EE6390. Fall Research Report. Mobile IP in General Packet Radio System
|
|
|
- Deirdre Morrison
- 9 years ago
- Views:
Transcription
1 EE6390 Introduction to Wireless Communications Systems Fall 1999 Research Report Mobile IP in General Packet Radio System Kelvin K. W. Wong Ramzi Hamati Date: Dec. 6, 1999
2 1.0 Abstract Tunneling is one of the key elements in General Packet Radio Service (GPRS), a service offered by Global System for Mobile (GSM) communications. GPRS Tunneling Protocol (GTP) implemented in GPRS will provide data tunnels between GSM mobile subscribers and external data networks. However, a potential problem exists in that GPRS cannot provide optimal routing, in turn causing traffic contention in GPRS networks. In this paper, we investigate this problem and provide a mechanism that will optimize the routing by distributing the Location Directory (LD) information away from Gateway GPRS Support Node (GGSN). Also, we present our LD design and implementation in a GPRS mobile IP network.
3 2.0 Introduction In GPRS architecture, the tunneling mechanism is deployed to allow transferring multiprotocol packets between the mobile station (MS) and external networks. GTP is implemented between the Service GPRS Support Node (SGSN) and the GGSN. However, this implementation will cause all datagrams to be routed to the GGSN. In other words, traffic contention will occur in the GGSN, thus impacting GPRS performance. In the next section of this paper, we analyze the potential problem of GTP in GPRS. Then, we present a scheme to efficiently distribute LD information, which provides the information necessary to locate the forwarding address of a mobile host in a mobile networking system, away from GGSN. We discuss the significance of distributing LD information with respect to optimizing the routing traffic in GPRS. Finally, we present our LD design and implementation in a GPRS network. 3.0 Problems in GPRS As figure 1 illustrates, datagrams destined for a mobile node will be routed to its home network in the same way as for any IP datagram. Then, the home agent GGSN tunnels the datagrams to the mobile node s current care-of address. The Internet host is required to route each datagram for the mobile indirectly through its home agent. Similarly, the mobile node has to route each datagram via its home agent to the Internet host. Clearly, the GGSN is serving as the gateway between of mobile and Internet hosts. Working with the assumption that mobile hosts in networking systems move randomly and frequently, it
4 M H SGSN SGSN GGSN GPRS Internet M H IH Figure 1 GPRS Network Structure is more efficient to have a GGSN serving as a central node storing mobile location directory information and forwarding the mobile s packets to its SGSN. However, the problem contained in the network structure has received considerable attention due to its lagging performance. Consider the following two common scenarios: Transferring packets between mobile and Internet host. Transferring packets between two mobile hosts in the same GPRS network. All traffic in the current GPRS architecture is routed to GGSN, thereby causing contention that negatively impacts the performance of the mobile network. 4.0 Proposed Solution One key issue in achieving high performance mobile networking is providing optimal routing. Over the past several years, many proposals have been made for supporting mobile IP networks. A vast majority of these proposals have been designed to be compatible with today s TCP/IP-based Internet. But only a few of them are really focused on improving the routing efficiencies. Furthermore, security issues also prevent these proposals from becoming widely adapted standards of mobile IP. However, there are two proposals that can solve the performance problem in GPRS and provide adequate security protection for mobile hosts. Let us consider two common scenarios and present their role in improving the performance of GPRS
5 Triangle Routing Internet Engineering Task Force (IETF) has created a group to come up with a proposal for near-term Internet deployment (Figure 2). In this design, each mobile host retains its home address regardless of its location. When mobile host visits a foreign network, it registers with the foreign agent; the home agent keeps LD information associated with the mobile s current point of attachment. All datagrams addressed to a mobile host are routed via the home agent. However, the packets in the reverse direction (those originating from mobile host to Internet host) are relayed along the shortest path by the Internet routing system. This technique is known as the triangle routing. This proposal prohibits caching of LD information because of security concerns. Hence, route optimization is not possible but it releases the traffic from home agent in the reverse direction. LD Foreign Agent Home Agent M H Source Figure 2 Triangle Routing Mobile IP Proposal Loose Source Routing The Loose Source Routing (LSR) proposal (Figure 3), also based an existing IP, allows each mobile host to retain its home address regardless of current location. Similar to
6 triangle routing, the home agent stores the mobile host s LD information. The packets sent to the mobile host first arrive at the home agent. To forward the packet, the home agent inserts an LSR option, specifying the current foreign agent as the transit router. The inserted option causes this packet to be routed to the mobile host via the foreign agent. When the mobile host sends a reply to the source, it also inserts the LSR option in all outgoing packets, which designate the current foreign agent as a transit router. When the source host receives this packet, it will reverse the recorded route. All outgoing packets originating from the source host will have the reversed route inserted, and therefore will be routed along the optimal path. This proposal relies on the end host s ability to perform route reversal. Unfortunately, the vast majorities of Internet hosts either do not perform correct route reversal or drop LSR packets due to the security risk involved. Source L D Foreign Agent 2 M H L D Home Agent M H L D M H Source Figure 3 LSR Mobile IP Proposal Although the two proposals appear to be different, they share many similarities: a basic network architecture similar to the current GPRS network, a home agent GGSN and a foreign agent SGSN, mobile hosts retain home address regardless of current location, home agent stores LD information. Based on the pros-and-cons discussed earlier, we argue the merit of each proposal in the following cases:
7 Transferring packets between mobile host and Internet host. We submit that triangle routing is the best candidate for this scenario. It can retain the original security advantages of a GPRS network. For instance, firewalls in the GGSN block unspecified packets from entering via the Internet. It also releases approximately half of the capacity burden from GGSN. Transferring packets between two mobile hosts in the same GPRS network. We believe that security is no longer an issue if source and destination are on the same GPRS network. GTP can secure communication within GPRS networks. In addition, we can implement new routing schemes on GTP without changing the existing IP network. In addition, LSR can be deployed to optimize GRPS performance on route reversal. After forwarding the first incoming packet to the destination mobile host, the GGSN will be not involved in handling any further packets between the two mobile hosts until one of the mobiles hands off to a new foreign agent. 5.0 Implementation In order to implement these two proposals, we first have to rearrange the original GPRS GGSN M H 1 LD SGSN 1 SGSN 2 Source M H 1 M H 2 Figure 4 Triangle Routing in GPRS
8 network (Figure 1). We combine the GPRS and the Internet networks together. Therefore, the GGSN will no longer be a gateway node. Rather, it becomes a regular node in an IP network (Figure 4). In this case, the foreign agent SGSN can apply the triangle routing scheme to return packets to the Internet host via the shortest path. With the same network configuration, we can also implement our modified LSR scheme on GPRS. In our modified LSR scheme, the mobile host will not keep its destination mobile host s LD information. The foreign agent SGSN, which serves the mobile host, caches the LD information. If the SGSN has LD information for the destination mobile host, it will be able to send packets directly back to the mobile node without the service of the GGSN. First, let us introduce three LSR optional messages used for distribution of LD information: LD warning message (from SGSN to SGSN) is used to inform the source SGSN that it has out-of-date LD information for the mobile node. LD request message (from SGSN to GGSN and forwarded to destination SGSN) is used by the SGSN to request the destination mobile host s current LD information from the GGSN. LD update message (from SGSN to SGSN) is used to send a notification regarding a mobile host s current LD on reversal direction. These messages contain information such as the care-of address of a mobile host, the IP address of the SGSN, and additional control information specifying features made available by SGSN. Therefore, any SGSN in GPRS may maintain LD information to optimize its own communication with mobile hosts.
9 Figure 5 is an example that shows how LD information is cached over SGSNs when the first packet is sent from a source mobile host to a destination mobile host: M H 2 LD GGSN M H 1 LD SGSN SGSN 2 M H 1 LD Source M H 1 M H 2 Figure 5 LSR in GPRS 1. The source SGSN extracts the destination address from the packet and searches if this destination is in the same GPRS network from its routing entries. If the outcome is true, it forwards the packet to the GGSN with an LD request message. 2. The GGSN forwards the packet to the destination SGSN with an LD request message that includes the LD information of the source mobile host. The destination SGSN caches the address of source mobile host and source SGSN. 3. On the reverse direction, the destination SGSN returns the packet with an LD update message to the source SGSN. Therefore, the source SGSN can cache the destination mobile host s LD information. However, when a mobile host changes its SGSN, a procedure known as handoff, LD information in the GGSN will be changed first upon the mobile host s registration from the new SGSN. Then the LD information in the old SGSN will be during the registration process. Due to the fact that the GGSN has no knowledge of which SGSN has the old mobile host LD information, there is no any mechanism to update all old LD information
10 distributed over other SGSNs. If a mobile host sends to the old SGSN, the old SGSN will forward the packet back to the source SGSN with LD warning message. The source SGSN will remove the LD information and send the packet to the GGSN to start the whole process of caching the new LD information again. 6.0 Conclusion Given the new modifications in the GPRS networks, the amount of traffic to the GGSN is dramatically reduced. In particular, the triangle route approach eliminates one-half of the data packets from entering the GGSN, which will improve the performance of the GPRS network. The future and ultimate success of mobile IP hinges around the effectiveness of routing algorithms capable of obtaining optimal routes without compromising security of the network. 7.0 Reference 1. ESTI, Digital cellular telecommunication system (Phase 2+); General Packet Radio Service (GPRS); Service description; Stage 1, GSM version 5.2.0, Valbonne France. 2. Charles Perkins, Pravin Bhagwat and Stish Tripathi, Network Layer Mobility: An Architecture and Survey, IEEE Personal Communications, June Peter Wong and David Britland, Mobile Data Communication Systems, Boston, Artech House, 1995
5.0 Network Architecture. 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network
5.0 Network Architecture 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network 1 5.1The Internet Worldwide connectivity ISPs connect private and business users Private: mostly dial-up connections Business:
Mobile IP. Bheemarjuna Reddy Tamma IIT Hyderabad. Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP
Mobile IP Bheemarjuna Reddy Tamma IIT Hyderabad Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP IP Refresher Mobile IP Basics 3 parts of Mobile IP: Outline Advertising Care-of Addresses
IP and Mobility. Requirements to a Mobile IP. Terminology in Mobile IP
IP and Mobility Chapter 2 Technical Basics: Layer Methods for Medium Access: Layer 2 Chapter Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Telecommunication Networks: GSM, GPRS, UMTS
The 3GPP and 3GPP2 Movements Towards an All IP Mobile Network. 1 Introduction
The 3GPP and 3GPP2 Movements Towards an All IP Mobile Network Girish Patel Wireless Solutions Nortel Networks Richardson, TX [email protected] Steven Dennett Personal Communications Sector Motorola
Mobile SCTP Transport Layer Mobility Management for the Internet
Mobile SCTP Transport Layer Mobility Management for the Maximilian Riegel Siemens AG, Munich, Germany E-mail: [email protected] Dr. Michael Tüxen Siemens AG, Munich, Germany E-mail: [email protected]
ETSI TS 129 119 V9.0.0 (2010-01) Technical Specification
TS 129 119 V9.0.0 (2010-01) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; GPRS Tunnelling Protocol (GTP) specification for Gateway Location Register (GLR) (3GPP TS 29.119
Analysis of Mobile IP in Wireless LANs
ENSC 835: COMMUNICATION NETWORKS FINAL PROJECT PRESENTATIONS Spring 2011 Analysis of Mobile IP in Wireless LANs www.sfu.ca/~bshahabi Babak Shahabi ([email protected]( [email protected]) 301102998 Shaoyun Yang
SERVICE DISCOVERY AND MOBILITY MANAGEMENT
Objectives: 1) Understanding some popular service discovery protocols 2) Understanding mobility management in WLAN and cellular networks Readings: 1. Fundamentals of Mobile and Pervasive Computing (chapt7)
G.Vijaya kumar et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1413-1418
An Analytical Model to evaluate the Approaches of Mobility Management 1 G.Vijaya Kumar, *2 A.Lakshman Rao *1 M.Tech (CSE Student), Pragati Engineering College, Kakinada, India. [email protected]
Internet, Part 2. 1) Session Initiating Protocol (SIP) 2) Quality of Service (QoS) support. 3) Mobility aspects (terminal vs. personal mobility)
Internet, Part 2 1) Session Initiating Protocol (SIP) 2) Quality of Service (QoS) support 3) Mobility aspects (terminal vs. personal mobility) 4) Mobile IP Session Initiation Protocol (SIP) SIP is a protocol
A Systemfor Scanning Traffic Detection in 3G WCDMA Network
2012 IACSIT Hong Kong Conferences IPCSIT vol. 30 (2012) (2012) IACSIT Press, Singapore A Systemfor Scanning Traffic Detection in 3G WCDMA Network Sekwon Kim +, Joohyung Oh and Chaetae Im Advanced Technology
Mobility Management 嚴 力 行 高 雄 大 學 資 工 系
Mobility Management 嚴 力 行 高 雄 大 學 資 工 系 Mobility Management in Cellular Systems Cellular System HLR PSTN MSC MSC VLR BSC BSC BSC cell BTS BTS BTS BTS MT BTS BTS BTS BTS HLR and VLR HLR (Home Location Register)
IP-based Mobility Management for a Distributed Radio Access Network Architecture. [email protected]
IP-based Mobility Management for a Distributed Radio Access Network Architecture [email protected] Outline - Definition IP-based Mobility Management for a Distributed RAN Architecture Page 2 Siemens
Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1
Computer Networks Wireless and Mobile Networks László Böszörményi Computer Networks Mobile - 1 Background Number of wireless (mobile) phone subscribers now exceeds number of wired phone subscribers! Computer
NTT DOCOMO Technical Journal. Core Network Infrastructure and Congestion Control Technology for M2M Communications
M2M 3GPP Standardization Further Development of LTE/LTE-Advanced LTE Release 10/11 Standardization Trends Core Network Infrastructure and Congestion Control Technology for M2M Communications The number
Tomás P. de Miguel DIT-UPM. dit UPM
Tomás P. de Miguel DIT- 15 12 Internet Mobile Market Phone.com 15 12 in Millions 9 6 3 9 6 3 0 1996 1997 1998 1999 2000 2001 0 Wireless Internet E-mail subscribers 2 (January 2001) Mobility The ability
Administrivia. CSMA/CA: Recap. Mobility Management. Mobility Management. Channel Partitioning, Random Access and Scheduling
Administrivia No lecture on Thurs. Last work will be out this week (not due, covers wireless) Extra office hours for next week and the week after. Channel Partitioning, Random Access and Scheduling Channel
CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012
CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012 Important: The solutions to the homework problems from the course book have been provided by the authors.
Mobile IP Part I: IPv4
Mobile IP Part I: IPv4 Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 12-1 q Mobile
Routing Security Server failure detection and recovery Protocol support Redundancy
Cisco IOS SLB and Exchange Director Server Load Balancing for Cisco Mobile SEF The Cisco IOS SLB and Exchange Director software features provide a rich set of server load balancing (SLB) functions supporting
Home Agent placement and assignment in WLAN with Cellular Networks
Home Agent placement and assignment in WLAN with Cellular Networks Selvakumar.R, Senior Lecturer, Department of Computer Science and Engineering V.M.K.V.Engineering College, Salem-636 308 Tamilnadu, India.
Mobile Networking Concepts and Protocols CNT 5517
Mobile Networking Concepts and Protocols CNT 5517 Some slides are adapted from Dr. Dave Johnson Notes Dr. Sumi Helal, Ph.D. Professor Computer & Information Science & Engineering Department University
GPRS and 3G Services: Connectivity Options
GPRS and 3G Services: Connectivity Options An O2 White Paper Contents Page No. 3-4 5-7 5 6 7 7 8-10 8 10 11-12 11 12 13 14 15 15 15 16 17 Chapter No. 1. Executive Summary 2. Bearer Service 2.1. Overview
Mobile Routing. When a host moves, its point of attachment in the network changes. This is called a handoff.
Mobile Routing Basic Notions of Mobility When a host moves, its point of attachment in the changes. This is called a handoff. The point of attachment is a base station (BS) for cellular, or an access point
6 Mobility Management
Politecnico di Milano Facoltà di Ingegneria dell Informazione 6 Mobility Management Reti Mobili Distribuite Prof. Antonio Capone Introduction Mobility management allows a terminal to change its point of
Chapter 10 VoIP for the Non-All-IP Mobile Networks
Chapter 10 VoIP for the Non-All-IP Mobile Networks Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Outline 10.1 GSM-IP: VoIP Service for GSM 256
Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network
Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: [email protected]
Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc
(International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan [email protected]
Infrastructure-less networks
Infrastructure-less networks Csaba Simon Dept. of Telecommunications and Media Informatics [email protected] Convergent Networks and Services (VITMM156) 1 Mobility management 2 Mobility Mobile station,
Chapter 3: WLAN-GPRS Integration for Next-Generation Mobile Data Networks
Chapter 3: WLAN-GPRS Integration for Next-Generation Mobile Data Networks IEEE Wireless Communication, Oct. 2002 Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National
MOBILITY SUPPORT USING INTELLIGENT USER SHADOWS FOR NEXT-GENERATION WIRELESS NETWORKS
MOBILITY SUPPORT USING INTELLIGENT USER SADOWS FOR NEXT-GENERATION WIRELESS NETWORKS Gergely V. Záruba, Wei Wu, Mohan J. Kumar, Sajal K. Das enter for Research in Wireless Mobility and Networking Department
ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; [email protected] +32/3/240.7830; Guy.Reyniers@alcatel.
Contact: ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; [email protected] +32/3/240.7830; [email protected] Voice over (Vo) was developed at some universities to diminish
Implementing LTE International Data Roaming
Implementing International Data Roaming Data Roaming Standardization Implementing International Data Roaming On completion of EPC standardization at 3GPP, specifications for international roaming between
A Novel Pathway for Portability of Networks and Handing-on between Networks
A Novel Pathway for Portability of Networks and Handing-on between Networks D. S. Dayana #1, S. R. Surya #2 Department of Computer Applications, SRM University, Chennai, India 1 [email protected]
Introducing Reliability and Load Balancing in Mobile IPv6 based Networks
Introducing Reliability and Load Balancing in Mobile IPv6 based Networks Jahanzeb Faizan Southern Methodist University Dallas, TX, USA [email protected] Hesham El-Rewini Southern Methodist University
SpiderCloud E-RAN Security Overview
SpiderCloud E-RAN Security Overview Excerpt for SpiderCloud Wireless, Inc. 408 East Plumeria Drive San Jose, CA 95134 USA -hereafter called SpiderCloud- Page 1 of 7 Table of Contents 1 Executive Summary...5
An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks *
An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks * Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwj oeshanyang.ac.kr Abstract. To satisfy the user requirements
A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks
A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran [email protected]
Cisco Configuring Basic MPLS Using OSPF
Table of Contents Configuring Basic MPLS Using OSPF...1 Introduction...1 Mechanism...1 Hardware and Software Versions...2 Network Diagram...2 Configurations...2 Quick Configuration Guide...2 Configuration
TSGS#27(05)0115. Technical Specification Group Services and System Aspects Meeting #27, 14-17 March 2005,Tokyo, Japan
Technical Specification Group Services and System Aspects Meeting #27, 14-17 March 2005,Tokyo, Japan TSGS#27(05)0115 Source: TSG SA WG2 Title: CR(s) to 23.981 Agenda item: 7.2.3 Document for: APPROVAL
QoS Implementation For MPLS Based Wireless Networks
QoS Implementation For MPLS Based Wireless Networks Subramanian Vijayarangam and Subramanian Ganesan Oakland University, Rochester, Michigan Abstract : Voice has been the primary application in wireless
Chapter 6 Wireless and Mobile Networks
Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;
A Study on Mobile IPv6 Based Mobility Management Architecture
UDC 621.396.69:681.32 A Study on Mobile IPv6 Based Mobility Management Architecture VTsuguo Kato VRyuichi Takechi VHideaki Ono (Manuscript received January 19, 2001) Mobile IPv6 is considered to be one
Advanced SIP Series: SIP and 3GPP Operations
Advanced S Series: S and 3GPP Operations, Award Solutions, Inc Abstract The Session Initiation Protocol has been chosen by the 3GPP for establishing multimedia sessions in UMTS Release 5 (R5) networks.
Mobility Management in DECT/IPv6 Networks
Mobility Management in DECT/IPv6 Networks Sarantis Paskalis 1, Georgios Lampropoulos 1, and Georgios Stefanou 1 Department of Informatics and Telecommunications University of Athens, Greece Abstract. The
4G Mobile Networks At Risk
07.05.1203 Consortium Attack analysis and Security concepts for MObile Network infastructures supported by collaborative Information exchange 4G Mobile Networks At Risk The ASMONIA Threat and Risk Analysis
Dedication Preface 1. The Age of IPv6 1.1 INTRODUCTION 1.2 PROTOCOL STACK 1.3 CONCLUSIONS 2. Protocol Architecture 2.1 INTRODUCTION 2.
Dedication Preface 1. The Age of IPv6 1.1 INTRODUCTION 1.2 PROTOCOL STACK 1.3 CONCLUSIONS 2. Protocol Architecture 2.1 INTRODUCTION 2.2 COMPARISONS OF IP HEADER FORMATS 2.3 EXTENSION HEADERS 2.3.1 Options
DATA SECURITY 1/12. Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0
DATA SECURITY 1/12 Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0 Contents 1. INTRODUCTION... 3 2. REMOTE ACCESS ARCHITECTURES... 3 2.1 DIAL-UP MODEM ACCESS... 3 2.2 SECURE INTERNET ACCESS
ICTTEN4215A Install and configure internet protocol TV in a service provider network
ICTTEN4215A Install and configure internet protocol TV in a service provider network Release: 1 ICTTEN4215A Install and configure internet protocol TV in a service provider network Modification History
EXPLORER. TFT Filter CONFIGURATION
EXPLORER TFT Filter Configuration Page 1 of 9 EXPLORER TFT Filter CONFIGURATION Thrane & Thrane Author: HenrikMøller Rev. PA4 Page 1 6/15/2006 EXPLORER TFT Filter Configuration Page 2 of 9 1 Table of Content
3GPP TR 23.912 V3.1.0 (2001-12)
TR 23.912 V3.1.0 (2001-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Core Network; Technical report on Super-Charger (Release 1999) The present document
STAR-GATE TM. Annex: Intercepting Packet Data Compliance with CALEA and ETSI Delivery and Administration Standards.
STAR-GATE TM Annex: Intercepting Packet Data Compliance with CALEA and ETSI Delivery and Administration Standards. In this document USA Tel: +1-703-818-2130 Fax: +1-703-818-2131 E-mail: [email protected]
UMTS/GPRS system overview from an IP addressing perspective. David Kessens Jonne Soininen
UMTS/GPRS system overview from an IP addressing perspective David Kessens Jonne Soininen Introduction 1) Introduction to 3GPP networks (GPRS, UMTS) Technical overview and concepts for 3GPP networks Mobility
GPRS / 3G Services: VPN solutions supported
GPRS / 3G Services: VPN solutions supported GPRS / 3G VPN soluti An O2 White Paper An O2 White Paper Contents Page No. 3 4-6 4 5 6 6 7-10 7-8 9 9 9 10 11-14 11-12 13 13 13 14 15 16 Chapter No. 1. Executive
Wireless Networks: Network Protocols/Mobile IP
Wireless Networks: Network Protocols/Mobile IP Mo$va$on Data transfer Encapsula$on Security IPv6 Problems DHCP Adapted from J. Schiller, Mobile Communications 1 Mo$va$on for Mobile IP Rou$ng based on IP
Security Requirements for Wireless Networking
Security Requirements for Wireless Networking Developed by Copyright 2007 Rysavy Research TABLE OF CONTENTS INTRODUCTION... 2 SECURITY REQUIREMENTS... 2 WIRELESS OPERATOR SECURITY LIMITATIONS... 3 END
Deploying IPv6 in 3GPP Networks. Evolving Mobile Broadband from 2G to LTE and Beyond. NSN/Nokia Series
Brochure More information from http://www.researchandmarkets.com/reports/2379605/ Deploying IPv6 in 3GPP Networks. Evolving Mobile Broadband from 2G to LTE and Beyond. NSN/Nokia Series Description: Deploying
An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework
An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework Zutao Zhu Zhenjun Li YunYong Duan Department of Business Support Department of Computer Science Department of Business
Path Selection Analysis in MPLS Network Based on QoS
Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), Cilt:36, No: 6 Özel Sayı (2015) ISSN: 1300-1949 Cumhuriyet University Faculty of Science Science Journal (CSJ), Vol. 36, No: 6 Special
MOBILE VIDEO WITH MOBILE IPv6
MOBILE VIDEO WITH MOBILE IPv6 DANIEL MINOLI WILEY A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS PREFACE ABOUT THE AUTHOR xi xiii 1 THE MOBILE USER ENVIRONMENT: SMART PHONES, PORTABLE MEDIA PLAYERS (PMPs),
Internet Connectivity for Ad hoc Mobile Networks
Internet Connectivity for Ad hoc Mobile Networks Yuan Sun Elizabeth M. Belding-Royer Department of Computer Science University of California, Santa Barbara suny, ebelding @cs.ucsb.edu Charles E. Perkins
Charter Text Network Design and Configuration
MIF Charter update proposal MIF WG Charter update proposal summary http://www.ietf.org/mail-archive/web/mif/current/msg02125.html Specific deliverables listed MPVD architecture document Requirement for
Handoff in GSM/GPRS Cellular Systems. Avi Freedman Hexagon System Engineering
Handoff in GSM/GPRS Cellular Systems Avi Freedman Hexagon System Engineering Outline GSM and GSM referemce model GPRS basics Handoffs GSM GPRS Location and Mobility Management Re-selection and routing
Enabling Modern Telecommunications Services via Internet Protocol and Satellite Technology Presented to PTC'04, Honolulu, Hawaii, USA
CASE STUDY Enabling Modern Telecommunications Services via Internet Protocol and Satellite Technology Presented to PTC'04, Honolulu, Hawaii, USA Stephen Yablonski and Steven Spreizer Globecomm Systems,
Mobility on IPv6 Networks
Mobility on IPv6 Networks Pedro M. Ruiz Project Manager Agora Systems S.A. Global IPv6 Summit Madrid 13-15 March 2002 Pedro M. Ruiz (c) Agora Systems S.A, 2002 1 Outline Motivation MIPv6 architecture MIPv6
White Paper. Telenor VPN
White Paper Telenor VPN Versjon 2.2 September 2006 Side 1 av 5 Table of contents 1 Short introduction... 3 2 Product information... 3 2.1 Mobile Data Access... 3 2.2 SMS Acess and SMS Bedrift... 4 2.3
MPLS-based Virtual Private Network (MPLS VPN) The VPN usually belongs to one company and has several sites interconnected across the common service
Nowdays, most network engineers/specialists consider MPLS (MultiProtocol Label Switching) one of the most promising transport technologies. Then, what is MPLS? Multi Protocol Label Switching (MPLS) is
REDUCING PACKET OVERHEAD IN MOBILE IPV6
REDUCING PACKET OVERHEAD IN MOBILE IPV6 ABSTRACT Hooshiar Zolfagharnasab 1 1 Department of Computer Engineering, University of Isfahan, Isfahan, Iran [email protected] [email protected] Common Mobile
Cisco Which VPN Solution is Right for You?
Table of Contents Which VPN Solution is Right for You?...1 Introduction...1 Before You Begin...1 Conventions...1 Prerequisites...1 Components Used...1 NAT...2 Generic Routing Encapsulation Tunneling...2
GSM Network and Services
GSM Network and Services GPRS - sharing of resources 1 What is the problem? Many data applications are very bursty in its traffic pattern: http, smtp, pop, telnet,... Why reserve physical resources at
Introduction to Mobile IPv6
1 Introduction to Mobile IPv6 III IPv6 Global Summit Moscow Dr. Dimitrios Kalogeras [email protected] GRNET Outline Introduction Relevant Features of IPv6 Major Differences between MIPv4 and MIPv6 Mobile
The Network Layer Functions: Congestion Control
The Network Layer Functions: Congestion Control Network Congestion: Characterized by presence of a large number of packets (load) being routed in all or portions of the subnet that exceeds its link and
Mobility and cellular networks
Mobility and cellular s Wireless WANs Cellular radio and PCS s Wireless data s Satellite links and s Mobility, etc.- 2 Cellular s First generation: initially debuted in Japan in 1979, analog transmission
Delivery of Voice and Text Messages over LTE
Delivery of Voice and Text Messages over LTE 1. The Market for Voice and SMS! 2. Third Party Voice over IP! 3. The IP Multimedia Subsystem! 4. Circuit Switched Fallback! 5. VoLGA LTE was designed as a
Load Balancing. Final Network Exam LSNAT. Sommaire. How works a "traditional" NAT? Un article de Le wiki des TPs RSM.
Load Balancing Un article de Le wiki des TPs RSM. PC Final Network Exam Sommaire 1 LSNAT 1.1 Deployement of LSNAT in a globally unique address space (LS-NAT) 1.2 Operation of LSNAT in conjunction with
Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols
Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Purvi N. Ramanuj Department of Computer Engineering L.D. College of Engineering Ahmedabad Hiteishi M. Diwanji
Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints
Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashad, Mashhad, Iran [email protected]
Private DNS for Mobile Operators
Private for James Yu Senior Director - Strategic Technical Initiatives NeuStar, Inc. [email protected] +1-571-434-5572 (B) +1-703-622-5187 (M) Richard Xu Chief Architect Aicent, Inc [email protected]
MPLS VPN in Cellular Mobile IPv6 Architectures(04##017)
MPLS VPN in Cellular Mobile IPv6 Architectures(04##017) Yao-Chung Chang, Han-Chieh Chao, K.M. Liu and T. G. Tsuei* Department of Electrical Engineering, National Dong Hwa University Hualien, Taiwan, Republic
SHISA: The IPv6 Mobility Framework for BSD Operating Systems
SHISA: The IPv6 Mobility Framework for BSD Operating Systems Keiichi Shima Internet Initiative Japan Inc. Ryuji Wakikawa, Koshiro Mitsuya, Keisuke Uehara Keio University Tsuyoshi Momose NEC Corporation
Linux firewall. Need of firewall Single connection between network Allows restricted traffic between networks Denies un authorized users
Linux firewall Need of firewall Single connection between network Allows restricted traffic between networks Denies un authorized users Linux firewall Linux is a open source operating system and any firewall
Lecture Objectives. Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks. Agenda. References
Lecture Objectives Wireless Networks and Mobile Systems Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks Introduce security vulnerabilities and defenses Describe security functions
Vocia MS-1 Network Considerations for VoIP. Vocia MS-1 and Network Port Configuration. VoIP Network Switch. Control Network Switch
Vocia MS-1 Network Considerations for VoIP Vocia software rev. 1.4 or higher required Vocia MS-1 and Network Port Configuration The Vocia Message Server 1 (MS-1) has a number of roles in a Vocia Paging
ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling
ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling Release: 1 ICTTEN6172A Design and configure an IP-MPLS network with virtual private network tunnelling Modification
Wireless Access of GSM
Wireless Access of GSM Project Report FALL, 1999 Wireless Access of GSM Abstract: Global System for Mobile communications (GSM) started to be developed by Europeans when the removal of many European trade
Architecture of distributed network processors: specifics of application in information security systems
Architecture of distributed network processors: specifics of application in information security systems V.Zaborovsky, Politechnical University, Sait-Petersburg, Russia [email protected] 1. Introduction Modern
