Knowledge Discovery from Data Bases Proposal for a MAP-I UC
|
|
|
- Lucas Rice
- 10 years ago
- Views:
Transcription
1 Knowledge Discovery from Data Bases Proposal for a MAP-I UC P. Brazdil 1, João Gama 1, P. Azevedo 2 1 Universidade do Porto; 2 Universidade do Minho; 1 Knowledge Discovery from Data Bases We are deluged by data: scientific data, medical data, demographic data, financial data, and marketing data. People have no time to look at this data. Human attention has become the precious resource. So, we must find ways to automatically analyze the data, characterize trends in it, and automatically flag anomalies. (Han e Kamber, 2006). The development of information and communication technologies make possible collect data with high degree of detail, that might be automatically transmitted at high-speed. Some examples of real-world applications include: TCP/IP traffic, queries in search engines over Internet, records of telecommunication calls, SMS, s, stock market, sensors in electrical grid, etc. For illustrative purposes, we present some numbers: The number of daily phone calls is around 3 billions, the number of SMS is 1 billion daily, the number of sent s is around 30 billions. Most of this information will never be seen by a human being. Taking this into account, tools for automatic real-time data analysis are of increasing importance. The computer process, analyze, and filter the data, selecting the most promising hypothesis. Some typical applications include: user modeling, activity monitoring, sensor networks, classification, intrusion detection, etc. 2 Team Pavel Brazdil, Professor Catedrático, Faculdade de Economia, Universidade do Porto; Prof. Dr. Pavel Brazdil got his PhD degree from the University of Edinburgh in The thesis was in he area of Machine Learning. 1
2 In late 70 s, when this work was carried out, there was relatively little work done in this area. In 1996 he obtained habilitation at the University of Porto and since 1998 is Full Professor. Currently he is the Coordinator of R&D Unit LIAAD, which was earlier known as group NIAAD of LIACC (he was one of its founders in 1988). Pavel Brazdil is known for his activities in Machine Learning, Data Mining, Metalearning and Text Mining. He has participated in two international projects and was a technical coordinator of one of them (METAL, 5th FP) and participated in various international research networks. He has supervised 9 PhD students all of whom have completed their studies. He has organized more than 10 international conferences or workshops and participated in many program committees. He is a co-author / co-editor of 5 international books and has published more than 130 articles. Since 2007 he is a Fellow of ECCAI (European Coordinating Committee for Artificial Intelligence. João Gama, Professor Associado, Faculdade de Economia, Universidade do Porto; João Gama is a researcher at LIAAD, the Laboratory of Artificial Intelligence and Decision Support of the University of Porto, working at the Machine Learning group. His main research interest is in Learning from Data Streams. He has published several articles in change detection, learning decision trees from data streams, hierarchical Clustering from streams, etc. Editor of special issues on Data Streams in Intelligent Data Analysis, J. Universal Computer Science, and New Generation Computing Co-chair of a series of Workshops on Knowledge Discovery in Data Streams, ECML 2004, Pisa, Italy, ECML 2005, Porto, Portugal, ICML 2006, Pittsburg, US, ECML 2006 Berlin, Germany, SAC2007, Korea, and the ACM Workshop on Knowledge Discovery from Sensor Data to be held in conjunction with ACM SIGKDD He edited the books Learning from Data Streams-Processing Techniques in Sensor Networks, published by Springer, and Knowledge Discovery from Sensor Data, published by CRC. He served as program chair at ECML 2005, ADMA 2009, and Conference chair at DS Paulo Azevedo, Professor Auxiliar, Escola de Engenharia, Universidade do Minho Paulo Jorge Azevedo holds a PhD in Computer Science (Imperial College, University of London ) and a MSc in Information Technology (Imperial College, 1991). He is an Assistant Professor at the Department of Informatics of the University of Minho, where he tea- 2
3 ches informatics to undergraduates and data mining and data analysis related courses to post-graduate students. His research is concentrated in the fields of Machine Learning, Data Mining and its applications to Bioinformatics problems. He was the coordinator of the national FCT funded project CLASS and he currently participates in the also FCT funded projects Site-O-Matic, on web automation and P-found and ProtUnf on the analysis of induced Molecular Dynamic Simulations of Protein Unfolding. He is currently supervising several PhD and MSc students in the areas of Data Mining and Bioinformatics. Paulo Azevedo was member of several program committees, among others the PKDD 2005 conference, Principles and Practice of Knowledge Discovery and Data Mining, and the EPIA-01, 03, 05 and 09 (the Portuguese Conference on Artificial Intelligence), DS 09 (International Conference on Discovery Science) and ECML 09 (European Conference on Machine Learning). He co-organized the Workshop on Computational Methods in Bioinformatics under EPIA He has also been vice-chair of the Portuguese Society for Artificial Intelligence from 2000 to Main Goals At the end of the semester the students should be able to: 1. Design of multidimensional data bases; 2. Identify the basic tasks in knowledge extraction from data bases; 3. Identify and use the main methods and algorithms for knowledge representation; 4. Apply the main methods and algorithms for each mining task; 5. Apply the main methods and algorithms in real-world problems and adapt to new contexts. 4 Program Knowledge Discovery in Data Bases Data warehouses and OLAP Schemes for multidimensional data bases; From OLAP to On-Line Analytical Mining 3
4 Cluster Analysis Cluster Analysis: concepts and methods; Partitioning Methods; Hierarchical Methods; Incremental Methods; Association Analysis Frequent pattern mining; Algorithms; Pos-processing; Applications; Predictive Data Mining: Classification and Regression. Optimization Methods; Probabilistic Methods; Search based Methods; Evaluation in Predictive Data Mining. Evaluation: goals and perspectives; Loss Functions; Sampling Methods; Bias-Variance analysis; Cost-benefit analysis; Pré-processing Data summarization; Data cleaning; Feature selection; Ensembles and Multiple Models Concepts and methods; Combining Homogeneous Models; Combining Heterogeneous models; 4
5 5 Teaching Methods and Evaluation The teaching method consists of theoretical-practical classes. The evaluation consists of home-works and a final exam. 6 Bibliography Recommended books: Data Mining, Concepts and Techniques, Jiawei Han e Micheline Kamber, Morgan Kaufmann, 2006 Principles of Data Mining, D. Hand, H. Mannila, P. Smyth; The MIT Press, 2002 Machine Learning, Tom Mitchell; McGraw Hill, Intelligent Data Analysis, Michael Berthold e David Hand; Springer, Other books of interest: Learning from Data Streams - Processing Techniques in Sensor Networks, J. Gama, M. Gaber; Springer; Introduction to Data Mining; Pang-Ning Tan, Michael Steinbach e Vipin Kumar; Addison-Wesley; Pattern Recognition and Neural Networks, Ripley, B.D.; Cambridge University Press, Computer Systems that Learn, S. Weiss, C. Kulikowski; Morgan Kaufmann, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, I. Witten and E. Frank; Morgan Kaufmann, Sistemas de Suporte a Decisão, Bruno Cortes, FCA-Editora de Informatica, 2005 Data Mining, Descoberta de Conhecimento em Bases de Dados, M. Filipe Santos, Carla Azevedo, FCA-Editora de Informatica,
6 7 Software The use of software tools has the main goal of solving practical problems. The study, analysis, and evaluation in small-scale applied problems as a formative perspective. We choose two software tools, frequently used in data mining teaching: R (Ihaka e Gentleman, 1996) R is a statistical oriented programming language. The interface is command line. WEKA (Witten e Frank, 2005) Weka is a machine-learning oriented software. It uses a graphical interface, with the possibility to develop sequences of tasks. The Knowledge Explorer permit to decompose a complex problem into sub-problems in a graphical environment. Referências Han, J. e Kamber, M. (2006). Data Mining Concepts and Techniques. Morgan Kaufmann. Ihaka, R. e Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3): Witten, I. H. e Frank, E. (2005). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann. 6
Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov
Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social
Syllabus. HMI 7437: Data Warehousing and Data/Text Mining for Healthcare
Syllabus HMI 7437: Data Warehousing and Data/Text Mining for Healthcare 1. Instructor Illhoi Yoo, Ph.D Office: 404 Clark Hall Email: [email protected] Office hours: TBA Classroom: TBA Class hours: TBA
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
Data Mining and Soft Computing. Francisco Herrera
Francisco Herrera Research Group on Soft Computing and Information Intelligent Systems (SCI 2 S) Dept. of Computer Science and A.I. University of Granada, Spain Email: [email protected] http://sci2s.ugr.es
Data Mining and Business Intelligence CIT-6-DMB. http://blackboard.lsbu.ac.uk. Faculty of Business 2011/2012. Level 6
Data Mining and Business Intelligence CIT-6-DMB http://blackboard.lsbu.ac.uk Faculty of Business 2011/2012 Level 6 Table of Contents 1. Module Details... 3 2. Short Description... 3 3. Aims of the Module...
Adaptive Business Intelligence (ABI): Presentation of the Unit
Adaptive Business Intelligence (ABI): Presentation of the Unit MAP-i PhD (Edition 2015/16) Lecture Team: Manuel Filipe Santos (University of Minho); Paulo Cortez (University of Minho); Rui Camacho (University
DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.
DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,
Dynamic Data in terms of Data Mining Streams
International Journal of Computer Science and Software Engineering Volume 2, Number 1 (2015), pp. 1-6 International Research Publication House http://www.irphouse.com Dynamic Data in terms of Data Mining
Subject Description Form
Subject Description Form Subject Code Subject Title COMP417 Data Warehousing and Data Mining Techniques in Business and Commerce Credit Value 3 Level 4 Pre-requisite / Co-requisite/ Exclusion Objectives
Introduction to Data Mining
Introduction to Data Mining José Hernández ndez-orallo Dpto.. de Systems Informáticos y Computación Universidad Politécnica de Valencia, Spain [email protected] Horsens, Denmark, 26th September 2005
Data Mining: Concepts and Techniques
Data Mining: Concepts and Techniques Chapter 1 Introduction SURESH BABU M ASST PROF IT DEPT VJIT 1 Chapter 1. Introduction Motivation: Why data mining? What is data mining? Data Mining: On what kind of
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
LIAAD Artificial Intelligence and Decision Support Lab of INESC TEC. João Mendes Moreira
LIAAD Artificial Intelligence and Decision Support Lab of INESC TEC João Mendes Moreira Synopsis Decision support Business Intelligence Fundamental Research Decision Support For Public Transport Planning
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Data Mining Analytics for Business Intelligence and Decision Support
Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing
Data Mining. Knowledge Discovery, Data Warehousing and Machine Learning Final remarks. Lecturer: JERZY STEFANOWSKI
Data Mining Knowledge Discovery, Data Warehousing and Machine Learning Final remarks Lecturer: JERZY STEFANOWSKI Email: [email protected] Data Mining a step in A KDD Process Data mining:
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Data Mining and Exploration. Data Mining and Exploration: Introduction. Relationships between courses. Overview. Course Introduction
Data Mining and Exploration Data Mining and Exploration: Introduction Amos Storkey, School of Informatics January 10, 2006 http://www.inf.ed.ac.uk/teaching/courses/dme/ Course Introduction Welcome Administration
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
How To Solve The Kd Cup 2010 Challenge
A Lightweight Solution to the Educational Data Mining Challenge Kun Liu Yan Xing Faculty of Automation Guangdong University of Technology Guangzhou, 510090, China [email protected] [email protected]
Introduction to Data Mining. Lijun Zhang [email protected] http://cs.nju.edu.cn/zlj
Introduction to Data Mining Lijun Zhang [email protected] http://cs.nju.edu.cn/zlj Outline Overview Introduction The Data Mining Process The Basic Data Types The Major Building Blocks Scalability and Streaming
AUTO CLAIM FRAUD DETECTION USING MULTI CLASSIFIER SYSTEM
AUTO CLAIM FRAUD DETECTION USING MULTI CLASSIFIER SYSTEM ABSTRACT Luis Alexandre Rodrigues and Nizam Omar Department of Electrical Engineering, Mackenzie Presbiterian University, Brazil, São Paulo [email protected],[email protected]
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015
An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content
Knowledge Discovery Process and Data Mining - Final remarks
Knowledge Discovery Process and Data Mining - Final remarks Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 14 SE Master Course 2008/2009
Data Mining & Data Stream Mining Open Source Tools
Data Mining & Data Stream Mining Open Source Tools Darshana Parikh, Priyanka Tirkha Student M.Tech, Dept. of CSE, Sri Balaji College Of Engg. & Tech, Jaipur, Rajasthan, India Assistant Professor, Dept.
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL
The Fifth International Conference on e-learning (elearning-2014), 22-23 September 2014, Belgrade, Serbia BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL SNJEŽANA MILINKOVIĆ University
Comparison of K-means and Backpropagation Data Mining Algorithms
Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and
City University of Hong Kong. Information on a Course offered by Department of Management Sciences with effect from Semester A in 2010 / 2011
City University of Hong Kong Information on a Course offered by Department of Management Sciences with effect from Semester A in 200 / 20 Part I Course Title: Enterprise Data Mining Course Code: MS4224
AMIS 7640 Data Mining for Business Intelligence
The Ohio State University The Max M. Fisher College of Business Department of Accounting and Management Information Systems AMIS 7640 Data Mining for Business Intelligence Autumn Semester 2013, Session
Three Perspectives of Data Mining
Three Perspectives of Data Mining Zhi-Hua Zhou * National Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China Abstract This paper reviews three recent books on data mining
Data Mining: Motivations and Concepts
POLYTECHNIC UNIVERSITY Department of Computer Science / Finance and Risk Engineering Data Mining: Motivations and Concepts K. Ming Leung Abstract: We discuss here the need, the goals, and the primary tasks
Interactive Data Mining and Visualization
Interactive Data Mining and Visualization Zhitao Qiu Abstract: Interactive analysis introduces dynamic changes in Visualization. On another hand, advanced visualization can provide different perspectives
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Big Data Analytics for SCADA
ENERGY Big Data Analytics for SCADA Machine Learning Models for Fault Detection and Turbine Performance Elizabeth Traiger, Ph.D., M.Sc. 14 April 2016 1 SAFER, SMARTER, GREENER Points to Convey Big Data
Principles of Dat Da a t Mining Pham Tho Hoan [email protected] [email protected]. n
Principles of Data Mining Pham Tho Hoan [email protected] References [1] David Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining, MIT press, 2002 [2] Jiawei Han and Micheline Kamber,
An Introduction to Data Mining
An Introduction to Intel Beijing [email protected] January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
College of Health and Human Services. Fall 2013. Syllabus
College of Health and Human Services Fall 2013 Syllabus information placement Instructor description objectives HAP 780 : Data Mining in Health Care Time: Mondays, 7.20pm 10pm (except for 3 rd lecture
Evaluating an Integrated Time-Series Data Mining Environment - A Case Study on a Chronic Hepatitis Data Mining -
Evaluating an Integrated Time-Series Data Mining Environment - A Case Study on a Chronic Hepatitis Data Mining - Hidenao Abe, Miho Ohsaki, Hideto Yokoi, and Takahira Yamaguchi Department of Medical Informatics,
Application of Data Mining Techniques in Intrusion Detection
Application of Data Mining Techniques in Intrusion Detection LI Min An Yang Institute of Technology [email protected] Abstract: The article introduced the importance of intrusion detection, as well as
Europass Curriculum Vitae
Europass Curriculum Vitae Personal information First name(s) / Surname(s) Address Rua Direita nº36, Penedo, 155-3460 Lageosa do Dão - Tondela Mobile +351 916244743 E-mail(s) [email protected];
City University of Hong Kong. Information on a Course offered by the Department of Management Sciences with effect from Semester A in 2012 / 2013
City University of Hong Kong Information on a Course offered by the Department of Management Sciences with effect from Semester A in 2012 / 2013 Part I Course Title: Customer Relationship Management with
Web Mining Seminar CSE 450. Spring 2008 MWF 11:10 12:00pm Maginnes 113
CSE 450 Web Mining Seminar Spring 2008 MWF 11:10 12:00pm Maginnes 113 Instructor: Dr. Brian D. Davison Dept. of Computer Science & Engineering Lehigh University [email protected] http://www.cse.lehigh.edu/~brian/course/webmining/
Europass Curriculum Vitae
Europass Curriculum Vitae Personal information Surname(s) / First name(s) Address(es) Custódio, Jorge Filipe Telephone(s) +351 919687707 Email(s) Personal website(s) Nationality(-ies) Rua Francisco Pereira
Data Mining for Fun and Profit
Data Mining for Fun and Profit Data mining is the extraction of implicit, previously unknown, and potentially useful information from data. - Ian H. Witten, Data Mining: Practical Machine Learning Tools
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
AMIS 7640 Data Mining for Business Intelligence
The Ohio State University The Max M. Fisher College of Business Department of Accounting and Management Information Systems AMIS 7640 Data Mining for Business Intelligence Autumn Semester 2014, Session
Data warehouses. Data Mining. Abraham Otero. Data Mining. Agenda
Data warehouses 1/36 Agenda Why do I need a data warehouse? ETL systems Real-Time Data Warehousing Open problems 2/36 1 Why do I need a data warehouse? Why do I need a data warehouse? Maybe you do not
Data Mining: Concepts and Techniques. Jiawei Han. Micheline Kamber. Simon Fräser University К MORGAN KAUFMANN PUBLISHERS. AN IMPRINT OF Elsevier
Data Mining: Concepts and Techniques Jiawei Han Micheline Kamber Simon Fräser University К MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF Elsevier Contents Foreword Preface xix vii Chapter I Introduction I I.
Computational Intelligence in Data Mining and Prospects in Telecommunication Industry
Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 2 (4): 601-605 Scholarlink Research Institute Journals, 2011 (ISSN: 2141-7016) jeteas.scholarlinkresearch.org Journal of Emerging
131-1. Adding New Level in KDD to Make the Web Usage Mining More Efficient. Abstract. 1. Introduction [1]. 1/10
1/10 131-1 Adding New Level in KDD to Make the Web Usage Mining More Efficient Mohammad Ala a AL_Hamami PHD Student, Lecturer m_ah_1@yahoocom Soukaena Hassan Hashem PHD Student, Lecturer soukaena_hassan@yahoocom
Bachelor Degree in Informatics Engineering Master courses
Bachelor Degree in Informatics Engineering Master courses Donostia School of Informatics The University of the Basque Country, UPV/EHU For more information: Universidad del País Vasco / Euskal Herriko
Healthcare Measurement Analysis Using Data mining Techniques
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik
Data Quality Mining: Employing Classifiers for Assuring consistent Datasets
Data Quality Mining: Employing Classifiers for Assuring consistent Datasets Fabian Grüning Carl von Ossietzky Universität Oldenburg, Germany, [email protected] Abstract: Independent
Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina
Graduate Co-op Students Information Manual Department of Computer Science Faculty of Science University of Regina 2014 1 Table of Contents 1. Department Description..3 2. Program Requirements and Procedures
Abdullah Mohammed Abdullah Khamis
Abdullah Mohammed Abdullah Khamis Jeddah, Saudi Arabia Email: [email protected] Mobile: +966 567243182 Tel: +966 2 6340699 (Yemeni) Research and Professional Objective To Complete my Ph.D. in Pattern
Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1
Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints
A Brief Tutorial on Database Queries, Data Mining, and OLAP
A Brief Tutorial on Database Queries, Data Mining, and OLAP Lutz Hamel Department of Computer Science and Statistics University of Rhode Island Tyler Hall Kingston, RI 02881 Tel: (401) 480-9499 Fax: (401)
IDENTIFYING BANK FRAUDS USING CRISP-DM AND DECISION TREES
IDENTIFYING BANK FRAUDS USING CRISP-DM AND DECISION TREES Bruno Carneiro da Rocha 1,2 and Rafael Timóteo de Sousa Júnior 2 1 Bank of Brazil, Brasília-DF, Brazil [email protected] 2 Network Engineering
Doctor of Philosophy in Computer Science
Doctor of Philosophy in Computer Science Background/Rationale The program aims to develop computer scientists who are armed with methods, tools and techniques from both theoretical and systems aspects
Graph Mining and Social Network Analysis
Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann
CSCI-599 DATA MINING AND STATISTICAL INFERENCE
CSCI-599 DATA MINING AND STATISTICAL INFERENCE Course Information Course ID and title: CSCI-599 Data Mining and Statistical Inference Semester and day/time/location: Spring 2013/ Mon/Wed 3:30-4:50pm Instructor:
Perspectives on Data Mining
Perspectives on Data Mining Niall Adams Department of Mathematics, Imperial College London [email protected] April 2009 Objectives Give an introductory overview of data mining (DM) (or Knowledge Discovery
Sanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a
Data Warehousing and Data Mining
Data Warehousing and Data Mining Winter Semester 2010/2011 Free University of Bozen, Bolzano DW Lecturer: Johann Gamper [email protected] DM Lecturer: Mouna Kacimi [email protected] http://www.inf.unibz.it/dis/teaching/dwdm/index.html
Principles of Data Mining
Principles of Data Mining Instructor: Sargur N. 1 University at Buffalo The State University of New York [email protected] Introduction: Topics 1. Introduction to Data Mining 2. Nature of Data
A Comparative Study of clustering algorithms Using weka tools
A Comparative Study of clustering algorithms Using weka tools Bharat Chaudhari 1, Manan Parikh 2 1,2 MECSE, KITRC KALOL ABSTRACT Data clustering is a process of putting similar data into groups. A clustering
King Saud University
King Saud University College of Computer and Information Sciences Department of Computer Science CSC 493 Selected Topics in Computer Science (3-0-1) - Elective Course CECS 493 Selected Topics: DATA MINING
INTRODUCTION TO MACHINE LEARNING 3RD EDITION
ETHEM ALPAYDIN The MIT Press, 2014 Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION [email protected] http://www.cmpe.boun.edu.tr/~ethem/i2ml3e CHAPTER 1: INTRODUCTION Big Data 3 Widespread
Chapter ML:XI. XI. Cluster Analysis
Chapter ML:XI XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
Data Mining: A Preprocessing Engine
Journal of Computer Science 2 (9): 735-739, 2006 ISSN 1549-3636 2005 Science Publications Data Mining: A Preprocessing Engine Luai Al Shalabi, Zyad Shaaban and Basel Kasasbeh Applied Science University,
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
Clustering Marketing Datasets with Data Mining Techniques
Clustering Marketing Datasets with Data Mining Techniques Özgür Örnek International Burch University, Sarajevo [email protected] Abdülhamit Subaşı International Burch University, Sarajevo [email protected]
EFFECTIVE USE OF THE KDD PROCESS AND DATA MINING FOR COMPUTER PERFORMANCE PROFESSIONALS
EFFECTIVE USE OF THE KDD PROCESS AND DATA MINING FOR COMPUTER PERFORMANCE PROFESSIONALS Susan P. Imberman Ph.D. College of Staten Island, City University of New York [email protected] Abstract
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
LVQ Plug-In Algorithm for SQL Server
LVQ Plug-In Algorithm for SQL Server Licínia Pedro Monteiro Instituto Superior Técnico [email protected] I. Executive Summary In this Resume we describe a new functionality implemented
Curriculum of the research and teaching activities. Matteo Golfarelli
Curriculum of the research and teaching activities Matteo Golfarelli The curriculum is organized in the following sections I Curriculum Vitae... page 1 II Teaching activity... page 2 II.A. University courses...
Contemporary Techniques for Data Mining Social Media
Contemporary Techniques for Data Mining Social Media Stephen Cutting (100063482) 1 Introduction Social media websites such as Facebook, Twitter and Google+ allow millions of users to communicate with one
The basic data mining algorithms introduced may be enhanced in a number of ways.
DATA MINING TECHNOLOGIES AND IMPLEMENTATIONS The basic data mining algorithms introduced may be enhanced in a number of ways. Data mining algorithms have traditionally assumed data is memory resident,
Use of Data Mining in the field of Library and Information Science : An Overview
512 Use of Data Mining in the field of Library and Information Science : An Overview Roopesh K Dwivedi R P Bajpai Abstract Data Mining refers to the extraction or Mining knowledge from large amount of
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
Keywords Data mining, Classification Algorithm, Decision tree, J48, Random forest, Random tree, LMT, WEKA 3.7. Fig.1. Data mining techniques.
International Journal of Emerging Research in Management &Technology Research Article October 2015 Comparative Study of Various Decision Tree Classification Algorithm Using WEKA Purva Sewaiwar, Kamal Kant
LiDDM: A Data Mining System for Linked Data
LiDDM: A Data Mining System for Linked Data Venkata Narasimha Pavan Kappara Indian Institute of Information Technology Allahabad Allahabad, India [email protected] Ryutaro Ichise National Institute of
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
Data Warehousing and Data Mining
Data Warehousing and Data Mining Winter Semester 2012/2013 Free University of Bozen, Bolzano DM Lecturer: Mouna Kacimi [email protected] http://www.inf.unibz.it/dis/teaching/dwdm/index.html Organization
Extension of Decision Tree Algorithm for Stream Data Mining Using Real Data
Fifth International Workshop on Computational Intelligence & Applications IEEE SMC Hiroshima Chapter, Hiroshima University, Japan, November 10, 11 & 12, 2009 Extension of Decision Tree Algorithm for Stream
Machine Learning and Statistics: What s the Connection?
Machine Learning and Statistics: What s the Connection? Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh, UK August 2006 Outline The roots of machine learning
