Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis



Similar documents
Vulnerability Analysis of Fire Spreading in a Building using Fuzzy Logic and its Integration in a Decision Support System

Machine Learning/Data Mining for Cancer Genomics

Detailed CV Ph.D. degree, Télécom Bretagne, Brest, France. Evolutionary Computation, Combinatorial Optimization, Human-Computer Interaction

Hakim AKEB Management and Information Systems Department

Dynamic Case-Based Reasoning Based on the Multi-Agent Systems: Individualized Follow-Up of Learners in Distance Learning

Intégration de connaissances ontologiques pour l apprentissage des réseaux bayésiens

Principles of Data Mining by Hand&Mannila&Smyth

An Introduction to Data Mining

Modelling operational risk in the insurance industry

Bayesian networks - Time-series models - Apache Spark & Scala

Pamina Koenig Assistant Professor, Université Paris X - Nanterre

Knowledge Discovery from Data Bases Proposal for a MAP-I UC

Chapter 28. Bayesian Networks

ÖNCÜ HAZIR. Professional Background: : Assistant Professor, TED University, Ankara, TURKEY

M.Sc. Program in Informatics and Telecommunications

Sanjeev Kumar. contribute

Abdullah Mohammed Abdullah Khamis

Scientific Curriculum Vitæ

PROFESSIONAL EXPERIENCE

Troncatures dans les modèles linéaires simples et à effets mixtes sous R

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing

PEDRO SEQUEIRA CURRICULUM VITAE

American University of Beirut AUB, Beirut-Lebanon Instructor Introduction to Macroeconomics-212

Odile BOIZARD EDUCATION

Giulia Cereda. Mathematical Institute, Leiden University, Master thesis research project

Mikaël Cozic. Areas of specialization : rational choice theory, philosophical logic, cognitive sciences, philosophy and methodology of economics

Joint agreement of co-operation for double degree. Technische Universität Berlin. Ecole des Mines de Nantes

Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina

Abderrahman El Kharrim

Soitec. Eric Guiot, Manager R&D Soitec. 7 mars 2011 JSIam 2011

PhD Fellowships ICCA LabEx

Appendices master s degree programme Artificial Intelligence

Scholarship opportunities for Peruvian students and researchers

Machine Learning and Statistics: What s the Connection?

MAURICE S PUBLISHED WORKS. (not a definitive list) (*indicates written with others ; **indicates adaptation of a speech)

Formation à l ED STIC ED STIC Doctoral education. Hanna Klaudel

GUIDE OF HOW TO WRITE BIBLIOGRAPHICAL REFERENCES. 1- THE OBJECTIVE OF A BIBLIOGRAPHY.. p.2

Master's Degree Program in Computer Science

Estelle BROSSET Senior lecturer with habilitation to supervise doctoral theses Jean Monnet Chair Section 02- Public law

EDUCATION 2014 Ph.D. in Management Sciences CERGAM Centre d Etudes et de recherche en Gestion d Aix-Marseille (UFR IMPGT), Aix Marseille Universite.

ESIEE Paris International Master of Computer Science DMC (Diplôme National de Master) Official program for years 2016 to 2018

DÉFIS STATISTIQUES ET COMPUTATIONNELS DANS LES RÉSEAUX ET LA CYBERSÉCURITÉ

Master of Science (MSc) in Water Resources Engineering

Application of Adaptive Probing for Fault Diagnosis in Computer Networks 1

In France. page 2. In Belgium. page 3. In Germany. page 4. In Greece page 5

Software Development Training Camp 1 (0-3) Prerequisite : Program development skill enhancement camp, at least 48 person-hours.

Machine Learning Department, School of Computer Science, Carnegie Mellon University, PA

Curriculum Vitæ of Olivier LAMOTTE

MS1b Statistical Data Mining

Marc R. BRADFORD Professor

Agreement on. Dual Degree Master Program in Computer Science KAIST. Technische Universität Berlin

MSc in chemical and biochemical engineering. Success conditions Internship Minor Master project

Curriculum Vitae HAYTHAM ELGHAZEL. Education :

Linh-Chi VO Professor

Core Curriculum to the Course:

2015 Ph. D in Economics and Management. University of Trento, ITALY. Supervisor: Prof. Gabriella Berloffa

Stock Trading by Modelling Price Trend with Dynamic Bayesian Networks

Professional insertion into the industrial cycle. Some examples VANIA CONAN 30/04/ OPEN

How To Teach In Marocco

A Comparison of Novel and State-of-the-Art Polynomial Bayesian Network Learning Algorithms

Master of Science in Computer Science

Master s Programs in Computer Science at the Vrije Universiteit Brussel

Requirements Analysis Concepts & Principles. Instructor: Dr. Jerry Gao

Detection. Perspective. Network Anomaly. Bhattacharyya. Jugal. A Machine Learning »C) Dhruba Kumar. Kumar KaKta. CRC Press J Taylor & Francis Croup

Theses of the doctoral (PhD) dissertation. Pannon University PhD School of Chemical and Material Engineering Science. Supervisor: dr.

Indicators' relativity & data collection dependence.

Doctor of Philosophy in Computer Science

List of publications and communications

Operations research and multi-objective optimization by. Xavier Gandibleux and Matthias Ehrgott. University of Nantes and CNRS, France

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing

Stéphane LOIGEROT CARMEN s project manager BRGM/DSI/ISTN/SDI INSPIRE Compliant Data and Services on the Cloud

March 22-April 23, 2010: Visiting scholar in the University of Greenwich - Business school.

Section des Unités de recherche. Evaluation report. Research unit : Troubles du comportement alimentaire de l adolescent. University Paris 11

Agenda. Practical information

Data Integration. Lectures 16 & 17. ECS289A, WQ03, Filkov

Program: Master in Nuclear Civil Engineering

Volume 2, Issue 12, December 2014 International Journal of Advance Research in Computer Science and Management Studies

Railway Timetabling Optimizer

Spécication et analyse formelle des politiques de sécurité dans le cloud computing

Operation Structure (OS)

Yann ALGAN. Professor of Economics. 3 April 1974, Paris

Transcription:

Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis Philippe LERAY, Olivier François, Ahmad Faour contact: Philippe.Leray@insa-rouen.fr PSI (Perception, Systems and Information) Laboratory FRE CNRS 2645 Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 1/12

Structural learning complete data The DAG space h a super-exponential size heuristics! Constraint bed methods (IC, PC, BN-PC...) Score bed methods complete search in Tree space (MWST) greedy search in DAG space, with node ordering (K2) or without (GS) greedy search and Markov equivalence (GES) Conferences : François & Leray RJCIA 03 (french), RFIA 04 (french) Journal : JEDAI 04 (french) MWST = good performances vs. computation time MWST for GS initialisation = robust initialisation Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 2/12

Structural learning incomplete data Few methods deal with incomplete data Usual principle = applying EM to score bed methods greedy search in DAG space (SEM = GS+EM) Conference : François & Leray EGC05 (french) [subm. to ECSQARU 05] : MWST+EM = MWST + score estimation with EM MWST+EM for SEM initialisation = robust initialisation Perspectives : greedy search and Markov equivalence = GES+EM constraint bed methods and incomplete data Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 3/12

Structural learning latent variables Combinatorial explosion Where are the latent variables in the DAG? Cardinality? new operators in SEM space restriction : hierarchical latent cls model (HLC) Conference : Leray & al. ECML03 Workshop (PGM for clsification) Tree augmented HLC Perspectives : SEM+EM = dealing with incomplete data and latent variable discovery Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 4/12

Structural learning a priori knowledge Using a priori knowledge to simplify the search space Perspectives : Dynamic bayesian networks (2TBN) = 2 structures : intra-slice (t) and inter-slice (t t + 1) Oriented object bayesian networks (OOBN), Multi-agent bayesian networks,... Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 5/12

Complex system modelling and diagnosis Discovering handwriting strategies of primary school children I. Zaarour PhD thesis (completed in feb. 2004) Collaboration with a psychology lab (PSY.CO Rouen) Conferences : ECML03 Worshop - IGS03 - RFIA04 (french) Journal : IJPRAI 04 Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 6/12

Complex system modelling and diagnosis Intrusion detection in computer networks A. Faour PhD thesis (begin sept. 2004) Collaboration with a network security expert Conferences : EGC05 Worshop (french) Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 7/12

Complex system modelling and diagnosis Bayesian networks for clsification O. François PhD thesis (end envisaged in dec. 2005) Journal : RIA 2004 (french) Dysfunction detection and localisation in a chemical reactor Collaboration with a chemical process engineering lab (LRCP Rouen) Conference : SFGP 2005 (french) Micro-wave transistor thermical modelling Project with Thales Air Defense and a aero-thermochemistry lab (CORIA Rouen) financed by Haute-Normandie Region G. Mallet MSc thesis (feb-july 2005) followed by a PhD Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 8/12

Scientific animation French workshop on bayesian networks : June 2001 first workshop, Paris (co-organisation) March 2003 second workshop, Rouen. Jan. 2005 French PGM workshop during EGC 2005 conference, Paris. Software : BNT Toolbox for Matlab code contributions responsable for structure learning package french BNT website and documentation http ://bnt.insa-rouen.fr Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 9/12

International activities Members of PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning) european network of excellence Collaborations Causal networks and structural learning S. Meganck & B. Manderick, Computational Modeling Lab, Vrije Universiteit Brussel (VUB), Belgium. Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 10/12

Selected bibliography (in english) http ://i.insa-rouen.fr/ pleray/publisrb.php International journals : Zaarour, I. et al. (2004). Clustering and bayesian network approaches for discovering handwriting strategies of primary school children. International Journal of Pattern Recognition and Artificial Intelligence, 18(7) :1233-1251. International conferences : Leray, P.et al. (2003). A bayesian model for discovering handwriting strategies of primary school children. In Working Notes of the Workshop on Probabilistic Graphical Models for Clsification, ECML/PKDD-2003, 49-57. Zaarour, I.et al. (2003). A bayesian network model for discovering handwriting strategies of primary school children. In 11th Conference of the International Graphonomics society (IGS 2003), 178-181. Misc : Leray, P. and Francois, O. (2004). BNT structure learning package : Documentation and experiments. Technical report, Laboratoire PSI. Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 11/12

Selected bibliography (in french) Books : Naïm, P., Wuillemin, P.-H., Leray, P., Pourret, O., and Becker, A. (2004). Réseaux bayésiens. Eyrolles, Paris. French journals : Leray, P. and Francois, O. (2004). Réseaux bayésiens pour la clsification - méthodologie et illustration dans le cadre du diagnostic médical. Revue d Intelligence Artificielle, 18/2004 :169-193. François, O. and Leray, P. (2004). Etude comparative d algorithmes d apprentissage de structure dans les réseaux bayésiens. Journal électronique d intelligence artificielle, 5(39) :1-19. French conferences : Francois, O. and Leray, P. (2005). Apprentissage de structure dans les réseaux bayésiens et données incomplètes. In Proceedings of EGC 2005 (to appear), 1-6. Faour, A. and Leray, P. (2005). Réseaux bayésiens pour le filtrage d alarmes dans les systèmes de détection d intrusion. In Proceedings of EGC 2005 Atelier Modèles graphiques probabilistes (to appear), 1-8. Francois, O. and Leray, P. (2004). Evaluation d algorithmes d apprentissage de structure pour les réseaux bayésiens. In Proceedings of 14ème Congrès Francophone Reconnaissance des Formes et Intelligence Artificielle, RFIA 2004, 1453-1460. Bayesian Networks and Statistical Learning Applications to complex system modelling and diagnosis p. 12/12