The MSO70000 Series Mixed Oscilloscope, when coupled with SignalVu Spectrum
1.5 GHz Active Probe TAP1500 Datasheet
1.5 GHz Active Probe TAP1500 Datasheet Easy to use Connects directly to oscilloscopes with the TekVPI probe interface Provides automatic units scaling and readout on the oscilloscope display Easy access
FREQUENCY CONTROLLED AC MOTOR DRIVE
FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly
PCI Express Transmitter PLL Testing A Comparison of Methods. Primer
PCI Express Transmitter PLL Testing A Comparison of Methods Primer Primer Table of Contents Abstract...3 Spectrum Analyzer Method...4 Oscilloscope Method...6 Bit Error Rate Tester (BERT) Method...6 Clock
AC/DC Current Measurement Systems TCPA300, TCP312A, TCP305A, TCP303, TCPA400, TCP404XL Datasheet
AC/DC Current Measurement Systems TCPA300, TCP312A, TCP305A, TCP303, TCPA400, TCP404XL Datasheet Low DC drift and noise allows improved low-level current measurements 3rd party safety certification Applications
High-Speed Inter Connect (HSIC) Solution
High-Speed Inter Connect (HSIC) Solution HSIC Essentials Datasheet Protocol Decode Protocol decode Saves test time and resource costs. Designed for use with the MSO/DPO5000, DPO7000C, DPO/DSA/MSO70000C,
Principles of Adjustable Frequency Drives
What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable
Advanced Power Measurement and Analysis Software DPOPWR Datasheet
Advanced Power Measurement and Analysis Software DPOPWR Datasheet Power quality measurements computes THD, True Power, Apparent Power, Power Factor, and Crest Factor. These analysis outputs are shown in
Variable Frequency Drive Troubleshooting with U1610A/U1620A
Variable Frequency Drive Troubleshooting with U1610A/U1620A Application Note Electric motors form the backbone of most industrial and manufacturing environments. Variable frequency drives (VFDs) (also
Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies
Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the
Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager
Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS
Floating Oscilloscope Measurements And Operator Protection
Technical Brief Floating Oscilloscope Measurements And Operator Protection Introduction Oscilloscope users often need to make floating measurements where neither point of the measurement is at ground (earth)
Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA
Speed Control Methods of Various Types of Speed Control Motors Kazuya SHIRAHATA Oriental Motor Co., Ltd. offers a wide variety of speed control motors. Our speed control motor packages include the motor,
TekSmartLab TBX3000A, TSL3000B Datasheet
TekSmartLab TBX3000A, TSL3000B Datasheet TekSmartLab is the industry's first network-based instrument management solution for teaching labs that brings a more efficient lab experience. With the TekSmartLab,
AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs
APPLICATION NOTE AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs by J.M. Bourgeois ABSTRACT Power MOSFET and IGBT gate drives often face isolation and high voltage constraints. The gate drive described
Tamura Closed Loop Hall Effect Current Sensors
Tamura Closed Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response Wide Frequency Bandwidth Quality & Reliability RoHs Compliance Closed Loop Hall Effect Sensors
Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module
Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working
Pulse Width Modulated (PWM)
Control Technologies Manual PWM AC Drives Revision 1.0 Pulse Width Modulated (PWM) Figure 1.8 shows a block diagram of the power conversion unit in a PWM drive. In this type of drive, a diode bridge rectifier
TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes
TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes Tektronix oscilloscopes provide several different acquisition modes. While this gives the user great flexibility and choice, each mode is optimized
TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES
TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES by L. Wuidart I INTRODUCTION This paper presents an overview of the most important DC-DC converter topologies. The main object is to guide the designer in selecting
Considering the effects of UPS operation with leading power factor loads
Considering the effects of UPS operation with leading power factor loads Over the past five years, a new generation of data processing and communications equipment has become prevalent in modern data centers
2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
Pulse Width Modulated (PWM) Drives. AC Drives Using PWM Techniques
Drives AC Drives Using PWM Techniques Power Conversion Unit The block diagram below shows the power conversion unit in Pulse Width Modulated (PWM) drives. In this type of drive, a diode bridge rectifier
WIND TURBINE TECHNOLOGY
Module 2.2-2 WIND TURBINE TECHNOLOGY Electrical System Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Contents Module 2.2 Types of generator systems
Variable Frequency Drives - a Comparison of VSI versus LCI Systems
Variable Frequency Drives - a Comparison of VSI versus LCI Systems Introduction TMEIC is a leader in the innovative design and manufacture of large ac variable f requency drive systems. TMEIC has been
ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2007. Test Method for AC to DC Power Supplies
ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2007 Test Method for AC to DC Power Supplies NOTICE The Society of Cable Telecommunications Engineers (SCTE)
EET272 Worksheet Week 9
EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming
Line Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
Specifying a Variable Frequency Drive s
Specifying a Variable Frequency Drive s Put on by Bruce Reeves and Jeremy Gonzales Dykman Electrical Covering the Western US For all of your VFD and Soft Start and Motor Needs How To Specify a Variable
Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.
Lab 9: Synchronous motor. Objective: to examine the design of a 3-phase synchronous motor; to learn how to connect it; to obtain its starting characteristic; to determine the full-load characteristic of
Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder
Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction
Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions Abstract INTRODUCTION
Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions by Howard Abramowitz, Ph.D EE, President, AirCare Automation Inc. Abstract - Single Phase AC motors continue to be
Keysight Technologies N1918A Power Analysis Manager and U2000 Series USB Power Sensors. Demo Guide
Keysight Technologies N1918A Power Analysis Manager and U2000 Series USB Power Sensors Demo Guide Introduction This demonstration guide helps you to get familiar with the basic setup and coniguration requirements
ULRASONIC GENERATOR POWER CIRCUITRY. Will it fit on PC board
ULRASONIC GENERATOR POWER CIRCUITRY Will it fit on PC board MAJOR COMPONENTS HIGH POWER FACTOR RECTIFIER RECTIFIES POWER LINE RAIL SUPPLY SETS VOLTAGE AMPLITUDE INVERTER INVERTS RAIL VOLTAGE FILTER FILTERS
Simulation and Analysis of PWM Inverter Fed Induction Motor Drive
Simulation and Analysis of PWM Inverter Fed Induction Motor Drive C.S.Sharma, Tali Nagwani Abstract Sinusoidal Pulse Width Modulation variable speed drives are increasingly applied in many new industrial
Product Data Bulletin
Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system
Agilent 4339B/4349B High Resistance Meters
Agilent 4339B/4349B High Resistance Meters Technical Overview Within Budget Without Compromise Introducing the Agilent Technologies 4339B and 4349B High Resistance Meters Used for Making Ultra- High Resistance
Application Guide. Power Factor Correction (PFC) Basics
Power Factor Correction (PFC) Basics Introduction Power Factor, in simple terms, is a number between zero and one that represents the ratio of the real power to apparent power. Real power (P), measured
7-41 POWER FACTOR CORRECTION
POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential
AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. http://www.muzique.com/news/mosfet-body-diodes/. Accessed 22/12/09.
Pulse width modulation Pulse width modulation is a pulsed DC square wave, commonly used to control the on-off switching of a silicon controlled rectifier via the gate. There are many types of SCR s, most
GenTech Practice Questions
GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following
DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs
DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs by B. Maurice, L. Wuidart 1. INTRODUCTION Unlike the bipolar transistor, which is current driven, Power MOSFETs, with their insulated gates, are voltage driven.
Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.
Lab 13: Wound rotor induction motor. Objective: to examine the construction of a 3-phase wound rotor induction motor; to understand exciting current, synchronous speed and slip in this motor; to determine
AN2680 Application note
Application note Fan speed controller based on STDS75 or STLM75 digital temperature sensor and ST72651AR6 MCU Introduction This application note describes the method of defining the system for regulating
DC Motor control Reversing
January 2013 DC Motor control Reversing and a "Rotor" which is the rotating part. Basically there are three types of DC Motor available: - Brushed Motor - Brushless Motor - Stepper Motor DC motors Electrical
How to Measure 5 ns Rise/Fall Time on an RF Pulsed Power Amplifier Using the 8990B Peak Power Analyzer
How to Measure 5 ns Rise/Fall Time on an RF Pulsed Power Amplifier Using the 8990B Peak Power Analyzer Application Note Introduction In a pulsed radar system, one of the key transmitter-side components
BSNL TTA Question Paper-Instruments and Measurement Specialization 2007
BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above
AN3353 Application note
Application note IEC 61000-4-2 standard testing Introduction This Application note is addressed to technical engineers and designers to explain how STMicroelectronics protection devices are tested according
UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS
Page 1 UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com [email protected] Page 2 THE BASIC
How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.
1 How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. The territory of high-performance motor control has
POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS
A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS By: Robert G. Ellis, P. Eng., Rockwell Automation Medium Voltage Business CONTENTS INTRODUCTION...
Motor Fundamentals. DC Motor
Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical
802.11ac Power Measurement and Timing Analysis
802.11ac Power Measurement and Timing Analysis Using the 8990B Peak Power Analyzer Application Note Introduction There are a number of challenges to anticipate when testing WLAN 802.11ac [1] power amplifier
DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS
DDX 7000 & 8003 Digital Partial Discharge Detectors The HAEFELY HIPOTRONICS DDX Digital Partial Discharge Detector offers the high accuracy and flexibility of digital technology, plus the real-time display
SECTION 26 29 23 VARIABLE FREQUENCY DRIVES
SECTION 26 29 23 VARIABLE FREQUENCY DRIVES PART 1 GENERAL 1.01 SCOPE A. Furnish and install individual freestanding variable frequency AC drives (VFD) as shown on the Drawings and specified herein. 1.02
Application Note AN- 1095
Application Note AN- 1095 Design of the Inverter Output Filter for Motor Drives with IRAMS Power Modules Cesare Bocchiola Table of Contents Page Section 1: Introduction...2 Section 2 : Output Filter Design
Accuracy counts! SENSORS WITH ANALOG OUTPUT
Accuracy counts! SENSORS WITH ANALOG OUTPUT OTHER APPLICATIONS: KEY ADVANTAGES: Distance measurement Positioning Profile detection Deformation monitoring Vibration monitoring Process monitoring Detection
Eliminate Ripple Current Error from Motor Current Measurement
Eliminate ipple Current Error from Motor Current Measurement Eric Persson, Toshio Takahashi Advanced Development Group International ectifier Corp. U..A. INTODUCTION Most motor drives today use measured
PowerFlex Dynamic Braking Resistor Calculator
Application Technique PowerFlex Dynamic Braking Resistor Calculator Catalog Numbers 20A, 20B, 20F, 20G, 22A, 22B Important User Information Solid-state equipment has operational characteristics differing
Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES APPLICATIONS PRODUCT OVERVIEW FUNCTIONAL BLOCK DIAGRAM
Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES AC averaging technique used to rectify, amplify, and filter 50 Hz to 400 Hz sine-wave signals. Accepts inputs of between 20 mv to 550 V rms to give
Power transformers. Special transformers Railway
Power transformers Special transformers Railway A leader in railway systems Our compact and low-weight transformers fully comply with the customer s specifications. The products are developed together
Agilent U2000 Series USB Power Sensors
Agilent U2000 Series USB Power Sensors GSM Timeslot Burst Power Measurement Product Note Table of Content Introduction 2 Measuring GSM Timeslot 4 Signal Overview of Agilent U2000 5 Series USB Power Sensors
Current and Temperature Ratings
Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and
Keysight Technologies Connecting Data Acquisition Systems to a Wireless Network
Keysight Technologies Connecting Data Acquisition Systems to a Wireless Network Application Brief Test Challenges: Designing heating and air conditioning (HVAC) systems Collecting data on a remotely located
Make Better RMS Measurements with Your DMM
Make Better RMS Measurements with Your DMM Application Note Introduction If you use a digital multimeter (DMM) for AC voltage measurements, it is important to know if your meter is giving you peak value,
Op Amp Circuit Collection
Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic
AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE
Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE INTRODUCTION In all kinds of manufacturing, it is very common to have equipment that has three phase motors for doing different
*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS
*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS Jay Vaidya, President Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 and Earl Gregory,
Siemens AG 2011 SINAMICS V60. The perfect solution for basic servo applications. Brochure May 2011 SINAMICS. Answers for industry.
The perfect solution for basic servo applications Brochure May 2011 SINAMICS Answers for industry. with 1FL5 servomotors The solution for basic servo applications There is a requirement to automate motion
8 Speed control of Induction Machines
8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque
The Do s and Don ts of Pressure Transducers
The Do s and Don ts of Pressure Transducers ABSTRACT When specifying a pressure transducer for a process measurement, a number of items have to be considered. Some of the more important ones are discussed
PHASE CONVERSION TECHNOLOGY OVERVIEW
Dr. Larry Meiners, Ph.D. PHASE CONVERSION TECHNOLOGY OVERVIEW Introduction A wide variety of commercial and industrial electrical equipment requires three-phase power. Electric utilities do not install
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
VICOR WHITE PAPER. The Sine Amplitude Converter Topology Provides Superior Efficiency and Power Density in Intermediate Bus Architecture Applications
The Sine Amplitude Converter Topology Provides Superior Efficiency and Power Density in Intermediate Bus Architecture Applications Maurizio Salato, Applications Engineering, Vicor Corporation Contents
INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2
INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 By: R.C. Zowarka T.J. Hotz J.R. Uglum H.E. Jordan 13th Electromagnetic Launch Technology Symposium, Potsdam (Berlin), Germany,
DRTS 33. The new generation of advanced test equipments for Relays, Energy meters, Transducers and Power quality meters
The new generation of advanced test equipments for Relays, Energy meters, Transducers and Power quality meters Testing all relay technologies: electromechanical, solid state, numerical and IEC61850 Manual
EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS
1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides
Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.
by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification
TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS
CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS Fold-Back Characteristic provides Overload Protection for External Diodes Burst Operation under Short-Circuit and no Load Conditions
Three phase circuits
Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors
PCM Encoding and Decoding:
PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth
Rotating Machinery Diagnostics & Instrumentation Solutions for Maintenance That Matters www.mbesi.com
13 Aberdeen Way Elgin, SC 29045 Cell (803) 427-0791 VFD Fundamentals & Troubleshooting 19-Feb-2010 By: Timothy S. Irwin, P.E. Sr. Engineer [email protected] Rotating Machinery Diagnostics & Instrumentation
WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.
WHY DIFFERENTIAL? Voltage, The Difference Whether aware of it or not, a person using an oscilloscope to make any voltage measurement is actually making a differential voltage measurement. By definition,
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
AC Induction Motor Slip What It Is And How To Minimize It
AC Induction Motor Slip What It Is And How To Minimize It Mauri Peltola, ABB Oy, Helsinki, Finland The alternating current (AC) induction motor is often referred to as the workhorse of the industry because
TDA2003 10W CAR RADIO AUDIO AMPLIFIER
TDA2003 10W CAR RADIO AUDIO AMPLIFIER DESCRIPTION The TDA 2003 has improved performance with the same pin configuration as the TDA 2002. The additional features of TDA 2002, very low number of external
Agilent Technologies. Troubleshooting Three-Phase AC Motors with U1210 Series Handheld Clamp Meters. Application Note
Agilent Technologies Troubleshooting Three-Phase AC Motors with U1210 Series Handheld Clamp Meters Application Note INTRODUCTION In today s world, the three-phase AC induction motors are widely used in
SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS
SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive
3-Phase Synchronous PWM Controller IC Provides an Integrated Solution for Intel VRM 9.0 Design Guidelines
3-Phase Synchronous PWM Controller IC Provides an Integrated Solution for Intel VRM 9.0 Design Guidelines Odile Ronat International Rectifier The fundamental reason for the rapid change and growth in information
Introduction to Power Supplies
Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power
Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor
International Journal of Engineering Inventions e-issn: 78-7461, p-issn: 319-6491 Volume 3, Issue 5 (December 013) PP: 36-41 Modelling, Simulation and Performance Analysis of A Variable Frequency Drive
SWITCH-MODE POWER SUPPLY CONTROLLER PULSE OUTPUT DC OUTPUT GROUND EXTERNAL FUNCTION SIMULATION ZERO CROSSING INPUT CONTROL EXTERNAL FUNCTION
SWITCH-MODE POWER SUPPLY CONTROLLER. LOW START-UP CURRENT. DIRECT CONTROL OF SWITCHING TRAN- SISTOR. COLLECTOR CURRENT PROPORTIONAL TO BASE-CURRENT INPUT REERSE-GOING LINEAR OERLOAD CHARACTERISTIC CURE
Agilent 4338B Milliohm Meter
Agilent 4338B Milliohm Meter 10 µω to 100 kω Technical Overview Introduction Ideal for precise measurements of extremely low resistances using an ac test signal, the Agilent Technologies 4338B suits bench-top
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
