AP8801. 500mA LED STEP-DOWN CONVERTER. Description. Pin Assignments. Features. Applications. Typical Application Circuit. (Top View) SET CTRL SW SW



Similar documents
AP8802 1A LED STEP-DOWN CONVERTER. Description. Pin Assignments. Features. Applications. Typical Application Circuit. (Top View) (Top View)

AP KHz, 2A PWM BUCK DC/DC CONVERTER. Description. Pin Assignments V IN. Applications. Features. (Top View) GND GND. Output AP1509 GND GND

1.0A LOW DROPOUT LINEAR REGULATOR

PDS5100H. Product Summary. Features and Benefits. Mechanical Data. Description and Applications. Ordering Information (Note 5) Marking Information

Features. Case: TO (2), TO-220F-3 (Option 1), TO (1) and TO Power Management Instrumentation

AP KHz, 3A PWM BUCK DC/DC CONVERTER. Pin Assignments. Description. Features. Applications. ( Top View ) 5 SD 4 FB 3 Gnd 2 Output 1 V IN

AP1510. General Description. Features. Applications. Typical Application Circuit PWM CONTROL 3A STEP-DOWN CONVERTER AP1510. x (1+R A = V FB /R B

PAM2804. Pin Assignments. Description. Applications. Features. Typical Applications Circuit 1A STEP-DOWN CONSTANT CURRENT, HIGH EFFICIENCY LED DRIVER

AZV5002. Low Power Audio Jack Detector with SEND/END Detection in Miniaturized Package. Description. Pin Assignments. Features NEW PRODUCT

Features. Applications

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

MICROPOWER, GENERAL-SENSITIVE HALL EFFECT SWITCH

T A = 25 C (Notes 3 & 5) Product Marking Reel size (inches) Tape width (mm) Quantity per reel DMC4040SSD-13 C4040SD ,500

74LVC1G14. Description. Pin Assignments. Features. Applications SINGLE SCHMITT-TRIGGER INVERTER 74LVC1G14

CAT4101TV. 1 A Constant-Current LED Driver with PWM Dimming

Green. Part Number Qualification Case Packaging B1X0Q-13-F Automotive SMA 5,000/Tape & Reel B1X0BQ-13-F Automotive SMB 3,000/Tape & Reel

LEDs offer a more energy efficient and no radiated heat, no Ultra Violet light solution to replace some halogen lamp applications.

LM2704 Micropower Step-up DC/DC Converter with 550mA Peak Current Limit

WHITE LED STEP-UP CONVERTER. Features

IS31LT V/1.2A LED DRIVER WITH INTERNAL SWITCH. January 2014

LDS WLED Matrix Driver with Boost Converter FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT

NTMS4920NR2G. Power MOSFET 30 V, 17 A, N Channel, SO 8 Features

CAT V High Current Boost White LED Driver

AP3125A/V/L/R. Description. Pin Assignments NEW PRODUCT. Features. Applications. A Product Line of. Diodes Incorporated GREEN MODE PWM CONTROLLER

TYPICAL APPLICATION CIRCUIT. ORDER INFORMATION SOP-EP 8 pin A703EFT (Lead Free) A703EGT (Green)

PAM2316. Description. Pin Assignments. Applications. Features. A Product Line of. Diodes Incorporated. 2.5MHz, FAST TRANSIENT 2A STEP-DOWN CONVERTER

1.5A ASYNCHRONOUS DC-DC BUCK CONV

CAT4109, CAV Channel Constant-Current RGB LED Driver with Individual PWM Dimming

MP2259 1A, 16V, 1.4MHz Step-Down Converter

SPI-8001TW. Switching Regulators. Dual 1.5 A, DC/DC Step-Down Converter. SANKEN ELECTRIC CO., LTD.

NSI45060JDT4G. Adjustable Constant Current Regulator & LED Driver. 45 V, ma 15%, 2.7 W Package

400KHz 60V 4A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter

TSM2N7002K 60V N-Channel MOSFET

NUD4011. Low Current LED Driver

NCT65. Remote Trip Point Temperature Sensor with Overtemperature Shutdown

MC33064DM 5 UNDERVOLTAGE SENSING CIRCUIT

LM A, Adjustable Output, Positive Voltage Regulator THREE TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR

Series AMLDL-Z Up to 1000mA LED Driver

28 V, 56 m, Load Switch with Programmable Current Limit and Slew Rate Control

STCS A max constant current LED driver. Features. Applications. Description

2N4401. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS THERMAL CHARACTERISTICS

SC728/SC729. 2A Low Vin, Very Low Ron Load Switch. POWER MANAGEMENT Features. Description. Applications. Typical Application Circuit SC728 / SC729

CS3341, CS3351, CS387. Alternator Voltage Regulator Darlington Driver

CLA LF: Surface Mount Limiter Diode

STCS1A. 1.5 A max constant current LED driver. Features. Applications. Description

NUD4001, NSVD4001. High Current LED Driver

FAN5346 Series Boost LED Driver with PWM Dimming Interface

PAM8403. Description. Pin Assignments. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

P-Channel 20 V (D-S) MOSFET

ICS SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET

CS V/250 ma, 5.0 V/100 ma Micropower Low Dropout Regulator with ENABLE

TSM020N03PQ56 30V N-Channel MOSFET

MP A, 50V, 1.2MHz Step-Down Converter in a TSOT23-6

AAT3520/2/4 MicroPower Microprocessor Reset Circuit

10 ma LED driver in SOT457

V OUT. I o+ & I o- (typical) 2.3A & 3.3A. Package Type

STCS2A. 2 A max constant current LED driver. Features. Applications. Description

PAM8303C. Pin Assignments. Description. Features. Applications. A Product Line of. Diodes Incorporated

Product Datasheet P MHz RF Powerharvester Receiver

40 V, 200 ma NPN switching transistor

AND8480/D. CrM Buck LED Driver Evaluation Board APPLICATION NOTE

MMBF4391LT1G, SMMBF4391LT1G, MMBF4392LT1G, MMBF4393LT1G. JFET Switching Transistors. N Channel

28V, 2A Buck Constant Current Switching Regulator for White LED

MC34063A, MC33063A, NCV33063A. 1.5 A, Step Up/Down/ Inverting Switching Regulators

MMBZ52xxBLT1G Series, SZMMBZ52xxBLT3G. Zener Voltage Regulators. 225 mw SOT 23 Surface Mount

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to C

L6234. Three phase motor driver. Features. Description

SSM3K335R SSM3K335R. 1. Applications. 2. Features. 3. Packaging and Pin Configuration Rev.3.0. Silicon N-Channel MOS (U-MOS -H)

MC14008B. 4-Bit Full Adder

0.9V Boost Driver PR4403 for White LEDs in Solar Lamps

Features. Applications

MIC General Description. Features. Applications. Typical Application. 4MHz Internal Inductor PWM Buck Regulator with HyperLight Load

N-Channel 100 V (D-S) MOSFET

MPS2222, MPS2222A. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS MARKING DIAGRAMS THERMAL CHARACTERISTICS

Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND

AAT4280 Slew Rate Controlled Load Switch

1SMB59xxBT3G Series, SZ1SMB59xxT3G Series. 3 Watt Plastic Surface Mount Zener Voltage Regulators

STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description

Theory of Operation. Figure 1 illustrates a fan motor circuit used in an automobile application. The TPIC kω AREF.

TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish

SPREAD SPECTRUM CLOCK GENERATOR. Features

Supertex inc. HV Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit

1.5A Ultra Low Dropout Linear Regulator TJ3965

BC327, BC327-16, BC327-25, BC Amplifier Transistors. PNP Silicon. These are Pb Free Devices* Features MAXIMUM RATINGS

ESD Line Ultra-Large Bandwidth ESD Protection

Push-Pull FET Driver with Integrated Oscillator and Clock Output

Features 1.7 A, 20 V. R DS(ON) Symbol Parameter Ratings Units

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20

TS321 Low Power Single Operational Amplifier

LM1084 5A Low Dropout Positive Regulators

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Preliminary Datasheet

P2N2222ARL1G. Amplifier Transistors. NPN Silicon. These are Pb Free Devices* Features.

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, VOLTS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

Power MOSFET FEATURES. IRFZ44PbF SiHFZ44-E3 IRFZ44 SiHFZ44 T C = 25 C

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

Power MOSFET FEATURES. IRL540PbF SiHL540-E3 IRL540 SiHL540

Low Voltage, Resistor Programmable Thermostatic Switch AD22105

Transcription:

Description The is a step-down DC/DC converter designed to drive LEDs with a constant current. The device can drive up to thirteen LEDs, depending on the forward voltage of the LEDs, in series from a voltage source of 8V to 48V. Series connection of the LEDs provides identical LED currents resulting in uniform brightness and eliminating the need for ballast resistors. The switches at frequency up to 7kHz. This allows the use of small size external components, hence minimizing the PCB area needed. Maximum output current of is set via an external resistor connected between the V IN and SET input pins. Dimming is achieved by applying either a DC voltage or a PWM signal at the CTRL input pin. An input voltage of.v or lower at CTRL shuts down the output at SW and puts the device into a low-current standby state. Features LED driving current up to 5mA Operating input voltage up to 48V High efficiency up to 9% High switching frequency up to 7kHz PWM/DC input for dimming control Built-in output open-circuit protection SO-8 and MSOP-8 are in Green Molding Compound (No Br, Sb) Totally Lead-Free & Fully RoHS Compliant (Notes & ) Halogen and Antimony Free. Green Device (Note 3) Pin Assignments (Top View) SET GND NC V IN SET GND NC V IN Applications 8 7 3 6 4 5 SO-8 (Top View) 8 7 3 6 4 5 MSOP-8 Commercial & industrial lighting Small LCD panel backlight Appliances interior lighting Architecture Detail lighting CTRL GND SW SW CTRL GND SW SW Notes:. No purposely added lead. Fully EU Directive /95/EC (RoHS) & /65/EU (RoHS ) compliant.. See http:// for more information about Diodes Incorporated s definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green products are defined as those which contain <9ppm bromine, <9ppm chlorine (<5ppm total Br + Cl) and <ppm antimony compounds. Typical Application Circuit of 4

Pin Descriptions Pin Name SW GND SET CTRL Functions Switch Pin. Connect inductor/freewheeling diode here, minimizing track length at this pin to reduce EMI. GND pin Set Nominal Output Current Pin. Configure the output current of the device. Dual Function Dimming Control Pin. Input voltage of.v or lower forces the device into low current standby mode and shuts off the output. A PWM signal (driven by an open-drain/collector source) allows the output current to be adjusted over a wide range up to %. An analog voltage between.3v and.5v adjusts the output current between 5% and % of the current set by.v/r S. The input impedance is about 5kΩ, and if the pin is left open V CTRL = V REF V IN NC Input Supply Pin. Must be locally bypassed. No connection Functional Block Diagram Fig. Block Diagram Absolute Maximum Ratings Symbol Parameter Rating Unit V IN V IN pin voltage -.3 to +5 V V SW SW voltage -.3 to +5 V V CTRL CTRL Pin Input Voltage -.3 to +6 V V SENSE SET Voltage +.3 to -5 V T J Junction Temperature 5 T LEAD Lead Temperature Soldering 3 T ST Storage Temperature Range -65 to +5 o C o C o C Caution: Stresses greater than the 'Absolute Maximum Ratings' specified above, may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure to absolute maximum rating conditions for extended periods of time. Semiconductor devices are ESD sensitive and may be damaged by exposure to ESD events. Suitable ESD precautions should be taken when handling and transporting these devices. of 4

Recommended Operating Conditions Symbol Parameter Min Max Unit V IN Operating Input Voltage relative to GND 8. 48. V V CTRLDC Voltage range for 4% to % DC dimming relative to GND (Note 4).3.5 V V CTRLL Voltage Low for PWM dimming relative to GND. V f OSC Maximum Switching Frequency (Note 5) 65 khz T A Ambient Temperature Range -4 +5 ºC Duty Cycle Using Inductor µh (Note 6)..95 Notes: 4. For % brightness either leave floating or connect to.5v relative to GND. 5. will operate at higher frequencies but accuracy will be affected due to propagation delays. 6. For most applications the LED current will be within 8% over the duty cycle range specified. Duty cycle accuracy is also dependent on propagation delay. Smaller size inductors can be used but LED current accuracy may be greater than 8% at extremes of duty cycle. This is most noticeable at low duty cycles (less than.) or when the input voltage is high and only one LED is being driven. Electrical Characteristics (T A = 5 C, V IN = 4V; unless otherwise specified.) Symbol Parameter Conditions Min Typ Max Unit I OUT Continuous switch current (Note 7) 5 ma I Q Quiescent Current 78 μa V THD Internal Threshold Voltage 84 6 mv V SENSEHYS Sense threshold hysteresis 5 % V REF Internal Reference Voltage.5 V SET SET pin input current V SET = V IN -. 7 μa R DS(ON) On Resistance of MOSFET I SW =.4A.7.5 Ω I SW_LEAKAGE Switch leakage current 8 μa Notes: θ JA θ JC Thermal Resistance Junction-to-Ambient Thermal Resistance Junction-to-Case SO-8 (Note 8) 88 C/W MSOP-8 (Note 8) 8 C/W SO-8 (Note 8) 58 C/W MSOP-8 (Note 8) 9 C/W 7. Refer to figure 6 for the device derating curve. 8. Test condition for SO-8 and MSOP-8: Device mounted on FR-4 PCB, x, oz copper, minimum recommended pad layout on top layer and thermal vias to bottom layer ground plane. For better thermal performance, larger copper pad for heat-sink is needed. 3 of 4

Typical Characteristics NON-SWITCHING SUPPLY CURRENT (ma).9.8.7.6.5.4.3.. 5 5 5 3 35 4 45 5 55 6 INPUT VOLTAGE (V) Figure. Supply Current (not switching) vs. Input Voltage R DS(ON) ( Ω )...8.6.4. -4-5 - 5 35 5 65 8 95 5 6 AMBIENT TEMPERATURE (C) Figure. 4 R vs Ambient Temperature DS(ON) CTRL VOLTAGE (V) LED CURRENT (ma).56.54.5.5.48.46.44-4 -5-5 35 5 65 8 95 5 AMBIENT TEMPERATURE ( C) Figure. 3 V CTRL vs. Ambient Temperature 5 45 4 35 3 5 5 5 8.5..5. R SET RESISTANCE ( Ω) Figure. 5 LED Current vs. RSET LED CURRENT (ma) 5 4 3 R SET =.56Ω R SET =.68Ω R SET =.33Ω SWITCHING FREQUENCY (khz) 7 6 5 4 3.5..5..5 CTRL VOLTAGE (V) Figure. 6 LED Current vs. V CTRL.5..5..5 CTRL VOLTAGE (V) Figure. 7 Switching Frequency vs. V CTRL 4 of 4

Typical Characteristics (T A = +5 C, V IN = 6V, L =68µH unless otherwise stated.) OUTPUT CURRENT DEVIATION (%) 8 6 4 - -4-6 -8-6 8 4 3 36 4 48 SUPPLY VOLTAGE (V) Figure. 8 LED Current vs. Input Voltage EFFICIENCY (%) 95 9 85 8 75 7 65 6 55 5 6 8 4 3 36 4 48 SUPPLY VOLTAGE (V) Figure. 9 Efficiency vs. Input Voltage 7 SWITCHING FREQUENCY (khz) 6 5 4 3 DUTY CYCLE (%) 9 8 7 6 5 4 3 6 8 4 3 36 4 48 SUPPLY VOLTAGE (V) Figure. Switching Frequency vs. Input Voltage 6 8 4 3 36 4 48 SUPPLY VOLTAGE (V) Figure. Duty Cycle vs. Input Voltage Figure. Steady State Waveforms Figure.3 Start-Up Showing LED Current Soft -Start 5 of 4

Application Information LED Current Control The LED current is controlled by the resistor R SET in Figure 4 connected between V IN and SET. The nominal average output current in the LED(s) is defined as: VTHD I LED = where V THD is the voltage between the V IN and SET pins and is nominally mv. R SET Figure. 4 Typical Application Circuit for I LED =.3A Inductor Selection This section highlights how to select the inductor suitable for the application requirements in terms of switching frequency, LED current accuracy and temperature. FREQUENCY (khz) 6 5 4 47 68 5 Switching Frequency @I = 5mA LED V - LED 4V - 3 LEDs 48V - 6 LEDs 3 47 5 68 47 5 47 47 5 5 5 3 35 4 45 5 INDUCTOR VALUE (µh) Figure. 5 Switching Frequency vs. Inductor Value 6 of 4

Application Information (cont.) The inductor influences the LED current accuracy that the system is able to provide. The following section highlights how to select the inductor in relation to the device packages and the LED current, while maintaining the chip temperature below 7 C. 9 47µH 68µH µh 5µH µh 47µH 8% Accuracy, <7 C Case Temperature NUMBER of LEDs 8 7 6 5 µh µh 47µH 4 5µH 3 68µH 47µH Capacitor Selection 5 5 5 3 35 4 45 SUPPLY VOLTAGE (V) Figure. 6 Minimum Recommended Inductor with 5mA LED Current The small size of ceramic capacitors makes them ideal for applications. X5R and X7R types are recommended because they retain their capacitance over wider voltage and temperature ranges than other types such as Z5U. A.μF input capacitor is sufficient for most intended applications of. A 4.7μF input capacitor is suggested for application with an input voltage equal or higher than 4V. Diode Selection Schottky diodes, e.g. B, with their low forward voltage drop and fast reverse recovery, are the ideal choice for applications. 7 of 4

Application Information (cont.) LED Current Adjustment/Dimming. The LED current for the can be adjusted by driving the CTRL with a digital signal (PWM dimming) or by driving the CTRL with a dc voltage between.3v and.5v (DC dimming). If the CTRL pin is driven by an external voltage (lower than.5v), the average LED current is: 6 V V I CTRL THD LED = where V REF is nominally.5v VREF RSET LED CURRENT (ma) 5 4 3.47.4.47.56.68.68.8.8.8... LED Current @ V CTRL =.5V LED Current @ V CTRL =.5V LED Current @ V CTRL =.65V.3.6.9..5.8..4.7 3.5.5.5 R SET VALUE ( Ω) Figure. 7 LED Current vs. R SET and VCTRL 3 3 3 Figure 7 shows that reducing the CTRL voltage by a factor of also reduces the LED current by a factor of. The has the ability vary the LED current by a factor of above the default value set by RSET down to a factor of.4 of the nominal LED current. This provides an 8.33: dynamic range of the dc dimming. A low pass filter on the CTRL pin of the automatically provides some soft-start function of the LED current on initial start-up (this phenomenon can be seen in figure 7); the built in soft-start period can be increased by the addition of an external capacitor onto the CTRL pin. The s dimming range can be increased above this dc dimming factor by applying a PWM signal to the CTRL pin using this method dimming dynamic ranges above can be achieved. 8 of 4

Application Information (cont.) PWM Dimming of LED Current When a low frequency PWM signal with voltages between.5v and a low level of zero is applied to the CTRL pin the output current will be switched on and off at the PWM frequency. The resultant LED current I LEDavg will be proportional to the PWM duty cycle. See figure 8. A Pulse Width Modulated (PWM) signal with a max resolution of 8-bit, can be applied to the CTRL pin to change the output current to a value above or below the nominal average value set by resistor R SET. To achieve this resolution the PWM frequency has to be lower than 5Hz. The ultimate resolution will be determined by the number of switching cycles required to get back to nominal LED current once the PWM voltage is high relative to PWM frequency. Lower switching frequencies and higher PWM frequencies will result in lower PWM dimming dynamic ranges. Figure. 8 Low Frequency PWM Operating Waveforms There are different ways of accomplishing PWM dimming of the LED current: Directly Driving CTRL Input A Pulse Width Modulated (PWM) signal with duty cycle DPWM can be applied to the CTRL pin to adjust the output current to a value above or below the nominal average value set by resistor R SET. When driving the CTRL with a voltage waveform care should be taken not to exceed a drive voltage of.5v (where extra brightness is required) or.5v if a maximum of % brightness is required. A way of avoiding over-driving the CTRL pin is use an open collector/drain driver to drive the CTRL pin. Driving the CTRL Input via Open Collector Transistor The recommended method of driving the CTRL pin and controlling the amplitude of the PWM waveform is to use a small NPN switching transistor. This uses the internal pull-up resistor between the CTRL pin and the internal voltage reference to pull-up CTRL pin when the external transistor is turned off. Driving the CTRL Input from a Microcontroller If the CTRL pin is driven by a MOSFET (either discrete or open-drain output of a micro-controller) then Schottky diode maybe be required due to high Gate / Drain capacitance, which could inject a negative spike into CTRL input of the and cause erratic operation but the addition of a Schottky clamp diode (eg. Diodes Inc. SD3CWS) to ground and inclusion of a series resistor (3.3k) will prevent this. 9 of 4

Application Information (cont.) Soft-Start An external capacitor from the CTRL pin to ground will provide a soft-start delay, by increasing the time taken for the voltage on this pin to rise to the turn-on threshold and by slowing down the rate of rise of the control voltage at the input of the comparator. Adding capacitance increases this delay by approximately µs/nf. The graph below shows the variation of soft-start time for different values of capacitor. SOFT-START TIME (ms) 6 4 8 6 4-4 6 8 CAPACITANCE (nf) Figure. 9 Soft-Start Time vs. Capacitance from ADJ Pin to Ground Thermal Considerations The graph below in figure, gives details for power derating. This assumes the device to be on a FR-4 PCB, x, oz copper, minimum recommended pad layout on top layer and thermal vias to bottom layer ground plane standing in still air.. SO-8 POWER DISSIPATION (W)..8.6.4. MSOP-8-5 -5 5 5 75 5 AMBIENT TEMPERATURE ( C) Figure. Maximum Power Dissipation of 4

Application Information (cont.) Package Selection The device comes with a wide selection of packages. The suggested package is able to provide a case temperature below 7 C (with an ambient temperature of +5 C) for the combination of input voltage and load requested. LEDs LEDs I = 5mA LED L = µh 8 LEDs 6 LEDs SO-8 4 LEDs LEDs MSOP-8 SO-8 8 6 4 8 3 36 4 44 48 Figure. Package Section Fault Condition Operation The has by default open LED protection. If the LEDs should become open circuit the will stop oscillating; the SET pin will rise to V IN and the SW pin will then fall to GND. No excessive voltages will be seen by the. If the LEDs should become shorted together the AP88H will continue to switch however the duty cycle at which it will operate will change dramatically and the switching frequency will most likely decrease. The on-time of the internal power MOSFET switch will be significantly reduced because almost all of the input voltage is now developed across the inductor. The off-time will be significantly increased because the reverse voltage across the inductor is now just the Schottky diode voltage (See Figure ) causing a much slower decay in inductor current. During this condition the inductor current will remain within its controlled levels and so no excessive heat will be generated within the. Figure. Switching Characteristics (normal open to short LED chain) of 4

Ordering Information XX G- 3 Package Green Packing S : SO-8 M8 : MSOP-8 G : Green 3 : Tape & Reel Device Package Code Packaging 3 Tape and Reel (Note 9) Quantity Part Number Suffix SG-3 S SO-8 5/Tape & Reel -3 M8G-3 M8 MSOP-8 5/Tape & Reel -3 Note: 9. Pad layout as shown on Diodes Inc. suggested pad layout document AP, which can be found on our website at http:///datasheets/ap.pdf. Marking Information () SO-8 ( Top View ) Logo Part Number 8 5 YY WW X X 4 G : Green YY : Year : 8, 9,~ WW : Week : ~5; 5 represents 5 and 53 week X : Internal Code () MSOP-8 ( Top View ) 8 7 6 5 A~Z : Green Logo Y W X Y : Year : ~9 W : Week : A~Z : ~6 week; Part Number a~z : 7~5 week; z represents 5 and 53 week 3 4 of 4

Package Outline Dimensions () SO-8 E A E A A3 A h Detail A 45 L.54 7 ~9 Gauge Plane Seating Plane Detail A SO-8 Dim Min Max A -.75 A.. A.3.5 A3.5.5 b.3.5 D 4.85 4.95 E 5.9 6. E 3.85 3.95 e.7 Typ h -.35 L.6.8 θ 8 All Dimensions in mm e D b () MSOP-8 D A A y x e b E A Gauge Plane Seating Plane A3.5 4x 4x L a Detail C E3 E c See Detail C MSOP-8 Dim Min Max Typ A -. - A.5.5. A.75.95.86 A3.9.49.39 b..38.3 c.8.3.5 D.9 3. 3. E 4.7 5. 4.9 E.9 3. 3. E3.85 3.5.95 e - -.65 L.4.8.6 a 8 4 x - -.75 y - -.75 All Dimensions in mm 3 of 4

IMPORTANT NOTICE DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. LIFE SUPPORT Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: A. Life support devices or systems are devices or systems which:. are intended to implant into the body, or. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright, Diodes Incorporated 4 of 4