For a Coastal Site. A Pier-and-Beam Foundation. Our company specializes in oceanfront



Similar documents
PTS HELICAL PIERS INSTALLATION SPECIFICATIONS NOTICE

LEGACY REPORT ER ICC Evaluation Service, Inc. Reissued November 1, Legacy report on the 1997 Uniform Building Code

Elevating Your House. Introduction CHAPTER 5

6 RETROFITTING POST & PIER HOUSES

The Stabilizer TM. Benefits. Supplemental support system for sagging beams and floor joists within a crawl space

SECTION 1 GENERAL REQUIREMENTS

Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations

Comprehensive Design Example 2: Foundations for Bulk Storage Facility

Designed and Engineered to Perform

Chapter 3 Pre-Installation, Foundations and Piers

by Greg DiBernardo Working With Helical Piers Steel piles are an affordable foundation option for small jobs and tricky sites

Helical Pier Foundations

Residential Deck Safety, Construction, and Repair

Breakaway Walls

POST AND FRAME STRUCTURES (Pole Barns)

4. ANCHOR BOLTS AND STRAPS a. ½" anchor bolts shall be embedded 7" into concrete a maximum of 6' on center and 12" from corners and ends of plates.

Foundation Experts, LLC Specializes in Foundation Repair and Waterproofing

STRUCTURES Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

The minimum reinforcement for the stem wall is the placement of:

Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. The Leading Edge.

High Capacity Helical Piles Limited Access Projects

Transmission Foundations Case History : Helical piles Hydro One Networks Inc.

System. Stability. Security. Integrity. 150 Helical Anchor

Page & Turnbull imagining change in historic environments through design, research, and technology

Uncovered Decks & Porches

New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations

Chapter 3 FOUNDATIONS AND FOUNDATION WALLS

Transmission Foundations. helical piles and guy anchors for transmission structures.

A Solid Foundation Solution for Homeowners. from. Our products are made with 90% Recycled Material Down. Right. Solid. GREEN.

NCMA TEK CONCRETE MASONRY FOUNDATION WALL DETAILS. TEK 5-3A Details (2003)

Lighthouse Engineering, L.L.C.

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training

PROJECT TITLE : 2-STOREY RESIDENCE LOCATION : ALONG DAANG HARI,MOLINO.BACOOR,CAVITE OWNER : CUEVASVILLE REALTY

SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS

Step 11 Static Load Testing

ATLAS RESISTANCE Pier Foundation Systems

TYPES OF PIERS USED IN NORTH AND EAST TEXAS RESIDENTIAL FOUNDATION REPAIR

Figure A-1. Figure A-2. continued on next page... HPM-1. Grout Reservoir. Neat Cement Grout (Very Flowable) Extension Displacement Plate

Stability. Security. Integrity.

Chapter 36 - STRAW BALE CONSTRUCTION SECTION PURPOSE. SECTION SCOPE. SECTION DEFINITIONS.

Patio Covers / Carports

COMMONLY USED RESIDENTIAL BUILDING CODES

Additions and Alterations

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation

SECTION SHEETING, SHORING AND BRACING

City of Tucson and Pima County Arizona Building Code Appendix Chapter 72 Straw-Bale Structures

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS

Foundation Requirements and Recommendations for Elevated Homes Hurricane Sandy Recovery Fact Sheet

METHOD OF STATEMENT FOR STATIC LOADING TEST

Superform Products Ltd.

ITEM # OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT

FORM DESIGN. easy to work with, and generally available.

Tremie Concrete CM 420 CM 420 CM 420 CM 420. Temporary Structures. Tremie Concrete

How To Repair A House

Proposed Minimum Subterranean Termite Treatment Standards

CONCRETE FLOOR SLAB & CASTING BED CONSTRUCTION

DE Frame with C Series Sidelight

Embedded Parts Introduction - Anchors

Moving Small Mountains Vesuvius Dam Rehab

Basement & Foundation Damage

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701)

SMarT_Foundation [Simple Modular Technology] Assembly and Installation Instructions (U.S. Patent Pending)

Baton Rouge Foundation Repair

BUTE Department of Construction Management and Technology

BRIDGES ARE relatively expensive but often are

Safe & Sound Bridge Terminology

Seven. Easy Steps. Your Own Walkway, Without Mortar. or Concrete. to Installing. Driveway and Patio

RESIDENTIAL FOUNDATION GUIDELINE Johnson County, KS

Installation guide for the SafeLine type anchorage device. Tested in compliance with EN 795: No.: SE-...

MANUFACTURED HOUSING USED AS DWELLINGS

For the purposes of this Part, the following words shall have the following meanings:

Formwork for Concrete

Welcome: What is U Drain? Drain Materials. Flow

CP2 Buried Cable Pedestal Initial & Rehab Installation Instructions

GLOSSARY OF TERMINOLOGY

ONE-STOP S PERMIT INFORMATION PACKAGE FOR RESIDENTIAL PROJECTS

MHI. Overview of Manufactured Home Installation MANUFACTURED HOUSING INSTITUTE. This guide contains an overview. of the HUD-Code manufactured home

Quick fix for frost heave:

Chapter. Restoration of Damaged Structures

3. Contractor shall ensure that all permits are obtained prior to any construction. Contractor shall be responsible for all utility fees.

symptoms of a faulty foundation

FY08 SEWER POINT REPAIRS BID TABULATION

Dock Hardware & Accessory Products Catalog

Section 2100-Trenching and Tunneling

Residential Foundations and Basements

TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE

Underpinning Systems 14.1 FOUNDATION REPAIR. Helical Piles

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

Residential Decks. Planning and Development Services Department

Hydraulic Excavators

Design and Construction of Auger Cast Piles

RAM JACK INTRODUCTION

Report on Sanctuary/Chancel Crawl Space Inspection. St. John in The Wilderness, 2896 Old Lakeshore Road Bright s Grove. Project No.

AMERICAN GOTHIC PLAYHOUSE

load on the soil. For this article s examples, load bearing values given by the following table will be assumed.

High Strain Dynamic Load Testing of Drilled Shafts

Envelope INSULATION BATT (2) Avoid Using Batt Insulation With Metal Framing. Pressure or Friction Fit

Lowering Basement Floors (Underpinning, Benching)

How to Design Helical Piles per the 2009 International Building Code

Specifications for Lightning Protection. ASAE Engineering Practice

Transcription:

A Pier-and-Beam Foundation For a Coastal Site Where unstable soil and periodic tidal flooding are a concern, helical piers topped with a concrete stem wall rise to the challenge by Fred Ambrose Our company specializes in oceanfront construction and rehab in southeastern Massachusetts. We do our own foundation work because of the control it gives us over the schedule. In some parts of this area, digging down is likely to uncover a mushy mix of sand, peat, and clay, not to mention a high water table. Since these soil conditions won t support a conventional concrete foundation, local homes have traditionally been built on wood pilings, which allow floodwaters to wash in and out freely without undermining the structure. The job shown here involved replacing a rotted piling foundation. The house stands along Provincetown s historic harbor, JULY 2008 l JLC l 1

Helical Pier Foundation New floor framing PT sill plates 10"-thick stem wall Finish grade Reinforced grade beam spans from one pier to another Stainless-steel flood vent (shown beyond) Undisturbed soil 8"x8" steel bearing plate welded to shaft 6"-diameter PVC casing, aids grout pour as shaft sections are added 1 3 /4" square shaft sections, pulled down by lead section Displacement plate thrusts soil aside, creates grouting cavity around shaft Stainless-steel hurricane clip, each joist 3 /8" PT plywood 3" gravel layer in crawlspace Vertical rebar dowels welded to bearing plate tie stem wall to helical pier 4'-0" PVC casing Type II cement grout Lead section with one to four helical bearing plates (length varies) Helical piers, spaced approx. 9'-0" apart and 22'-0" deep (depth varies depending on soil bearing capacity) where it s common for 19th century buildings to be separated by only a few feet. This crowding leaves little or no space for conventional excavation; besides, trenching in the loose sandy soil risks undermining neighboring houses. So for this job we decided to use helical piers, which looked to be an ideal solution because they require no excavation and can be driven quickly even in tight quar ters (see Helical Pier Foundations for Problem Sites, 5/04). We obtained certifica tion in the Chance Helical Pier Foun dation System (573/682-8414, www.abchance.com) and purchased the equipment needed for installation, which included a hydraulic auger adapted to our excavator s boom and a computerized torque meter. Altogether, it cost around $8,000. Engineered Design To design the foundation, we called on structural engineer John Bologna of Coastal Engineering Co., a firm familiar with the local geology and structural requirements. His knowledge of surrounding properties led John to ex pect alternating layers of sand, peat, and clay, with water at 4 feet below grade. Based on this information, he specified a reinforced concrete grade-beam footing supported on helical piers spaced about 9 feet apart and driven to a minimum depth of 22 feet (see Figure 1). On top of the grade beam, a 10-inch-thick stem wall would support the new floor framing. Flood vents in the stem wall would allow high water to wash in and out, preventing the wall from collapsing in a surge. Figure 1. Grouting adds surface area and lateral friction to the column, increasing its capacity. It also adds a layer of protection against corrosive soils. House Overhead A major consideration was how to install the pier-and-beam system beneath a structure that couldn t be accessed from all sides or raised and moved aside. JULY 2008 l JLC l 2

The neighborhood s historic classification barred complete demolition and replacement of the house, certainly the easiest approach. Instead, we raised the house 4 feet, lifting it by the first-floor ceiling joists. We then cut away the ground-floor framing and installed steel I-beams and cribbing to support the second story. This gave us 14 feet of clearance, just enough to maneuver the excavator boom and its hydraulic auger attachment over the pier locations. Giant Screws Pier design varies according to soil conditions and loading requirements. Each steel pier consists of a lead section with one to four helical bearing plates that thread into the soil with minimal disruption, like a giant wood screw. The lead section pulls plain square shaft sections which are bolted on in sequence behind it. The last embedded shaft is cut to the desired height above grade and capped by a flat 8-inch-by-8-inch steel bearing plate, which is welded in place. The plate transfers the structural load to the pier. For this job, we used 8-10-12 triple- Figure 2. Helical piers don t remove material the way an auger does; instead they screw into the soil with minimal disturbance. A displacement plate, shown here upside down (top left) and added to the top of the lead section (top right), creates a void around the shaft as it is screwed into the ground. A 6-inch-diameter PVC casing fits onto the displacement plate and is pressed into the soil along with the first plain shaft section (bottom left). Incremental marks on the casing allow the insertion torque to be tracked at 1-foot intervals. Grout is poured in as each additional section is coupled and driven (bottom right). JULY 2008 l JLC l 3

helix lead sections (the numbers refer to the successive diameters of the three bearing plates) and a 1 3 /4-inch-square shaft. Shaft sizes range from 1 1 /4 to 2 1 /4 inches square. Concrete grout is used in certain helical-pier installations to increase lateral friction and thereby gain additional bearing capacity from an otherwise slender steel column. Grouting also helps protect the hot-dipped galvanized steel from corrosive soil; on this project, where salt posed a concern, grout was specified. Giant Screwdriver The auger attached to the arm of our track excavator is basically a giant hydraulic screwdriver, capable of producing 12.5 kips (12,500 pounds-force). We first turn the lead section into the ground to its full 5-foot depth, then attach a proprietary displacement plate to the shaft (Figure 2, page 3). When rotated, the displacement plate thrusts the soil aside to create a grouting cavity around the shaft. Friction-fitted to the digging plate is a 4-foot length of 6-inch-diameter PVC casing. The casing is pressed down along with the next shaft length until it s just about flush with the grade, and becomes a reservoir for introducing grout as shaft sections are added. We use a 2-to-1 sand mix with Type II cement and just enough Figure 3. A torque indicator with a direct feed from the auger head measures the hydraulic force required to turn the pier. A worker logs each pier s insertion, noting the torque reading per foot of insertion. Readings generally increase with depth; sudden drops indicate voids in the strata, such as a peat layer. Torque is measured in footpounds and converts to bearing capacity at a ratio of 1-to-10. Thus, a reading of 4,200 foot-pounds indicates the pier has a 42,000-pound capacity. Pier installation is complete when design depth and capacity are reached. JULY 2008 l JLC l 4

water to make the grout flow. The grout is pulled downward by gravity and the square shaft s rotation, following the digging plate to eventually encase the entire length of the pier above the lead section. Monitoring torque. There are a few accepted ways to determine when you have reached the pier s designed capacity. The method we use is the most precise, relying on a computerized torque indicator that delivers a constant readout of the hydraulic pressure delivered to the auger as it turns the shaft. We mark each shaft section at 1-foot intervals and record the readout as each mark reaches grade level (Figure 3, page 4). While the engineer s design documents required us to submit for ap proval a complete record for each pier, an engineer was also on site during the first few installations to verify the field conditions and results. Grade Beam The reinforced-concrete grade beam which looks just like a footing is essentially a structural header spanning from one pier to another, providing full support to the building. We shoveled a shallow trench for the 30-inch-by-16-inch beam, then placed the prescribed rebar (Figure 4). There s no need to dig in below the frost line since the beam rides on the piers, not on grade. Figure 4. Bearing plates (above) are welded to the top of each shaft, just above grade. Vertical rebar dowels, welded to the bearing plates, provide continuity from the pier through the grade beam and stemwall foundation. JULY 2008 l JLC l 5

On top of each pier s bearing plate, we welded four #4 upright dowels with 10-inch horizontal legs to tie in the stem wall. This ensured full continuity from the bottom of the pier to the top of the foundation. We set similar dowels on 16-inch centers along the entire length of the beam for tying in horizontal rebar. With the rebar tied and the beam formed, we pumped a 4,000-psi, 3 /4-inch aggregate mix in from the street about 90 feet away using the excavator arm to direct the pump hose (Figure 5). We keyed the top of the beam to receive the 3-foot-4-inch-high stem wall, which we formed the following day. We set pressure-treated wood bucks inside the forms for the stainless steel Smart Vents (877/ 441-8368, www.smartvent.com), which will allow floodwater movement but exclude critters. It took us two-and-a-half days to install a total of 21 piers, at an approximate cost of $1,500 per pier. It took another week to tie the rebar, and form and pour the beam and walls. With the first-floor framing replaced and the entire structure unified with wind-resistant metal connectors, this house should stand for a long time to come. Figure 5. The excavator operator guides concrete placement for the stem wall (top), which is tied to the grade beam with a hefty schedule of vertical rebar (above). Note the knockouts for the required storm vents (right). Fred Ambrose is president of Ambrose Homes in Chatham, Mass. To see more photos of this project, go to www.jlconline.com and click on the JLC Extra tab. JULY 2008 l JLC l 6