DESIGN OF AIR CONDITIONING SYSTEM IN AUTOMOBILE



Similar documents
Experimental Analysis of an Automotive Air Conditioning System With Two-Phase Flow Measurements

Air Conditioning 101. STN Presentation AC101

New Trends in the Field of Automobile Air Conditioning

Testing methods applicable to refrigeration components and systems

Automobile Air Conditioning Primer

Research on the Air Conditioning Water Heater System

A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures

ASHRAE Boston Chapter Meeting Designing AC Refrigeration Systems Lessons Learned February 11, 2014

Characteristics of Evaporators

HEATER, AIR CONDITIONING AND VENTILATION

Refrigeration Basics 101. By: Eric Nelson

MAXIMUM HEAT LOAD TEMPERATURE TESTING ( Differential Temperature Testing )

The Development of a Frost-Less Heat Pump

Glossary of Heating, Ventilation and Air Conditioning Terms

Lesson 36 Selection Of Air Conditioning Systems

MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING

Waste Heat Recovery through Air Conditioning System

Yijun Gao, Wei Wu, Zongwei Han, Xianting Li *

How Ground/Water Source Heat Pumps Work

A/C refrigerant system, overview

Guidelines for energy efficient heating, ventilation and air conditioning (HVAC) systems

THEORETICAL AND EXPERIMENTAL EVALUATION OF AUTOMOBILE AIR-CONDITIONING SYSTEM USING R134A

HVAC SYSTEM (HEATER, VENTILATOR, AND A/C)

LG Electronics AE Company, Commercial Air Conditioning

Creating Efficient HVAC Systems

HEATING, VENTILATION & AIR CONDITIONING

Development and testing of a multi-type air conditioner without using AC inverters

ENERGY SAVING STUDY IN A HOTEL HVAC SYSTEM

Basic Technology Series

Air Conditioning System

ECOCIAT. Domestic hot water heat recovery unit

Chapter 3.4: HVAC & Refrigeration System

Why and How we Use Capacity Control

HVAC-02, Air Conditioning Troubleshooting and Repair

AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR

Performance Test of Solar Assisted Solid Desiccant Dryer

CODE NOTES. Insulation Requirements in Commercial Buildings for Mechanical and Service Hot-Water Piping

Study on Performance Evaluation of a Split Air Conditioning System Under the Actual Conditions

Investigation into the energy consumption of a data center with a thermosyphon heat exchanger

ROOFTOP - HEAT PUMP UNIT. This document applies when installing into an air handler or as part of an air handling system.

Appendix - Controllers 179

Building Energy Systems. - HVAC: Heating, Distribution -

SECTION MORTUARY REFRIGERATORS

Performance Evaluation of a Heat Pump System for Simultaneous Heating and Cooling

SECTION PACKAGED ROOFTOP AIR CONDITIONING UNITS

Air Conditioning. The opportunity for energy efficiency. Low cost actions to reduce energy usage now

Federal Wage System Job Grading Standards for Air Conditioning Equipment Operating, Table of Contents

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS

P. A. Hilton Ltd REFRIGERATION & AIR CONDITIONING VAPOUR COMPRESSION HEAT PUMPS VENTILATION VOCATIONAL

A car air-conditioning system based on an absorption refrigeration cycle using energy from exhaust gas of an internal combustion engine

International Telecommunication Union SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES IN PUBLIC NETWORKS

Impacts of Refrigerant Charge on Air Conditioner and Heat Pump Performance


Theoretical Study on Separate Sensible and Latent Cooling Air-Conditioning System

Drives and motors. A guide to using variable-speed drives and motors in retail environments

UNIT 2 REFRIGERATION CYCLE

LG Air conditioning Company Multi V Water Ⅱ. Air Conditioning Academy

The ASHRAE HQ Building Can the energy efficiency of the different mechanical systems really be compared? RESIDENTIAL LIGHT COMMERCIAL COMMERCIAL

CHAPTER 3. BUILDING THERMAL LOAD ESTIMATION

Condensing Boiler Efficiency

Engineering Recommendation on: Accumulators Revised Issued January 10, 1979 Page 1 of 7

Building HVAC Load Profiling Using EnergyPlus

Technical data. Danfoss DHP-A

SWIMMING POOL AIR-HANDLING UNITS KU-DB Series

Any Service Technician Can Fix It A Good Service Technician Can Figure Out What s Wrong With It.

Comparing Air Cooler Ratings Part 1: Not All Rating Methods are Created Equal

Heat Recovery In Retail Refrigeration

AIR CONDITIONING - ENERGY CONSUMPTION AND ENVIRONMENTAL QUALITY

42-Volt Electric Air Conditioning System Commissioning and Control For a Class-8 Tractor

SERVICE MANUAL MUZ-GE25VA - E1 MUZ-GE25VAH - E1 MUZ-GE35VA - E1 MUZ-GE35VAH - E1 MUZ-GE42VA - E1 MUZ-GE42VAH - E1 MUZ-GE50VA - E1 MUZ-GE50VAH - E1

SWIMMING POOL HEAT PUMP

york air-conditioning products Residential & VRF News 2015

DERON Air/Water Swimming pool Heat Pump. CY/DY series for Heating/Cooling. Description

Presentation Outline. Common Terms / Concepts HVAC Building Blocks. Links. Plant Level Building Blocks. Air Distribution Building Blocks

Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A"

It will be available soon as an 8.5 X 11 paperback. For easier navigation through the e book, use the table of contents.

SECTION PACKAGED ROOFTOP AIR CONDITIONING UNITS NON-CUSTOM

Zhao et al. 2.2 Experimental Results in Winter Season The analysis given below was based on the data collected from Nov to Mar. 15, 2004.

POLICY BULLETIN Tecumseh Compressor Company Compressor Group

HOW HVAC WORKS. How HVAC. Works PAGE 1

TEST REPORT #44. System Drop-in Tests of Refrigerant R-32 in Single Packaged Vertical Heat Pump (SPVH)

2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units

CLIMATE CONTROL SYSTEM OPERATION, DIAGNOSIS, AND REPAIR

AIR CONDITIONER GENERAL 1. SPECIFICATIONS AIR CONDITIONER REXTON

SOLEL SUNCOOLER SOLAR-POWERED AIR-CONDITIONING / HEATING SYSTEM

Total Heat Versus Sensible Heat Evaporator Selection Methods & Application

MAC-120HE-01 Air-Cooled Chiller

HVAC Systems: Overview

Troubleshooting HVAC/R systems using refrigerant superheat and subcooling

EFFECTS OF INDOOR RELATIVE HUMIDITY ON REFRIGERATED DISPLAY CASE PERFORMANCE

Life Cycle Costing Analysis of Water-cooled Chillers. Chillventa Nuremburg, Germany

SECTION HEATING, VENTILATION AND AIR CONDITIONING EQUIPMENT

Air Conditioning Clinic

CRAC Precision climate control units for data centres

COMMERCIAL HVAC CHILLER EQUIPMENT. Air-Cooled Chillers

I-STUTE Project - WP2.3 Data Centre Cooling. Project Review Meeting 8, Loughborough University, 29 th June 2015

Experimental Evaluation Of The Frost Formation

Variable Capacity Compressors, a new dimension for refrigeration engineers to explore

Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems

Transcription:

DESIGN OF AIR CONDITIONING SYSTEM IN AUTOMOBILE Md Shahid Imam, Dr.M.Shameer Basha, Dr.Md.Azizuddin, Dr. K.Vijaya Kumar Reddy 4 M.Tech HVAC II Yr, Royal Institute of Technology & Science Chevella R.R Dist Hyderabad India 1 Professor in ME. Dept. & Principal, Royal Institute of Technology & Science Chevella R.R Dist Hyderabad India 2 Professor &HOD, in ME. Dept. Royal Institute of Technology & Science Chevella R.R Dist Hyderabad India 3 Professor. Mechanical Department, JNTUH Hyderabad India 4 Abstract: Transportation is one the need of human being, which is existing since the evolution of mankind. Today, the field of air conditioning design is more technologically challenging than ever before. In the present the design of air conditioning is done for a Volvo bus, a fully equipped automotive air-conditioning system consists of five main components: a compressor, a condenser, an orifice tube, an evaporator and an accumulator. R-134a is used as refrigerant by considering the various parameters. Keywords: Automotive; Air conditioning; R-134a; I. INTRODUCTION Compared with other air conditioning (A/C) systems, automotive A/C systems have some significant characteristics. Automotive A/C systems present challenges not normally encountered in stationary A/C systems, such as those used in building A/C systems. In general air conditioning is defined as the simultaneous control of temperature, humidity, cleanliness and air motion. Depending upon the requirement, air conditioning is divided into the summer air conditioning and the winter air conditioning. The former uses a refrigeration system and a dehumidifier against a heat pump In addition, air conditioning is also sub divided into the comfort and industrial air conditioning. The former deals with the human comfort which as well, requires noise control while the latter is meant for the production of an environment suitable for commercial products or commodities, production shop laboratories, manufacture of materials and precision devices, printing works, photographic products, cold storages, computers, etc II.DESCRIPTION OF EXPERIMENTAL SETUP There are two main types of automotive air-conditioners: one is a Thermal Expansion Valve (TXV) system which regulates rate of refrigerant flow into evaporator as governed by evaporator outlet pipe temperatures sensed by the sensing bulb, and the other is Clutch Cycling Orifice Tube (CCOT) system which controls evaporator temperature by turning the compressor on and off with a clutch cycling switch. A CCOT automotive A/C system includes a compressor, a condenser, an expansion device, an evaporator and an accumulator as shown in Figure1. The schematic diagram of the experimental setup used in this experimental investigation is shown in Figure 2 Copyright to IJIRSET www.ijirset.com 7460

It is a closed refrigeration loop charged with R-134a (1,1,1,2-Tetrafluoethane) as working fluid and built to operate as a CCOT system. The main components are a compressor stand, a water-cooled condenser stand, an evaporator stand, two mass flow meters, an accumulator stand, a separator, and various process instruments. The compressor stand consists of a typical automotive swashplate type compressor driven by a 10 HP variable-speed electric motor. A one-to-one pulley ratio was used to connect the electric motor to the compressor. The water-cooled condenser stand consists of a helical coil of half-inch diameter aluminum pipe as condenser, a water bath, a water pump, a valve, and temperature controller. A mass flow meter was installed at the condenser outlet to measure the total mass flow rate of the refrigerant lubricant oil flow. The compressor is lubricated using Polyakylene-glycol (PAG). A sight glass tube is placed at the outlet of the flow meter to ensure that the flow meter chamber was filled with sub-cooled liquid refrigerant PAG oil single phase. An orifice tube is used as expansion device to change the higher pressure sub-cooled liquid refrigerant into lower pressure and temperature vapor-liquid mixture. The evaporator stand consists of an automotive evaporator, an electric heater, an air-blower to circulate the air inside the duct to simulate environmental conditions, and a temperature controller to keep the air at a certain temperature. The evaporator stand was well insulated so that the power input from heater is considered as the same as cooling capacity. The accumulator stand consists of an accumulator, an electric heater to simulate environment temperature, a temperature controller to keep the air at a certain temperature, and an insulated box to contain these components. A sight glass tube is placed at the outlet of the accumulator for observing the refrigerant PAG oil flow (twophase).an aluminum pipe, 1.2 m long and 52 mm in diameter, is placed following the sight glass tube, which allows the annular flow to slow down and become separated. The flow separates completely in the liquid/vapor separator. The refrigerant vapor flows through the mass flow meter so that the vapor flow rate was measured. A sight glass tube at the outlet of mass flow meter ensures that the flow meter chamber was filled with vapor refrigerant only. Then, the vapor refrigerant and liquid refrigerant PAG oil are mixed again at the inlet of compressor. To conduct data acquisition processing and control the operation of A/C system, a control and measurement system was set up, which includes thermocouples, sensors, transducers, data acquisition devices, signal conditioning extensions for instrumentation devices. By this system, the temperature and pressure at each component, mass flow rate, power, and compressor speed are Copyright to IJIRSET www.ijirset.com 7461

measured as analog signals, and then the analog signals are converted to digital signals and sent to the computer to display windows directly or be processed to calculate other parameters. Second. This system also can control the operation of the air conditioning system, such as turning the power on or off, setting the temperature of evaporator and condenser, adjusting the compressor speed. Meters are placed at the inlet and outlet of the compressor to show the gauge pressure at these two locations. III. CALCULATION FOR TONNE OF COOLING REQUIRED FOR A VOLVO BUS DESIGN DATA: Overall dimensions Overall length 12084 +15/-30 mm Overall heights at radiator cover 3230 mm Overall height at the front wall 2866 mm Wheelbase 5945 mm Front overhang 2704 +10/-15 mm Rear overhang 3435 ± 15 mm Overall width 2550 mm Overall width with blinkers 2629mm Figure 3 Heat Transfer processes in Automobile The main parameters that must be considered in bus air-conditioning system design include. Occupancy data Dimensions and optical properties of glass Outside weather conditions Dimensions and thermal properties of materials in bus body Copyright to IJIRSET www.ijirset.com 7462

Indoor design conditions The heating or cooling load in a passenger bus may be estimated by summing the heat flux from the following loads: Solid walls(side panels, roof, floor) Glass(Slide, front and rear windows) Passengers Engine and Ventilation Evaporator fan motor Extreme loads for both summer and winter should be calculated. The following conditions can be assumed for calculating the summer heat load in an interurban vehicle similar to that. Capacity of 40 Passengers Insulation thickness of 25 to 40 mm Double-pane tinted windows Outdoor air intake of 190 L/s Road speed 100 km/h Inside design temperatures of 16 to 27 degrees centigrade and 50% RH Ambient temperatures for location 40, Seated IV. PEOPLE ACTIVITY DBT WBT RH HR DP Out side 115 75 15 66 101 Room 75 63 50 65 52.5 Difference 40 - - 1 49.28 This cooling load is calculated from three difference heat sources: 1. Transmission of heat through the BUS body structure QT = 0.19 kw 2. Solar heat gain through the wind-screen and side windows QR = 0.44 kw 3. Internal heat gains QI = 0.50 kw Total QTOT = 1.13 kw V. CONCLUSIONS With the experimental set-up, some results have been obtained which revealed some unknown aspects of the automotive air conditioning systems. The following remarks summarize some key performance characteristics of an automotive airconditioning system with an accumulator. 1. Design of Air conditioning system in auto mobiles is done successfully for VOLVO bus. The parameters of the bus are 3200 cu.ft. Finally the output obtained is 8.25 TR. The VOLVO bus considered is having Comfortable application. The aim of the Project is achieved by the designing. Copyright to IJIRSET www.ijirset.com 7463

2. The total mass flow rate of circulation in an automotive air conditioning system increases with the increase of refrigerant charge, evaporator air-side temperature and condenser water temperature. The total quality at the accumulator outlet increases with the increase of evaporator air-side temperature, and decreases with the increase of refrigerant charge and condenser water temperature. 3. The cooling capacity does not change with the variation of refrigerant charge, but increases with the increase of evaporator air-side temperature, and decreases with the increase of condenser water temperature. Coefficient of performance of the system decreases with the increase of refrigerant charge and Condenser water temperature, increases with the increase of evaporator air-side temperature. 4. The compression ratio decreases with the increase of refrigerant charge and evaporator air-side temperature, increases with the increase of condenser water temperature. The change of compressor Volumetric efficient is opposite to that of compression ratio. REFERENCES [1] Bhatti, M. S., 1999, Riding in Comfort, Part II: Evolution of Automotive Air Conditioning, ASHRAE Journal, V.41,N.9: 44-52. [2] Kargilis, A., 2003, Design and Development of Automotive Air Conditioning Systems, ALKAR Engineering Company: p. 1-3 [3] Joudi, K. A., Mohammed, A. S. K., Aljanabi, M. K., 2003, Experimental and Computer Performance Study of an Automotive Air conditioning System with Alternative Refrigerants, Energy Conversion and Management 44: p.2959-2976. [4] Ratts, E. B., Brown, J. S., 2000, An Experimental Analysis of Cycling in an Automotive Air Conditioning System, Applied Thermal Engineering 20: p.1039-1058. [5] Int. J. of Vehicle Design, 2010 Vol.52, No.1/2/3/4, pp.5 19 by Gokhan Tekin, Y. Samim Unlusoy [6] ISHRAE hand book 2006 BIOGRAPHY MD SHAHID IMAM M.Tech( HVAC), presently working as Asst. Professor in Mechanical Engineering Dept. Royal institute of Technology & Science, RR Dist A.P. Having Two years of Experience in HVAC industry as Site Engineer. Copyright to IJIRSET www.ijirset.com 7464