Internet, Part 2. 1) Session Initiating Protocol (SIP) 2) Quality of Service (QoS) support. 3) Mobility aspects (terminal vs. personal mobility)



Similar documents
Introducing Basic MPLS Concepts

Course Description. Students Will Learn

Multimedia Communications Voice over IP

Indepth Voice over IP and SIP Networking Course

Advanced SIP Series: SIP and 3GPP Operations

Multiprotocol Label Switching (MPLS)

MPLS Environment. To allow more complex routing capabilities, MPLS permits attaching a

802.11: Mobility Within Same Subnet

Chapter 10 Session Initiation Protocol. Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University

TECHNICAL CHALLENGES OF VoIP BYPASS

SIP : Session Initiation Protocol

Advanced SIP Series: SIP and 3GPP

MPLS is the enabling technology for the New Broadband (IP) Public Network

UMTS/GPRS system overview from an IP addressing perspective. David Kessens Jonne Soininen

Advanced Internetworking

Unit 23. RTP, VoIP. Shyam Parekh

Session Initiation Protocol (SIP)

EE4607 Session Initiation Protocol

5.0 Network Architecture. 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network

COPYRIGHTED MATERIAL. Contents. Foreword. Acknowledgments

Internet Working 15th lecture (last but one) Chair of Communication Systems Department of Applied Sciences University of Freiburg 2005

End-2-End QoS Provisioning in UMTS networks

Need for Signaling and Call Control

WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr Cisco Systems, Inc. All rights reserved.

Multimedia & Protocols in the Internet - Introduction to SIP

TSIN02 - Internetworking

This specification this document to get an official version of this User Network Interface Specification

Special Module on Media Processing and Communication

NTP VoIP Platform: A SIP VoIP Platform and Its Services

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network

IP Telephony and Network Convergence

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

10 Signaling Protocols for Multimedia Communication

ARCHITECTURES TO SUPPORT PSTN SIP VOIP INTERCONNECTION

How will the Migration from IPv4 to IPv6 Impact Voice and Visual Communication?

Media Gateway Controller RTP

VIDEOCONFERENCING. Video class

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm

Mixer/Translator VOIP/SIP. Translator. Mixer

VoIP. Overview. Jakob Aleksander Libak Introduction Pros and cons Protocols Services Conclusion

MPLS Basics. For details about MPLS architecture, refer to RFC 3031 Multiprotocol Label Switching Architecture.

Inter-Domain QoS Control Mechanism in IMS based Horizontal Converged Networks

Session Initiation Protocol (SIP) The Emerging System in IP Telephony

MikroTik RouterOS Introduction to MPLS. Prague MUM Czech Republic 2009

Architectural Overview of IP Multimedia Subsystem -IMS

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration

Performance Evaluation for VOIP over IP and MPLS

MPLS Concepts. Overview. Objectives

RTP / RTCP. Announcements. Today s Lecture. RTP Info RTP (RFC 3550) I. Final Exam study guide online. Signup for project demos

Overview of Voice Over Internet Protocol

Voice over IP & Other Multimedia Protocols. SIP: Session Initiation Protocol. IETF service vision. Advanced Networking

Migrating to MPLS Technology and Applications

Introduction to Mobile IPv6

Lesson 13: MPLS Networks

Multi-Protocol Label Switching To Support Quality of Service Needs

MPLS VPN Services. PW, VPLS and BGP MPLS/IP VPNs

NAT TCP SIP ALG Support

Introduction to IP v6

Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks

Hands on VoIP. Content. Tel +44 (0) Introduction

Asynchronous Transfer Mode: ATM. ATM architecture. ATM: network or link layer? ATM Adaptation Layer (AAL)

Understanding Voice over IP Protocols

BCS THE CHARTERED INSTITUTE FOR IT. BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS

Voice over IP. Overview. What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP

Voice over IP. Presentation Outline. Objectives

internet technologies and standards

IP Telephony (Voice over IP)

QoS in VoIP. Rahul Singhai Parijat Garg

SIP (Session Initiation Protocol) Technical Overview. Presentation by: Kevin M. Johnson VP Engineering & Ops

Introduction to IPv6 and Benefits of IPv6

Multicasting with Mobile IP & The Session Initiation Protocol

VoIP versus VoMPLS Performance Evaluation

Chapter 9. IP Secure

Internetworking II: VPNs, MPLS, and Traffic Engineering

Receiving the IP packets Decoding of the packets Digital-to-analog conversion which reproduces the original voice stream

IP Switching: Issues and Alternatives

Mobility and cellular networks

VoIP with SIP. Session Initiation Protocol RFC-3261/RFC

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

Efficient evolution to all-ip

ELEC3030 (EL336) Computer Networks. How Networks Differ. Differences that can occur at network layer, which makes internetworking difficult:

EE6390. Fall Research Report. Mobile IP in General Packet Radio System

Definition. A Historical Example

IP - The Internet Protocol

Bandwidth Management in MPLS Networks

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Internetworking. Problem: There is more than one network (heterogeneity & scale)

How Routers Forward Packets

Data Networking and Architecture. Delegates should have some basic knowledge of Internet Protocol and Data Networking principles.

technology standards and protocol for ip telephony solutions

Voice over IP Implementation

Table of Content. Introduction Components Architectural Characteristics Concepts Protocols Service Examples Discussion. ToC

Master Course Computer Networks IN2097

An Introduction to VoIP Protocols

Push-to-talk Over Wireless

IP-based Mobility Management for a Distributed Radio Access Network Architecture. helmut.becker@siemens.com

3GPP TS V9.0.0 ( )

Voice over IP (VoIP) for Telephony. Advantages of VoIP Migration for SMBs BLACK BOX blackbox.com

Mobile IP. Bheemarjuna Reddy Tamma IIT Hyderabad. Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP

Alcatel OmniPCX Enterprise R11 Supported SIP RFCs

Transcription:

Internet, Part 2 1) Session Initiating Protocol (SIP) 2) Quality of Service (QoS) support 3) Mobility aspects (terminal vs. personal mobility) 4) Mobile IP

Session Initiation Protocol (SIP) SIP is a protocol for handling multiparty multimedia calls (sessions). The IP routes of the control plane (SIP signalling) and user plane (multimedia data) are separate. SIP signalling User B User A Multimedia data User C http://www.ietf.org/rfc/rfc3261.txt

SIP vs. H.323 H.323 is a suite of protocols for managing multiparty multimedia calls in the PSTN (in other words using circuit switched technology). Contrary to SIP, H.323 is used today (among others it forms the basis for Microsoft s NetMeeting application). H.323 is more complex than SIP (this is the reason we will not go into more detail in this course). SIP has been chosen for handling call control in the IMS (IP Multimedia Subsystem) specified in 3GPP Release 5. H.323 standards (ITU-T) vs. RFC 3261 (good tutorial)

SIP offers the following features Signalling for handling of multiparty calls Call forking (several users are alerted at the same time) Capability of multimedia calls (voice,video, etc. at the same time) can be negotiated using Session Description Protocol (SDP) messages carried over SIP User-friendly addressing (sip:alice@net1.com) Personal mobility (but not terminal mobility) Good flexibility, scalability, extensibility Interworking between SIP telephony and PSTN telephony (as well as between SIP addressing and E.164 addressing).

Basic (two-party) SIP call (1) SIP proxy of user A Request Response Invite... net1.com User A alice.cooper@net1.com SIP address of Alice: sip:alice@net1.com User B bob.jones@place2.com Invite message (corresponding to IAM message in ISUP) is sent to SIP proxy of user A. The message includes SIP address (sip:bob@net2.com) of user B.

Basic (two-party) SIP call (2) SIP proxy of user A net1.com Invite... SIP proxy of user B net2.com User A alice.cooper@net1.com User B bob.jones@place2.com Invite message is routed to SIP proxy of user B (Bob). How does SIP proxy of Bob know where Bob is at this moment? (At home, at work, at computer Z,...?)

SIP registration User A SIP proxy of user A net1.com alice.cooper@net1.com SIP proxy of user B net2.com route Invite message to: bob.jones@place2.com 2 1 Register... User B bob.jones@place2.com The answer is: the terminal of Bob has performed SIP registration. Register messages including the URL of Bob s current terminal are sent initially (and at regular intervals) to the SIP proxy.

Basic (two-party) SIP call (3) SIP proxy of user A SIP proxy of user B net1.com net2.com Invite... User A alice.cooper@net1.com User B bob.jones@place2.com Invite message is routed to Bob s terminal using Bob s URL provided via SIP registration. Alice s URL (alice.cooper@net1.com) is included in the message.

Basic (two-party) SIP call (4) SIP proxy of user A net1.com 180 Ringing SIP proxy of user B net2.com User A alice.cooper@net1.com User B bob.jones@place2.com Bob s terminal is ringing. An (optional) 180 Ringing message is routed back to user A (Alice) and an audio ringing tone is generated in Alice s terminal.

Basic (two-party) SIP call (5) SIP proxy of user A net1.com 200 OK Ack SIP proxy of user B net2.com User A alice.cooper@net1.com User B bob.jones@place2.com Bob answers the call. A 200 OK message is routed back to Alice. Alice sends an Ack message to Bob.

Basic (two-party) SIP call (6) SIP proxy of user A SIP proxy of user B User A alice.cooper@net1.com User B bob.jones@place2.com After successful session establishment, the user plane data (e.g. coded speech carried on top of RTP) is carried between the terminals directly through the Internet without involving SIP proxies.

SIP forking example Invite... User A SIP proxy of user A SIP proxy of user B Terminals of user B that have performed SIP registration Terminal 1 Terminal 2 Terminal 3 Forking: Different terminals of user B are alerted at the same time. The one that answers first returns the 200 OK message...

Three types of addresses E.164 address Address points directly to 358 9 1234567 called user in the PSTN MSISDN 050 1234567 Address points to HLR in GSM home network of called user HLR knows where to route call SIP address sip:user@network.com Address points to SIP proxy of called user SIP proxy knows where to route Invite SIP message

What can SIP do? The most important task of SIP is to find out URLs of terminals to be included in the multimedia session (see previous example). For negotiation of multimedia capabilities, SIP can carry SDP messages between end users (in Invite and 200 OK SIP messages). Unfortunately, SIP cannot influence the transport in the user plane (support of QoS and security features, inclusion of PCM/EFR transcoding equipment, etc.).

IP Multimedia Subsystem (IMS) AS AS (Application (Application Server) Server) AS AS AS AS IMS (IP Multimedia Subsystem) CSCF CSCF (Call (Call Session Session Control Control Function) Function) CSCF CSCF SIP SIP Location Location Database Database (usually (usually combined combined with with HLR) HLR) SGSN SGSN GGSN GGSN GGSN GGSN SGSN SGSN User A User B

Why IMS? In a conventional GPRS-based IP network, only Client-Server types of applications are possible. Client-Client (or peer-to-peer) types of applications are not possible since the dynamic IP address of the user B terminal is not known in the network. Possible Server Server Not possible SGSN SGSN GGSN GGSN GGSN GGSN SGSN SGSN User A User B

IMS operation (1) User B can be reached only after registering in the IMS, which means binding her/his SIP address with the dynamic IP address that was allocated when the PDP context of the GPRS session was established. IMS (IP Multimedia Subsystem) SIP SIP Location Location Database Database Register! SGSN SGSN GGSN GGSN GGSN GGSN SGSN SGSN User A User B

IMS operation (2) Session (or call) control involves SIP signalling as well as network functions provided by the IMS (for instance, CSCF offers SIP proxy functionality). IMS (IP Multimedia Subsystem) CSCF CSCF CSCF CSCF SIP SIP Location Location Database Database Invite 200 OK SGSN SGSN GGSN GGSN GGSN GGSN SGSN SGSN User A User B

IMS operation (3) Also, external application servers (e.g. presence server) can be employed during session control. AS AS IMS (IP Multimedia Subsystem) CSCF CSCF CSCF CSCF SIP SIP Location Location Database Database SGSN SGSN GGSN GGSN GGSN GGSN SGSN SGSN User A User B

IMS operation (4) After successful session establishment, the IMS is not involved in the transfer of user data (e.g., encoded speech) between the user A and B terminals. IMS (IP Multimedia Subsystem) CSCF CSCF CSCF CSCF SIP SIP Location Location Database Database User data over RTP SGSN SGSN GGSN GGSN GGSN GGSN SGSN SGSN User A User B

QoS support in IP networks Best effort service <=> no Quality of Service support Some alternatives for introducing QoS in IP backbone applications (situation year 2004): Alternative 1: RSVP (Resource ReSerVation Protocol) Alternative 2: DiffServ (Differentiated Services) Alternative 3: MPLS (MultiProtocol Label Switching) Alternative 4: IP tunneling over ATM IETF terminology: Traffic engineering

Problems with Best effort IP transport "Best effort" service is sufficient for traditional Internet applications like web browsing, e-mail, and file transfer. "Best effort" is not sufficient for real-time applications: Speech (voice) Low delay High throughput Video / audio streaming Multimedia applications Low delay variation Consistent throughput Low round-trip delay

QoS support mechanisms (1) RSVP (Resource ReSerVation Protocol) IETF RFC 2205 Resources are reserved beforehand (or at certain intervals) Host Host Ingress point IP Backbone Egress point Host Host http://www.ietf.org/rfc/rfc2205.txt RSVP can be considered an example of the integrated services concept (compare with differentiated services). RSVP is typically used together with other mechanism(s).

QoS support mechanisms (2) DiffServ (Differentiated Services) IETF RFC 2475 Service tagging in ToS byte at ingress point Host Host IPv4 Header Version Version Ingress point Time-to-live Time-to-live IP Backbone IHL IHL Type Type of of Service Service Identification Identification Protocol Protocol http://www.ietf.org/rfc/rfc2475.txt Egress point Host Host Traffic control based on ToS byte Total Total length length Flags ToS byte = 8 bits Flags (2 8 = 256 priority Header Header levels could be used)

QoS support mechanisms (3) MPLS (Multi-Protocol Label Switching) IETF RFC 2702 Label switching in all routers along the path Host Host Ingress point IP Backbone http://www.ietf.org/rfc/rfc2702.txt Egress point Host Host LSR = Label Switch Router (router with MPLS functionality) Virtual connection must be established first (using e.g. RSVP). IP datagrams are encapsulated in MPLS frames and relayed through label switch routers (only label is used for routing).

QoS support mechanisms (3 cont.) MPLS label structure: IP datagram L2 L2 payload Header of layer 2 protocol data unit L2 L2 H routing without MPLS L2 L2 payload Label L2 L2 H in case of MPLS Label length = 32 bits TTL TTL (8 (8 bits) S Exp Exp Stacking: L2 L2 Payload Label Label Label value (20 (20 bits) Stack bit identifies bottom-of-stack label Label L2 L2 H Label at top of stack is always in use first

QoS support mechanisms (3 cont.) Routing without MPLS: destination IP address in IP header is used for routing. L2 L2 payload DA L2 L2 H In case of MPLS: destination IP address is not used for routing along the virtual path between ingress and egress point. Routing is based on MPLS label instead. L2 L2 payload DA Label L2 L2 H

QoS support mechanisms (4) IP tunneling over ATM IP packets are directed to the ingress point IP traffic is carried over ATM virtual connection Host Host Ingress point ATM Backbone Egress point Host Host See lecture slides on ATM for protocol stacks involved

Problem with end-to-end QoS support There are millions of Internet routers worldwide based on IPv4 and without any QoS support. Efficient QoS support worldwide means that a large part of these routers must be updated. Terminal Conventional routers Terminal Edge router Routers offering QoS support Edge router

Situation is easier in this case Traditional circuit switched network: Terminal Switch Switch Switch Switch Switch Switch Terminal No store-and-forward nodes in network => predictable delay Circuit switched network including IP bearer section: Terminal Switch Switch Switch Switch Terminal Edge router IP backbone Edge router QoS support: Small/predictable delay between edge routers

Mobility in IP networks One can very generally define two types of mobility: Personal mobility (e.g. offered by SIP) Terminal mobility (e.g. offered by GPRS) The concept Mobile IP tries to combine both, when implemented together with wireless LAN technology (see last slides of this lecture). The IMS (IP Multimedia Subsystem) concept in 3GPP Release 5 also tries to combine both (using SIP and GPRS technology).

User mobility vs. terminal mobility Personal mobility (e.g. offered by SIP): User can move around in the network and use a new terminal after registration via the new terminal. The new terminal has the same address for incoming calls as the old terminal. However, terminal mobility is not supported. Terminal mobility (e.g. offered by GPRS): User can move around in the network and use the terminal at different locations => location updating. However, using different terminals means different addresses as far as incoming calls are concerned.

Mobile IP concept - IETF solution for (e.g.) Wireless LAN type applications - Wide-scale deployment together with IPv6? Basic architecture: http://www.ietf.org/rfc/rfc2002.txt Mobile Node Care-of address IP address 3 Foreign Agent Correspondent Node IP address 1 Home Agent Home address IP address 2

Mobile IP (cont.) Mobile node -terminated IP transport: Mobile Node Foreign Agent 2 Home Agent Care-of address (IP address 3) Correspondent Node 1 Home address (IP address 2) (IP address 1) 1. Correspondent node sends IP packet to permanent home address (corresponding URL is known). 2. Home agent tunnels IP datagram to care-of address.

Mobile IP (cont.) Tunneling in Mobile IP means encapsulation: Mobile Node Care-of address (IP address 3) Foreign Agent Home Agent Home address (IP address 2) IP IP header Original IP datagram IP IP payload IP IP header IP IP payload IP datagram sent to mobile node

Mobile IP (cont.) Mobile node -originated IP transport: Mobile Node Foreign Agent Home Agent Care-of address (IP address 3) Note: source address in IP datagram is home address (IP address 2), not care-of address (IP address 3) Correspondent Node Home address (IP address 2) (IP address 1) Mobile node sends IP packets directly to correspondent node (no tunneling required).

Mobile IP (cont.) Mobility requires: (1) agent advertisements Mobile Node Care-of address (IP address 3) Foreign Agent Home Agent Home address (IP address 2) 1. 1. New New mobile node node has has no no valid valid care-of address. 2. 2. Foreign agents continuously broadcast (at (at 1 s intervals) lists lists of of free free care-of addresses within within their their area. area. 3. 3. Mobile Mobile node node selects a care-of address and and informs the the foreign agent. agent.

Mobile IP (cont.) Mobility requires: (2) registration Mobile Node Care-of address (IP address 3) Foreign Agent Home Agent Home address (IP address 2) 1. 1. Mobile Mobile node node informs home home agent agent about about new new care-of address. 2. 2. Home Home agent agent replies replies with with OK -message (or (or resolves the the problem if if situation is is not not OK). OK). 3. 3. From From now now on on home home agent agent can can tunnel tunnel IP IP packets to to mobile node node (using (using care-of address).