arxiv:1107.3468v4 [gr-qc] 7 Oct 2011



Similar documents
arxiv:gr-qc/ v2 15 Aug 2006

Journal of Theoretics Journal Home Page

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant

Topologically Massive Gravity with a Cosmological Constant

arxiv: v2 [hep-ph] 20 Jun 2013

Gravity and running coupling constants

Special Theory of Relativity

ABSTRACT. We prove here that Newton s universal gravitation and. momentum conservation laws together reproduce Weinberg s relation.

Euclidean quantum gravity revisited

arxiv:astro-ph/ v2 3 Mar 1998

Big Bang Cosmology. Big Bang vs. Steady State

World of Particles Big Bang Thomas Gajdosik. Big Bang (model)

Cosmic Acceleration as an Optical Illusion

How Gravitational Forces arise from Curvature

arxiv:gr-qc/ v3 21 Jul 2006

arxiv:hep-th/ v1 25 Jul 2005

arxiv:hep-ph/ v2 2 Nov 2004

Cosmic Acceleration as an Optical Illusion

arxiv:cond-mat/ v1 20 Jan 1993 ABSTRACT

Quantum Oscillations Can Prevent the Big Bang Singularity in an. An Einstein-Dirac cosmology. Felix Finster, Regensburg

The Einstein field equations

arxiv: v1 [nucl-th] 2 Jul 2015

The de Sitter and anti-de Sitter Sightseeing Tour

The Big Bang and the Quantum

arxiv:hep-th/ v3 21 Sep 2004

Moving Least Squares Approximation

On a Flat Expanding Universe

The Role of Electric Polarization in Nonlinear optics

On a class of Hill s equations having explicit solutions. m.bartuccelli@surrey.ac.uk, j.wright@surrey.ac.uk, gentile@mat.uniroma3.

Metric Spaces. Chapter Metrics

Properties of the SABR model

Searching for Cosmic Strings in New Obervational Windows

arxiv:hep-ph/ v1 9 Feb 1999

A tentative theory of large distance physics

1 The basic equations of fluid dynamics

Elasticity Theory Basics

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

Generally Covariant Quantum Mechanics

Master s Thesis in Theoretical Physics

3. Open Strings and D-Branes

P.A.M. Dirac Received May 29, 1931

Precession of spin and Precession of a top

Gravitation modifiée à grande distance & tests dans le système solaire 10 avril 2008

Gravity as an Emergent Phenomenon

Understanding Poles and Zeros

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

Gravitational self-force in the ultra-relativistic regime Chad Galley, California Institute of Technology

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

The Essence of Gravitational Waves and Energy

Gravitational radiation and the Bondi mass

Blackbody radiation derivation of Planck s radiation low

A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris)

VACUUM BUBBLES AND GRAVITY EFFECTS

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

Target zone dynamics where the fundamental follows a SDE with periodic forcing

BIANCHI TYPE-I COSMOLOGICAL MODELS WITH TIME DEPENDENT GRAVITATIONAL AND COSMOLOGICAL CONSTANTS: AN ALTERNATIVE APPROACH

arxiv:gr-qc/ v2 4 May 2001

arxiv: v1 [math-ph] 7 Dec 2011

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Outline Lagrangian Constraints and Image Quality Models

Parabolic Equations. Chapter 5. Contents Well-Posed Initial-Boundary Value Problem Time Irreversibility of the Heat Equation

From local to global relativity

A tentative theory of large distance physics

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Effective actions for fluids from holography

Stable Big Bang Formation in Solutions to the Einstein-Scalar Field System

arxiv: v2 [gr-qc] 20 Jul 2016

Perfect Fluidity in Cold Atomic Gases?

Journal of Engineering Science and Technology Review 2 (1) (2009) Lecture Note

3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

arxiv: v3 [gr-qc] 7 Jul 2016


The Heat Equation. Lectures INF2320 p. 1/88

An exact formula for default swaptions pricing in the SSRJD stochastic intensity model

arxiv: v2 [physics.acc-ph] 27 Oct 2014

Plate waves in phononic crystals slabs

LQG with all the degrees of freedom

Heating & Cooling in Molecular Clouds

Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( )

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

Journal of Chemical, Biological and Physical Sciences. LRS Bianchi Type V Perfect Fluid Cosmological Model in C Field Theory with Variable Λ

arxiv:quant-ph/ v1 11 Jul 1996

Exploring dark energy models with linear perturbations: Fluid vs scalar field. Masaaki Morita (Okinawa Natl. College Tech., Japan)

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS

Quasinormal modes of large AdS black holes 1

On the Removal of Initial Singularity in a Big.. Bang Universe in Terms of a Renormalized Theory of Gravitation. I*)

Thermal transport in the anisotropic Heisenberg chain with S = 1/2 and nearest-neighbor interactions

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk

Teoretisk Fysik KTH. Advanced QM (SI2380), test questions 1

3. Reaction Diffusion Equations Consider the following ODE model for population growth

An Introduction to Hartree-Fock Molecular Orbital Theory

Unit 6 Plane Stress and Plane Strain

Supplement to Call Centers with Delay Information: Models and Insights

Math 1302, Week 3 Polar coordinates and orbital motion

Searching for Cosmic Strings in New Observational Windows

Transcription:

Quantum gravity stability of isotropy in homogeneous cosmology Bogusław Broda arxiv:07.3468v4 [gr-qc] 7 Oct 0 Abstract Department of Theoretical Physics, University of Łódź, Pomorska 49/53, PL 90-36 Łódź, Poland It has been shown that anisotropy of homogeneous spacetime described by the general Kasner metric can be damped by quantum fluctuations coming from perturbative quantum gravity in one-loop approximation. Also, a formal argument, not limited to one-loop approximation, is put forward in favor of stability of isotropy in the exactly isotropic case. Keywords: quantum stability of cosmological isotropy, cosmological anisotropy, quantum cosmology, early Universe, quantum corrections to cosmological metric, one-loop graviton self-energy, one-loop graviton vacuum polarization, Kasner metric PACS: 04.60.Gw Covariant and sum-over-histories quantization, 04.60.Pp Loop quantum gravity, quantum geometry, spin foams, 98.80.Es Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc, 04.60.Bc Phenomenology of quantum gravity. Introduction Standard [] and loop [, 3, 4] quantum cosmology heavily depends on the implicit assumption of (quantum stability of general form of the metric. As a principal starting point in quantum cosmology, one usually chooses a metric of a particular (more or less symmetric form. In the simplest, Email addresses: bobroda@uni.lodz.pl (Bogusław Broda, http://merlin.fic.uni.lodz.pl/kft/people/bbroda (Bogusław Broda Preprint submitted to PLB October 0, 0

homogeneous and isotropic case, the metric chosen is the (flat Friedmann Lemaï œtre Robertson Walker (FLRW one. Consequently, (field theory quantum gravity reduces to a much more tractable quantum mechanical system with a finite number of degrees of freedom. It is obvious that such an approach greatly simplifies quantum analysis of cosmological evolution, but under no circumstances is it obvious to what extent is such an approach reliable. The quantum cosmology approach could be considered unreliable when (for example the assumed symmetry of the metric would be unstable due to quantum fluctuations. More precisely, in the context of the stability, one can put forward the two, to some extent complementary, issues (questions: ( assuming a small anisotropy in the almost isotropic cosmological model, have quantum fluctuations a tendency to increase the anisotropy or, just the opposite, to reduce it? ( assuming we start quantum evolution from an exactly isotropic metric should be we sure that no quantum fluctuations are able to perturb the isotropy? In this Letter, we are going to address the both issues of the quantum stability of spacetime metric in the framework of standard covariant quantum gravity. Namely, in Section, we address the first stability issue for an anisotropic (homogeneous metric of the Kasner type, to one loop in perturbative expansion. In Section 3, we give a simple, formal argument, not limited to one loop, concerning the second issue.. One-loop stability The approach applied in this section is a generalization of our approach used in [5] in the context of FLRW geometry. In our present work, the starting point is an anisotropic (homogeneous metric, ds = dt a (t ( dx a (t ( dx a 3 (t ( dx 3, ( of the Kasner type, i.e. a i (t t t 0, i =,,3, ( ki where k i are the Kasner exponents. One should stress that we ignore any assumptions concerning matter content, and consequently, no prior bounds are imposed on k i.

In the perturbative approach then g µν = η µν +κh µν, (3 κh i (t = t, h ki i (t 0 = 0, (4 t 0 where κ = 3πG N, with G N the Newton gravitational constant. The quantized field 0 0 0 0 h µν (t,x = 0 h (t 0 0 0 0 h (t 0 diag(0,h i(t (5 0 0 0 h 3 (t is small, as expected, closely to the expansion (reference point t 0. Using the gauge freedom to satisfy the harmonic gauge condition (see, the second formula in (, we gauge transform the gravitational field h µν as follows, h µν h µν = h µν + µ ξ ν + ν ξ µ, (6 where the gauge parameter ( ξ µ (t = ˆ t h(t dt, 0, 0, 0, h(t h (t+h (t+h 3 (t. (7 0 Then, h µν ( ξ (t,x = diag 0 (t,h i (t = diag( h(t,h i (t, (8 and, skipping the prime for simplicity, we have h λ λ (t = h(t, (9 where spacetime indices are being manipulated with the Minkowski metric η µν. Now, we should switch from our present h µν to standard perturbative gravitational variables, i.e. to the barred field h µν defined by h µν h µν η µνh λ λ, (0 3

and h µν (t,x = diag(0,h i (t h(t with µ hµν = 0. ( The Fourier transform of h µν is h µν (p hµν (ω,p = (π 3 δ 3 (p diag ( 0, h i (ω h(ω, ( where, for the h i of the explicit form (4, we have (from now on, we denote classical gravitational fields with the superscript c κ h c i (ω = πδ(ω+t k i 0 sin(πk i Γ(k i + ω k i. (3 According to (A.8 a one-loop quantum contribution corresponding to the classical metric ( equals ( h q µν(p = πκ p p [ log δ 3 (p (α Λ E+4α P diag (0, h ci h ] c µν = πκ ω log ω δ 3 (p diag (α hc,α hci (α +α Λ h c. (4 Defining the auxiliary function h Q i (ω ω log ω Λ h c i (ω, (5 we have κh Q i (ω = πδ(ωω log ω Λ + t k i 0 sin(πk i Γ(k i + ω ki+ log ω. (6 Λ Its Fourier reverse is κh Q i (t = t k i 0 k i (k i t k i [ ψ( k i + π ] tan(πk i log Λt, (7 where ψ is the digamma function, and according to (4 h q µν(t,x = ( κ ( diag α h Q (t,α h Q i π (t (α +α h Q (t. (8 4

Figure : The drawing qualitatively presents 3 demonstration curves (for 3 different UV cutoffs Λ of the function δh A (k defined by (0 (and (7. For the Kasner exponents k ( 4,, δh A (k is evidently decreasing function thus supporting the damping of cosmological anisotropy. Performing the gauge transformation in the spirit of (7 we can remove the first (time component in (8, and (once more, skipping the prime for simplicity we get a quantum contribution to the Kasner metric h q µν(t,x = Only the anisotropic part of (9, i.e. ( κ ( diag 0,α h Q i π (t (α +α h Q (t. (9 δh A i = ( κ α h Q i π, (0 can influence the anisotropy of the evolution of the Universe. Since the dependence of δh A i on k j is purely diagonal (δh A i depends only on k j with j = i, see (7, we have the following simple rule governing (destabilization of the isotropy: the increasing function δh A (k implies destabilization (there is a greater contribution of quantum origin to the metric in the direction of a greater classical expansion, whereas the decreasing function implies stabilization. Unfortunately, δh A (k is not a monotonic function because the digamma function ψ oscillates, and moreover (7 is (in general a Λ- cutoff dependent function. Nevertheless, if we assume the point of view that The quantum contribution is Λ-cutoff independent for k i = (a limit in (7 exists, 5

it is not necessary to expect or require the stability of the isotropy in the whole domain of the Kasner exponents k i, but only for some subset of them, considered physically preferred, a definite answer emerges. Since k = corresponds to radiation, and k = corresponds to matter, we could be 3 fully satisfied knowing that δh A (k is monotonic in the interval k ( [, ( 4, ] 3. Furthermore, since α > 0 for any spin (see, Table A., δh A (k is a decreasing function in this interval, implying (quantum damping of the anisotropy (see, Fig.. 3. Above one loop and final remarks Section has been limited to one-loop perturbative analysis of the stability of isotropy of cosmological evolution. But one can give a simple, formal argument ensuring stability of the exactly isotropic expansion, i.e. for k = k = k 3, ( which is perturbative but not limited to one loop, making use of (A., where now D and Π is the full propagator and the full vacuum polarization, respectively. Since = diag(0,h(t,h(t,h(t, ( h c µν no spatial coordinate x i is singled out in (, and consequently no spatial coordinate can be singled out on LHS of (A.. This argument is only of purely formal interest as any other fluctuations can destabilize the isotropy. Recapitulating, as far as perturbative quantum gravity in one-loop approximation is concerned we have observed that in a (hopefully physically preferred region of the Kasner exponents k i (, we should expect damping 4 of anisotropy by quantum fluctuations, thus supporting reliability of the approach of quantum cosmology in this regime. One should point out that this result is subjected to several limitations. First of all, since κh i (t should be small, t should be close to t 0 because of (4. But for t t 0, by virtue of (8, we have ( h q ii κ t0 k t k κ t tplanck 0. (3 t 0 i.e. for pure radiation (see, [5]. Intuitively, it could be explained by the fact that a scale-independent classical source, the photon field, implies vanishing of scale-dependent logarithms (no quantum anomaly. 6

spin α α α +α 0 480-70 - 60 40 40-60 7 80-59 40 440 480 0 0 Table A.: The coefficients entering (A.8 taken from [8, 9, 0, ] (see, also []. In particular, α enters (0, and its positivity for any spin supports the damping of cosmological anisotropy. Therefore, to stay in the perturbative regime,t 0 should be greater thant Planck, and we have to be away from the (primordial classical singularity. Instead, for t 0 many orders greater than t Planck, according to (3 the quantum contribution becomes small, and moreover classical matter (including radiation is expected to begin to play a role. In particular, it was shown in [3] that the effects of viscosity in the radiation and pressure from collisionless radiation ensure isotropization (and stability of cosmological evolution at late times. Acknowledgements I would like to thank prof. Ashbay Ashtekar for his e-mail with clarifications concerning my previous paper [5], and for bringing my attention to the reference [4]. Appendix A. One-loop vacuum polarization For the Reader s convenience, we present here a short derivation of the oneloop quantum correction to a classical gravitational field which is coming from (one-loop vacuum polarization (self-energy (for more details, see, [5], and also compare to [6, 7] for x-dependent but t-independent case. In the momentum representation, the lowest order quantum corrections hq µν to the classical gravitational field hc µν are given by the formula The author would like to thank the Referee for pointing out the reference. 7

where ( h q µν(p = DΠ hc (p, µν (A. Dµν(p αβ = i p Dαβ µν (A. is the free graviton propagator in the harmonic gauge, and Π αβ µν(p is the (one-loop graviton vacuum polarization (self-energy tensor operator. Here D E P, where E αβ µν ( δ α µ δν β +δα ν µ δβ, P αβ µν 4 ηαβ η µν. (A.3 Observing that h µν = (Dh µν, we get h q µν(p = i ( p Π hc (p = i ( Π hc (p, µν p µν where the simplified by gauge symmetry version of Π equals Π (p = κ p 4 I(p (α E+4α P, (A.4 (A.5 (A.6 with the coefficients α and α given in Table A., and I(p = i ( (4π log p +... (A.7 Λ Then the final formula assumes the form: ( h q µν(p = iκ p I(p (α E+4α P hc µν (p. (A.8 References [] Proceedings of the Jerusalem Winter School for Theoretical Physics, Quantum Cosmology and Baby Universes, vol. 7, edited by S. Coleman, J.B. Hartle, T. Piran and S. Weinberg (World Scientific, Singapore, 99. [] A. Ashtekar, M. Bojowald, J. Lewandowski, Adv. Theor. Math. Phys. 7 (003 33. 8

[3] M. Bojowald, Living Rev. Rel. 8 (005. [4] A. Ashtekar, D. Sloan, Phys. Lett. B 694 (00 08. [5] B. Broda, Phys. Rev. Lett. 06 (0 0303. [6] M.J. Duff, Phys. Rev. D 9 (974 837. [7] J.F. Donoghue, Phys. Rev. Lett. 7 (994 996. [8] D.M. Capper and M.J. Duff, Nucl. Phys. B8 (974 47. [9] D.M. Capper, G. Leibbrandt, and M.R. Medrano, Phys. Rev. D 8 (973 430. [0] D. Capper, Nuovo Cimento Soc. Ital. Fis. A 5 (975 9. [] D.M. Capper, M.J. Duff, and L. Halpern, Phys. Rev. D 0 (974 46. [] M.J. Duff and J.T. Liu, Phys. Rev. Lett. 85 (000 05. [3] C.W. Misner, Astrophys. Journ. 5 (968 43. 9