5G Technology Breaking Grounds from Thingbook to the Tactile Internet Gerhard P. Fettweis Vodafone Chair Professor TU Dresden Germany currently at ICSI.Berkeley.edu and at bwrc.eecs.berkeley.edu serial entrepreneur coordinator
The Wireless Roadmap
Via Della Conciliazione 2005/4/4 2013/3/12 Source: http://www.spiegel.de/panorama/bild-889031-473266.html Source: http://www.spiegel.de/panorama/bild-889031-473242.html
The Wireless Roadmap >2020 Outlook 100Tb/s 10 Tb/s! 1 Tb/s 100Gb/s 10Gb/s 1Gb/s 802.11ac/ad 100Mb/s 802.11ag 802.11n LTE Advanced 802.11b HSPA 10Mb/s LTE HSDPA 1Mb/s 802.11 3G R99 / EDGE 100Kb/s 10Kb/s GSM GPRS WLAN (10m) Cellular (100m) 1995 2000 2005 2010 2015 2020 2025 2030
Gerhard Fettweis Slide 5 A 5G Hyperplane Speed: >10 Gb/s Tb/s Massive Content Massive Sensing 1b/s over 10 years off an AAA battery Massive Control Response: 1 ms
The Thingbook
Gerhard Fettweis Slide 7 Things 2.0 : The Next Volume Wave!!! Think Thingbook not Facebook! Cars 2.0 rain, temperature, light, GPS, speed, destination, traction Home 2.0 energy, temperature, light, humidity, position, wind, Trains 2.0, Planes 2.0, congestion, speed, weather, destination, Hobbies 2.0 skiing 2.0, boating 2.0, surfing 2.0, biking 2.0, 10ccm Typical Parameters 100s duty cycle, 50B packet Major Challenge Battery life of 5-10 years Improve 1000x over LTE Business Opportunity @10% LTE channel: 100 sensors/sector $1/year billing: 40B revenue per US operator off of 2MHz
Gerhard Fettweis Slide 8 Current Paradigm of Cellular sensor master slave
Gerhard Fettweis Slide 9 Required Paradigm of Cellular sensor master slave
10 The Thingbook Application Space Anything to sense Anything to switch >>100 billion units / year Anything to tag
The Tactile Internet And Its Millisecond
http://ostsee-spezial.de/?p=148 Gerhard Fettweis Slide 12 The Tactile Internet Moving from 50ms round-trip time 1ms tomorrow
Gaming: They were the first to recognize
14
The Tactile Internet: Remote Controlled Humanoid Robots http://images.gizmag.com/hero/8456_51207105642.jpg 18
Gerhard Fettweis Slide 16 The Tactile Internet The Manufacturing Revolution Ahead http://jerryrushing.net/wpcontent/uploads/2012/04/robotic_assembly_line1.jpg http://www.witchdoctor.co.nz/wpcontent/uploads/2013/01/robot-fabrication-station.jpg
Design Service: A Job Machine 17
Tactile Internet Needed! 18
19 Platooning 1-2 ms examples of today s cars: ESC, ABS Tomorrow: platooned/convoyed ESC & ABS
20
www.bsfilms.com
Precision Farming 23
www.claas.com
The Revolution Experienced So Far 4G: Ubiquitous Content Communications IoT Internet of Things
The Revolution Ahead: The Tactile Internet 5G Ubiquitous Steering & Control Communications Health & Care Traffic & Mobility Sports & Gym Edutainment Manufacturing Smart Grid,
5G+ CHALLENGES
28 5G Research on Four Tracks Tactile Internet Applications Wireless 5G L A B GERMANY Hardware Network & Edge Cloud
Members on Tracks Hardware Track Wireless Track Edge Cloud & Networks Track Tactile Internet Application Track Rene Schüffny Michael Schröter Frank Ellinger Dirk Plettemeier Gerhard Fettweis Eduard Jorswieck Frank Fitzek Silvia Santini Team of 500+ Researchers!!! Wolfgang Nagel Christof Fetzer Wolfgang Lehner Thorsten Strufe Hermann Härtig Christel Baier Leon Urbas Uwe Aßmann Ercan Altinsoy Klaus Janschek Thomas Herlitzius
30 Relevant Startups Generated by Team Hardware Track Wireless Track Edge Cloud & Networks Track Tactile Internet Application Track freedelity
Connected industry partners 31
f ast Inhalt a ctuators s ensors & t ransceivers Coordinators: Frank Ellinger, (Gerhard Fettweis), TU Dresden Starting 2014, appox. 75M project size, 60+ partners fast value chain sales & service systems, networks, software circuits components semiconductors fast network of states Berlin Brandenburg Mecklenburg Vorpommern Saxony-Anhalt Saxony Thuringia Baden-Württ. Lower Saxony Bavaria
1ms Impact Software Ecosystem Sensor Actuator Embedded Computing Embedded Computing 1ms Trans mitter Receiver 100 ms 100 ms Tomahawk2 Receiver Hosted Computing (decider) Trans mitter Network Config. Manager (SON) Latency Goals: S = 0.3 ms Terminal S = 0.2 ms Air Interface S = 0.5 ms Base Station & Compute
Tommahawk2 TSMC 65nm LP CMOS 6mm x 6mm Pads: 465 Gates: 10,2 Millionen SRAM: 750 kbyte Cores: 20 processor elements Power 150mW typical Tapeout: 04/2013 Dresden: 06/2013 Successor of Tomahawk1 (2007): serial on-chip link (72GBit/s) Atlas local ADPLL clock generator Gerhard Fettweis Slide 34 Winner of 2009 DAC/ISSCC Student Design Contest
35 Dual Processor Element (PE) Concept Memory Memory SIMD vector-dsp RISC µ-processor NoC interface SIMD vector-dsp RISC µ-processor NoC interface
RESILIENCE
Planning & Optimization Overview Slide 37 Carrier Grade Wireless: Use cases Traffic safety & efficiency Availability (time) Latency Coverage/ Availability (space) Speed > 99.999% < 1ms 100% < 500kmh Industrial automation (Motion control) > 99.999999% < 1ms 100% n/a Telesurgery > 99.999% < 1ms n/a n/a Emergency Communication > 99.999% n/a 100% n/a Others: Power Networks / Smart Grid, Real-Time Remote Computing, Platooning, ESP, Exoskeleton [1] [1] Fettweis, G., "The Tactile Internet: Applications and Challenges," Vehicular Technology Magazine, IEEE, vol.9, no.1, pp.64,70, March 2014.
Gerhard Fettweis Slide 38 Serious Carrier Grade: 10 -x via Diversity # indep. channels 1 2 3 4 5 6 outage 3% 10-3 3 10-5 10-6 2 10-8 7 10-10
39
Combining multiple Rayleigh-fading links Setting: N power-controlled links only small scale fading matters No line of sight Rayleigh fading Total power required for achieving overall availability P total = N P rms N = P min ln 1 1 A 1 N o Results: In terms of power consumption, utilizing multiple links is beneficial Different optimal operating points exist David Öhmann & Gerhard Fettweis Slide 40 A o availability desired P rms rms power P min power threshold
41 Networking The Connnection node node
42 Single Path node node
43 Revolution Compute & Forward (Disintergration of packet) node node
44 Revolution Distributed Everything Storage/Computing/Networking/ node node
Mobile Edge Cloud / Micro Cloud / Cloud Gerhard Fettweis Slide 45
microserver platform microserver platform microserver platform micro-dc platform micro-dc platform micro-dc platform Gerhard Fettweis Slide 46 x86 platform SUPERFLUIDITY: A Superfluid, Cloud-Native, Converged Edge System ACCESS NETWORK AGGREGATION NETWORK CORE NETWORK deploy deploy deploy deploy LTE PoP PoP Data center Run network processing virtualized, on-demand on third-party Internet infrastructure located Multi-cell throughout the network Point-of-Presence PoP aggregation site site At the core in data-centers Develop 5G At micro technologies data-centers to at allow PoPs such in telecom services networks to be superfluid : base station site At the Fast edge, instantiation RANs next times to (in base milliseconds) stations and at aggregation Fast migration sites (in hundreds of milliseconds or less) low delay, low compute/storage High capacity consolidation (running thousands on a single server) High throughput (10Gb/s and higher) higher delay, high compute/storage capacity
MODULATION FOR CM-WAVES
48 Requirements / Challenges scalable bandwidth fragmented spectrum f f LTE clocking scheme New Air Interface t async. operation packet latency 100µs f
N subcarriers M freq. samples K subcarriers N frequency samples 49 Multi-Carrier Revisited OFDM GFDM SC-FDM N=KM N time samples K time samples M sub-symbols N symbols
Realtime 5G Research Testbed: GFDM With -45dB to -65dB Notches! Research on 5G Slide 50
Dan Zhang 51 Iterative MIMO-GFDM Receiver MIMO channel outputs Soft-input Softoutput Equ./Det. Decoder System parameters: CC: {133, 171} 8 GFDM: 30 active subcarriers, 5 subsymbols, 64-point DFT Raised cosine pulse shaping filter with roll-off factor 0.5 OFDM: 150 active subcarriers 128-path Rayleigh fading channel with the uniform power delay profile Complexity of Equ./Det. (per subcarrier):
52 Non-Orthogonality: Creating Compactness 2-dimensional signal space of 16QAM 0.5dB to gain
53 Requirements / Challenges for 5G PHY scalable bandwidth & clk fragmented spectrum need deep notches latency & clock 100µs f f Multi Carrier New Air Interface: GFDM Subcarrier Generalized Filters Frequency Division Multiplexing Compact Packet
CONCLUSIONS
Cellular Roadmap of USPs 5G 2022 + Tactile Internet 2G 1992 Voice Messages 3G 2002 + Data + Positioning 4G 2012 + Video everything + 3D Graphics Gerhard Fettweis 55
56 $ ots of Opportunities of the Tactile Internet Ahead Starting Now!!!
57 Thank You! 5G L A B GERMANY Coordinators: Frank Fitzek & Gerhard Fettweis 5GLabGermany.org contact@5glabgermany.org
State of the art 58 5G Massive Requirements Massive throughput Massive reduction in latency > < > 10x10 10k 10Gbit/s < 12 < sensors 1ms 8 heterogenity security outage per RTT per user cell Massive sensing Massive resilience Massive safety and security Massive fractal heterogeneity
59 Related Publications 5G and TACTILE INTERNET: Fettweis, Gerhard, and Siavash Alamouti. 5G: Personal Mobile Internet beyond What Cellular Did to Telephony Communications Magazine, IEEE 52.2 (2014): 140-145. Fettweis, G. "The Tactile Internet: Applications and Challenges." Vehicular Technology Magazine, IEEE 9.1 (2014): 64-70. Fettweis et al. Positionspapier Das Taktile Internet, VDE ITG http://www.vde.com/de/fg/itg/seiten/posipaptaktilesinternet.aspx Alcatel-Lucent Foundation, Positionspaper: Das Taktile Internet http://www.stiftungaktuell.de/wp-content/uploads/2014/07/positionspapier_das_taktile_internet_final.pdf