1.1. The Goal of Clustering



Similar documents

Visibility Map for Global Illumination in Point Clouds

Introduction to Computer Graphics

Solving Geometric Problems with the Rotating Calipers *

Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina

Dhiren Bhatia Carnegie Mellon University

GRADES 7, 8, AND 9 BIG IDEAS

Monte Carlo Path Tracing

Computer Graphics Global Illumination (2): Monte-Carlo Ray Tracing and Photon Mapping. Lecture 15 Taku Komura

Shortest Inspection-Path. Queries in Simple Polygons

Select cell to view, left next event, right hardcopy

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Anotherpossibilityistoentersomealreadyknownimplicationsbeforestartingtheexploration.Theseimplications,theuseralreadyknowstobevalid,

Number Sense and Operations

An introduction to Global Illumination. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

Clustering UE 141 Spring 2013

High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound

Rendering Area Sources D.A. Forsyth

Unit 3: Circles and Volume

Chapter 10. Bidirectional Path Tracing

A Short Introduction to Computer Graphics

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION

Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max. structure of a schedule Q...

Double Integrals in Polar Coordinates

Path Tracing. Michael Doggett Department of Computer Science Lund university Michael Doggett

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

Partitioning and Divide and Conquer Strategies

Segmentation of building models from dense 3D point-clouds

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees

Distributed Area of Interest Management for Large-Scale Immersive Video Conferencing

Platonic Solids. Some solids have curved surfaces or a mix of curved and flat surfaces (so they aren't polyhedra). Examples:

AP CALCULUS AB 2008 SCORING GUIDELINES

Content. Chapter 4 Functions Basic concepts on real functions 62. Credits 11

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

How To Draw In Autocad

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

Advanced Computer Graphics. Rendering Equation. Matthias Teschner. Computer Science Department University of Freiburg

Wednesday 15 January 2014 Morning Time: 2 hours

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013

Doctor Walt s Tips and Tricks 1

GUI GRAPHICS AND USER INTERFACES. Welcome to GUI! Mechanics. Mihail Gaianu 26/02/2014 1

Two vectors are equal if they have the same length and direction. They do not

Radiation Transfer in Environmental Science

Fast and Robust Normal Estimation for Point Clouds with Sharp Features

4.430 Daylighting. Christoph Reinhart Daylight Simulations

Arrangements And Duality

Lezione 4: Grafica 3D*(II)

CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:

YouthQuest Quick Key FOB Project

DYNAMIC RANGE IMPROVEMENT THROUGH MULTIPLE EXPOSURES. Mark A. Robertson, Sean Borman, and Robert L. Stevenson

The Goldberg Rao Algorithm for the Maximum Flow Problem

Grade 5 Math Content 1

Common Core Unit Summary Grades 6 to 8

NEW MEXICO Grade 6 MATHEMATICS STANDARDS

Figure 1.1 Vector A and Vector F

A unified representation for interactive 3D modeling

Mathematics for Global Illumination

Figure 2.1: Center of mass of four points.

Everyday Mathematics. Grade 4 Grade-Level Goals CCSS EDITION. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goal

Computer Animation: Art, Science and Criticism

TECHNICAL DRAWING (67)

Everyday Mathematics. Grade 4 Grade-Level Goals. 3rd Edition. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goals

Geometry Course Summary Department: Math. Semester 1

Using Photorealistic RenderMan for High-Quality Direct Volume Rendering

USE OF A SINGLE ELEMENT WATTMETER OR WATT TRANSDUCER ON A BALANCED THREE-PHASE THREE-WIRE LOAD WILL NOT WORK. HERE'S WHY.

10.2 Series and Convergence

Math for Game Programmers: Dual Numbers. Gino van den Bergen

Topographic Change Detection Using CloudCompare Version 1.0

An Iterative Image Registration Technique with an Application to Stereo Vision

The RADIANCE Lighting Simulation and Rendering System

2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION

INTRODUCTION TO RENDERING TECHNIQUES

Scheduling Shop Scheduling. Tim Nieberg

Tutorial: 3D Pipe Junction Using Hexa Meshing

Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade)

You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

LiDAR Point Cloud Processing with

ALPERTON COMMUNITY SCHOOL MATHS FACULTY ACHIEVING GRADE A/A* EXAM PRACTICE BY TOPIC

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

ME 111: Engineering Drawing

Topology. Shapefile versus Coverage Views

Components: Interconnect Page 1 of 18

Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally

Circle Name: Radius: Diameter: Chord: Secant:

Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010

PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

Common Core State Standards for Mathematics Accelerated 7th Grade

Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013

MENSURATION. Definition

United States Standards for Grades of Christmas Trees

Lecture notes for Choice Under Uncertainty

Twelve. Figure 12.1: 3D Curved MPR Viewer Window

Creating Your Own 3D Models

Transcription:

BoundedClustering{ FindingGoodBoundsonClusteredLightTransport MarcStamminger,PhilippSlusallek,andHans-PeterSeidel ComputerGraphicsGroup,UniversityofErlangen fstamminger,slusallek,seidelg@informatik.uni-erlangen.de Abstract Clusteringisaveryecienttechniquetoapplyniteelementmethodstothecomputationofradiosity solutionsofcomplexscenes.bothcomputationtime andmemoryconsumptioncanbereduceddramatically bygroupingtheprimitivesoftheinputsceneintoa hierarchyofclustersandallowingforlightexchange betweenalllevelsofthishierarchy.however,problems canariseduetoclustering,whengrossapproximations aboutacluster'scontentresultinunsatisfactorysolutionsorunnecessarycomputations. Intheclusteringapproachfordiuseglobalilluminationdescribedinthispaper,lightexchangebetweentwo objects patchesorclusters isboundedbyusing geometricalandshadinginformationprovidedbyevery objectthroughauniforminterface.withthisuniform viewofvariouskindsofobjects,comparableandreliable errorboundsonthelightexchangecanbecomputed, whichthenguideastandardhierarchicalradiosityalgorithm. 1.Introduction Computingtheglobalilluminationofavirtualworld isstilloneofthemostchallengingtasksincomputer graphics.signicantsuccesshasbeenachievedincomputingdirectionallyindependentradiositysolutions, suchthatlightingsimulationscannowbecomputed inreasonabletimeevenforcomplexenvironments. Amajorbreakthroughforradiositymethodswasthe introductionofclustering,whichextendstheideaofhierarchicallycomputinglightexchangebetweenobjects intheenvironment.thisresultedinareducedcomputationalcomplexityofo(n)oro(nlogn)compared tothequadraticnatureoftheoriginalalgorithm.for earlyhierarchicalalgorithms[6,5]thisspeedupwas restrictedtoadaptivesubdivisionofinputprimitives. Incontrast,clusteringalgorithmsgroupallprimitives intoasinglehierarchyofclusters,whichconsistofother clusters,surfaceelements,orsubdivisionsthereof.applyingthesameideaofadaptivesubdivisiontothis uniedhierarchyextendsthespeeduptothecomplete scene[16,2,13,4,1]. Therearetwomajorissueswithanyhierarchical method:thedesignofanecientrenerfortheadaptivesubdivisionandofanaccurateestimatortocomputetheactualinteractioncoecients.therenerapproximatestheerrorthatwouldresultbyperforming thelightexchangeonaparticularhierarchylevel.if thaterrorisconsideredunacceptable,oneorbothof theinteractingobjectsaresubdividedandthelightexchangebetweentheirsubdivisionsisconsideredrecursively.iftherenerissatised,thetaskoftheestimatoristocomputeagoodestimateoftheexactlight exchange. 1.1. The Goal of Clustering Thebasicpropertyofeachclusteringalgorithmishow acluster'sradianceeldisrepresented.inorderto handleclustersmoreeciently,usuallyverycrudeapproximationsaremade,suchasneglectingintra-cluster visibility,assumingisotropicscatteringbythecluster, uniformdistributionoftheobjectsinacluster,orneglectingthespatialextentofaclusterandapproximatingitbyapoint.anyoftheseassumptionsis justiedandusefulinordertoecientlyhandleclusters,butitisimportantthattherenerknowsabout theusedsimplicationsandguidestherenementsuch thatartifactsduetothesimpliedviewofaclusterare avoidedbyearlysubdividingsucherrorproneinteractions.atthesametimewewanttoavoidunnecessary renement,whichwouldresultinincreasedcomputationtimes. 1

Thepointisthatawayhastobefoundtogetcomparableandreliableerrorapproximationsofinteractions betweenarbitraryobjects,eitherclustersorpatches. Thisalsomeanstohaveonesingleerrorthresholdparameterforallkindsofinteractions,makingthealgorithmeasytouse.Itiswellworthtospendmoretime inagoodclusteringrener,becauseeveryunnecessary subdivisionthatisavoidedsavessignicantcomputationtime,andamissingnecessaryrenementcanlower thesolutionquality. 1.2. Previous Work Intheoriginalhierarchicalradiositymethodandmany ofitsderivations,theestimatedamountoftransported light,i.e.exitantlightatthereceiverinduceddirectly bythesender,isalsousedfortherener,i.e.the amountoftransportedlightisusedaserrorapproximation[6]. Averyfastmethodtocomputeinteractionsbetween clustersispresentedin[13],whereclustersareapproximatedbyisotropicvolumetricobjects.again,the errorisestimatedbyconsideringonlytheamountof transportedlight.inpracticetheunderlyingassumptionofisotropicbehaviorofaclusteroftenleadsto strongartifactsandtheanisotropyofaclusterisnot measuredbytherenerinordertoguiderenement properly.however,theoracleandformfactorcomputationdonotdierentiatebetweenpatchesandclusters andevenvolumetricobjectscanbehandledeasily.in [15]theisotropyassumptionisliftedbyusingspherical harmonicstorepresenttheanisotropicradiancedistributionofacluster. Abetterrenerwouldestimatetherangeofilluminationvaluesonthereceiverduetothesender[16,9].If theilluminationonthereceivingobjectvariesstrongly, senderand/orreceiverhavetobesubdivided.rening thereceiverdecreasestheerrorbyallowingforamore accuraterepresentationofillumination,whereasare- nementofthesenderimprovestheaccuracyofthe computedlightexchangebyreducingthesolidangle accountedforbyasingleinteraction. Conservativeboundsrestrictedtotheinteractionof surfacepatchesaredescribedin[9],butrequirecomplexgeometriccomputations.anextensiontoclusters seemsdicult.smitsetal.[16]estimateanupper boundontheformfactorintegrandbystochastically samplingtheintegrand.theobtainedupperboundis mostlytoopessimistic,becausetheintrinsicproperties ofaclustersuchasself-occlusionarenotaccountedfor. Christensenetal.[2,1]extendedtheclusteringapproachtoglossysurfaces.Theyalsouseconservative boundsontheinteractionbetweentwoclusters.however,sinceinthisapproachclustershavebeenapproximatedaspointstheseboundsareactuallynotconservativewithrespecttotheoriginalclustersthathave niteextent.therenerdoesnotaccountforthisfact either. Finally,in[4],deterministicsamplingatthereceiveris usedfortherener.forpatch-to-patchinteractions, theilluminationforsomesamplepointsatthereceiver iscomputedanalytically,whichisonlypossibleforvery fewtypesofsendinggeometries(e.g.polygons),andthe variationofilluminationvaluesisusedasrenement criterion.thisrenerperformsextremelywell,especiallyforpartiallyoccludedinteractions.nevertheless, itisasamplingapproachwithalltheproblemsthat canarisefromsampling.furthermore,amethodto analyticallycomputeilluminationisnotavailablefor clusters,whichmakesauniedviewtodierentkinds ofobjectsdicult.theauthorsusetheisotropicclustermodelofsillionetal.[13]withananisotropycorrection.intra-clustervisibility,thatisvisibilityofobjects insideaclusterwithrespecttothecluster'senvironment,isalsoconsideredseparately.theseareallvery usefulimprovements,buttheyallmakeacleardistinctionbetweenpatchesandclustersbyusingcompletely dierenttechniquesforallkindsofinteractions. 1.3. The New Approach Inthispaperwepresentaclusteringalgorithmthat usesauniedviewofobjectsparticipatingintheradiositycomputationofavirtualworld.everycluster isnotonlyseenasasetofindividualpatches,butasa newentitywithnewintrinsicproperties. Let'sconsiderthesceneinFig.1asanextremeexample:Thebookhasbeenmodeledasacluster,containinghundredsofhighlyreectivesurfaces,oneforeach page,allwrappedinadarkcover.additionally,we haveabrightlightsourcethatemitsalargeamountof lightintoasmallconeofdirectionsnotcontainingthe book. Ifwesimplyconsiderbothobjectsasasetofsurfaces, weseeabookwithmanylargeandhighlyreective patches,illuminatedbyabrightlightsource.this pointofviewwillforceboththerenerandtheestimatortodrasticallyoverestimatetheamountoflight exchange.consideringthebookandthelampasdistinctobjectsinitself,allowsustocorrectlyconsider thebookashavingaverylowreectivitywithrespect toitsoutsideandtoestimatelittledirectillumination

onthebookduetothelamp. Modelingeachclusterasadistinctentityallowsto Figure 1. Desk scene: Almost no light is erties,wecanthenreasonabouttheinteractionbe- computeitsintrinsicproperties.basedontheseprop- exchanged between lamp and the book. Most clustering algorithms overestimate this soningisbasedoncomputingupperandlowerbounds tweenclusters.inthepresentedapproach,thisrea- light exchange. usedtocomputethesevalues. Thealgorithmisacontinuationofworkpresentedin onthelightexchangeandeachoftheindividualterms patchobject.asaresult,themoregeneral,butalso ter'sbehaviourdiersstronglyfromthatofanordinary handlearbitrarilyshapedsurfacesfordiuseradiositycomputations.however,itturnedoutthataclus- [18],whereasimplerapproachisusedtouniformly morepowerfulalgorithmdescribedinthefollowingwas integratedwithourapproach.ouraimwastogeta MostofthetechniquesdescribedinSection1.2canbe patchesaswellasforclusters. developed,whichiswellsuitedforplanarandcurved localinformationoneachinteractingobject. globalilluminationcomputationsandhowtheglobal lighttransfercanbecomputedecientlyusingthis clusterorwhatever mustprovidetoparticipatein clearnotionofwhatinformationanobject polygon, senderandthereceiverrespectively.pandqcanbe 2.Notation stanceabox,oraclusterofotherobjects.forevery aplanarorcurvedpatch,acompositeobjectasforin- TwointeractingobjectsarecalledPandQ,forthe objectpointp,asurfacenormaln(p)andareectance ectioninthispaper.directionsaredenotedas!,a value(p)aredened,i.e.weonlyconsiderdiuserewhicharefront-facingwithrespectto!areofinterest forsingle-sidedsurfaces.wedenotethissetoffront Ifweconsideracertaindirection!,onlyobjectpoints rayisdescribedbyapointandadirection(p;!). Becauseweareinterestedininteractionsoftheobject tionv(p;!),wherepisapointonpand!isadirection. withitsenvironment,wedenealocalvisibilityfunc- facingpointsonanobjectpasf(p;!)(seefig.2a). Thevalueofv(p;!)isone,ifpisfront-facingwithrespectto!(p2F(P;!))andtheray(p;!)doesnothijectpointspareofinterestforwhichv(p;!)=1.We Pforanyrayparameter>0.Otherwise,itsvalueis Furthermore,wecalltheratioV(P;!) zero.forinteractionsindirection!onlythesetofob- denotethissetofvisiblepointsasg(p;!)(seefig.2b). objectthatcanactuallyinteractwiththeenvironment describesthefractionoffront-facingpointsonan thelocalvisibilityofobjectpindirection!.it jjg(p;!)jj=jjf(p;!)jj(forsomemeasurejj:jj) = objects. Forourpurpose,anotherbasicpropertyofanobjectP indirection!(seefig.2c).vequalsoneforconvex Thisdenitiontakesintoaccountself-occlusionand canformallybewrittenas G(P;!)ontoaplaneperpendicularto!(seeFig.2d). deneaastheareaoftheprojectionofallpointsof isitsprojectedareaa(p;!)inagivendirection!.we A(P;!)=ZG(P;!)cos(n(p);!)dp =ZPcos(n(p);!)v(p;!)dp: (1) jects,wehavetoconsiderthecompletesetofraysfrom Inordertocomputetheinteractionbetweentwoob- (2) rayscanbesignicantlylargerthantheoriginalsetof easier,weconsiderthesetofalldirectionsofthese raysandlaterexamineallincomingoroutgoingrays withoneofthedirectionsin.notethatthissetof pointsonasenderptoareceiverq.tomakethings allconnectingrays,becauseeverydirectioninisnow facingpointsforanyofthedirectionsin.g(p;), allowedateveryreceivingpoint. A(P;)andV(P;)aredenedanalogously.Further- Furthermore,wedeneF(P;)asthesetoffrontmore,wedeneL(P;)and(P;)asthesetofradianceandreectancevaluesforallpointsinG(P;). Forthepurposeofthefollowingalgorithm,wedo Finally,thesetofcosinevaluesbetweenthesurface normalsofanobjectpandisdenotedascos(p;). tiontotheexpectedvalue.wealsodenotethesevalues (min;exp;max),whereminandmaxareupperand lowerboundsonthesetsandexpisanapproxima- notwanttocomputeanexactrepresentationofthese sets.instead,wecomputerangedescriptionshsi=

points:f(p;!) (a) Front-facing (b)visiblepoints: G(P;!) (c)localvisibility: V(P;!) (d)projected area:a(p;!) V=1 ω ω ω V= 1 / 3 multiplicationanddivisiononthemin/max-valuesis aproperapproximation.thedenitionofaddition, thatofintervalarithmetic[10].usingintervalarithmeticforourcomputationsiscertainlynotoptimal. algorithmdescribedbelowshouldbeeasytotransform. WeareoptimisticthatusingAneArtihmetic[3]insteadmayresultinbetterrangecomputations,asithas asbsc,[s]anddse.inthissense,\computinghsi" meansndinganupperandalowerboundonsand Figure 2. Definition functionsf,g,vandaof object under direction!. betweentwoobjectscanbecomputedusingtheabove Inthefollowing,wedescribehowthelighttransport beenshownforotherrenderingapplications[8,7].the andreceiverhaveboundingboxesbpandbq,theset aboutthespatialextentofanobjectviaabounding volume,mostlyanaxis-alignedboundingbox.ifsender Usually,renderingsystemscanprovideinformation 3.1. ofallconnectiondirectionsfromptoqcanbelimitedbyanewboundingboxbpq=bp BQ,so Bounds on Directions Distances rectionsofallconnectingraysofthesenderptothe denitions.westartbycomputingtherangeofdi- receiverq.usingthisrangeofdirections,wedetermine tondtherangeofincidentradiancearrivingatthe thelightleavingthesendingobjectandtherangeof isbydeningaconeofdirectionswithamainaxisand Amorecommonwaytodescribesuchasetofdirections (seefig.3). canbeboundedbyhibox=f!j9>0:!2bpqg receiver. tocomputetherangeofsolidanglesofthesenderwith thesender'sprojectedareavalues.thelatterallows respecttothereceiver.finally,theserangesareused muchlargerthannecessary,bothdescriptionsofare boundhiconecanbeseeninfig.3.thecomputation rangedescribedbyaconeiseasiertohandle,butoften amaximumdeviationangle.anexampleforsucha ofthisconegivenbpqissimple[18].becausethe providedtothefollowingcomputations.wedenote 3.ComputingBoundsontheInteraction TherangeofdistanceshjjP QjjibetweenpointsofP bothboundsbyhi. BothrangeshiandhjjP Qjjicanbeobtainedby fromtheoriginintobpq,whichiseasytodetermine. andqisboundedbytherangeoflengthsofallvectors objects(clusters,surfaces,andsurfaceelements),we needaccesstoseveralvaluesdependingonboththe sendingandthereceivingobject,asforinstancetheir Tocomputeboundsoninteractionsbetweenanytwo boundingbox,coneofnormals[12]orexitantradiance insomedirection.allobjectsallowtoquerythesevaluesusingacommonsetofmethods,abstractingfrom BoundsontheRadianceKnowingtherangehi ofinteractingdirections,therangeofradiancevalues theconcretetypeofeachobject.inthefollowing,we describethecomputationofrangesofthesequantities hl(p;)isenttowardsthereceivercanbecomputed andhowtocomputeboundsonthelightexchangeusingthisinformation.forthissectionwewillignore sendingobject.anormalpatchobjectmaycontain bythesender.theexactcomputationislefttothe describedinsection5. occlusionbetweenobjects,handlingvisibilityisthen whicharecompletelybackfacingwithrespecttohi minimumandmaximumradiancevaluesofitschildren, cantriviallybeignoredthisway. toitschildrenandcombinetheirresults.children Acluster,however,canrecursivelypropagatethequery whichcanbeupdatedduringthepush/pulloperation. queryingthetwoobjectsfortheirboundingboxesonly. 3.2. Bounds on Light Leaving the Sender

B P B P B PQ =B p B q <Ω> box <Ω> box <Ω> cone B Q B Q Figure 3. Bounding rays between two objects in 2D. From left to right: i) Two objects and their bounding boxesbpandbqii) some rays betweenbpandbqiii) all rays frombptobqtranslated to a common origin define a new bounding boxbpqfor ray end points iv) boundingbpqby more plescenewithalightsourceconsistingofaboxwith sources,whichusuallyexhibithighlyanisotropicexitantradiance.asanexample,fig.6showsasim- Thisisparticularilyusefulforclusterscontaininglight convenient cone of directions. sion.withasimplebackfacetest,however,itcaneas- ceilingisdrasticallyoverestimated,enforcingsubdivi- asisotropic,theradiancefromtheclustertowardsthe clusterandthecluster'sexitantlightisapproximated onelightemittingside.iftheboxlightisputintoa directly,twootherapproachesareusedtogetlower Iftheobjectcannotanswertheprojectedareaquery information. andupperbounds,whichbaseonsimplergeometric insection6.1. ampleandtheresultingsevereartifactsareadiscussed ilybeseenthattheradianceleavingtheclusterup- However,therecursivecomputationofradiancebounds wardsisonlyafractionofitsaverageradiance.thisex- areaofallobjectsintheclustercanbecomearbitrarily ofitsboundingbox.thisboundisparticularlyusefulforclusterscontainingmanyobjects.althoughthjectcanbedeterminedbylookingattheprojectedarea Firstly,anupperboundontheprojectedareaofanob- canbetimeconsumingiftheclusterhierarchyisvery ingthequeriesdownwardsiftheydiersignicantly. deep.wemakeacompromisebypropagatingthequery maximumradiancesofthechildrenandonlypropagatlutionwouldbetostoreforeachobjectminimumand downwardsonlyaxednumberoflevels.abetterso- theprojectedareasofitscontentduetoself-occlusion. seeninfig.4.intheleftandrightimagetheprojected areaofthebookcaseismuchsmallerthanthesumof thatofitsboundingbox.anexampleforthiscanbe large,itsprojectedareacanneverbecomelargerthan agoodupperboundonthecluster'sprojectedarea.in Usingtheprojectedareaoftheboundingboxdelivers one,sothesumoftheprojectedareasoftheobjectsin thecenterimageoffigure4,localvisibilityiscloseto theeectofasenderonareceiver,weboundtheprojectedareaha(p;)iofthesenderwithrespecttothe BoundsontheProjectedAreaInordertobound Inthevisibilityaccellerationmethod,whichisexplainedinSection5.2,inapreprocessingstepaset theclusterisprobablyabetterbound. setofinteractingdirections. minethetransparencyoftheclusterinsomedirections. Everyobjectcanbequeriedforitsrangeofprojected Theseresultscanalsobeusedtocomputeagoodapproximationoftheprojectedareabymulitplyingthe ofsampleraysisshotthrougheveryclustertodeter- areasforacertainhi.severalobjectscananswerthis answeriseveneasier,becausetheprojectedareaofa querydirectly.forplanarpatches,thequerycanbe sphereofradiusrisalwaysr2,fromanydirection. normalandtherangeofdirections.forspheres,the answeredwiththeproductoftheareaofthepatch Similar,butmorecomplexconsiderationsarepossible timestherangeofscalarproductsbetweenthepatch boundonopacitycouldbeprovided,whichisunfortunatelynotpossiblebysampling. Anotherapproachcanbeusediftheobjectprovides terlowerboundthanzerowouldbepossibleifalower averageopacity(=1 transparency).findingabet- expectedprojectedareaoftheboundingboxbyits forobjectsasconesandcylinders,butalsoforboxes. aconeofnormalsthatboundsthesetofallnormalsoftheobject.inthiscase,wecanalsobound thecosinesofanglesbetweenthesesurfacenormals andbyhcos(p;)i.asaresult,wecancom-

(a) left view (b)frontview (c) topview putetherangeofprojectedareasusingequation(2) sameasthemethoddescribedin[18].forconvex hv(p;)i=(0;v;1)inthecaseofcomplexclusters, asarea(p)hcos(p;)ihv(p;)i.thisapproachisthe objects,hv(p;)iisalways(1;1;1).duetodicultiesndinggoodboundsforvisibility,onewoulduse wherevcanforinstancebedeterminedbysampling (seesection5). fortheboundsandthemeanvalueofthetwoapproximationsasnewexpectedvalue.ifthenewexpectatioputedwithbothapproaches,wecombinethesebyusingthesmallermaximumandlargerminimumvalue Afterboundsontheprojectedareahavebeencom- valueisoutsidethebounds,itisclampedtothemini- thereceivercanbecomputed.inthisstep,wesimply combinethepreviouslyobtainedvalues.thesolidangle(p;q)ofthevisiblepointsofthesenderpwith Basedontherangesofprojectedareasanddistances, boundsonthesolidangleofthesenderwithrespectto respecttoapointqisdenedas IfqisanarbitrarypointonareceivingobjectQ,jjq pjj (P;q)=ZPcos(n(p);q p) jjq pjj2 G(p;q p)dp: (3) Figure 4. Projected area of a bookcase. The local visibility for the three views is1for direction a),1for b) and1=3for c). The projected area of the bookcase is thus significantly smaller than the sum of the projected areas of the single objects for viewing directions a) and c). mumormaximumvalue. 3.3. Bounds on the Solid Angle boundson(p;q)canbecomputedash(p;q)i= isboundedbyhjjq Pjji.AccordingtoEquation(2), TheirradianceE(q)atanobjectpointQisdened positivehemispheres+ astheintegralofincidentradiancel(q;!)overthe ceivingcluster,sowehavetoaccountforself-occlusion wherel(q;!)iswithrespecttotheoutsideofthere- E(q)=ZS+cos(n(q);!)v(q;!)L(q;!)d!;(4) rangeofsolidanglesh(p;q)i.tocomputebounds boundedbytherangeofradiancevalueshl(p;)iand bythetermv(q;!). ontheirradiance,weneedtondtherangeofcosine Intheprevioussections,theincominglightwas 1=4istheexpectedpositivecosinevalueforrandomly notavailable,wemustfallbackto(0;1=4;1),where theconeofnormalsand.iftheconeofnormalsis wardthesender.thiscanagainbecomputedfrom valuesonthereceiverwithrespecttodirectionsto- hl(p;)ih(p;q)ihcos(q;)ihv(q;)i. ofcosinevalueshcos(q;)i,wecancomputetherange ofirradiancevaluesduetoasenderpas:hep(q)i= distributedsurfacesinacluster[13].giventherange Togetherwithaboundonthereectanceh(Q;)i anearithmetichasbeendescribedin[8].sampling reectancedescribedbyproceduralshadersbyusing Anovelwayofcomputingconservativeboundson onthereceiver,theresultingreectedradiancerange withmipmapshasbeenusedin[4]. duetosenderpishlp(q)i:=h(q;)ihep(q)i. Puttingitalltogether,wecanobtainarangeonthe reectedradianceatthereceiver: hlp(q)i=hv(q;)ihcos(q;)ih(q;)i ourproblemisnotsymmetricinsenderandreceiver. Note,thatincontrasttotheusualradiosityequation hl(p;)iha(p;)i=hjjp Qjji2(5) Thereasonisthatwecomputeboundsonthereected radianceatthereceiverandthusmaynotintegrate(or notexploittheprojectedareaofthereceivertotighten average)overthereceivingobject.therefore,wecan- theirradiancebounds(atleastnotinanobviousway). areaofthereceivercanbeusedtocomputeanupper Ontheotherhand,theupperboundontheprojected boundontheuxarrivingattheobjectsinthecluster. ha(q;)i=hjjq Pjji2. 3.4. Bounds on Irradiance and Reflected Radiance

Somerenersusethisvalueasabasisfortherenementdecision. Uptonow,allcomputationhavebeenmadeusing strictlyconservativebounds.thishasthebenetthat itcanbeassuredthatnolighttransportcanbemissed duetosamplingproblems[17].initialtessellation, whichisnecessaryforotheralgorithms,canbecompletelyomitted,thealgorithmcanworkonallkindof inputobjects.neverthelessitmustbeseen,thatusingintervalarithmetic,theboundsarealsowiderthan necessaryandthusfornon-criticalcasesnotastightas thoseobtainedinparticularbygibson'smethod[4]. 3.5. Self-interaction Aswithallnon-convexobjects,wehavetotake intoconsiderationself-interactionwithintheclusters, i.e.thataconcaveobjectilluminatesitself.thequestionofhowtocomputesuchaself-formfactorhasonly betreatedmarginallyinpreviouspublications. Ourresultsshowedthatcomputingself-formfactorsby numericalintegrationusingsamplingdoesnotdeliver veryusefulresultsduetosingularitiesintheintegrand [11].Weuseaverysimple,butprobablymuchmore eectivemethod.ourapproachisbasedonthefact thatinclosedscenesallformfactorsfromanobject sumuptoone(pjfij=1).ifwesumuptheform factorsoverwhichanyobjectgathersradiosityfrom allotherobjectsinanormalhierarchicalradiositystep neglectingself-interaction,theformfactorsumspfor anobjectpshouldideallybe1 Fpp,whereFppisthe self-formfactor.inordertoaccountforself-interaction, wethusaddfpplp=(1 Sp)Lptotheirradiancevalue ofp,wherelpisthecurrentradianceofpatchp. Theideaofhierarchicalradiosityistogatherlighton variouslevelsoftheobjecthierarchy.thismeansthat anobjectcanindirectlygatherlightviaitsancestors orchildren.togettheformfactorsumforaparticular object,wehavetosumtheformfactorsofallancestors and weightedbytheirrelativearea{allchildren. Thisisexactlythesameprocedurethatisdonewith irradiancevaluesduringpush/pull. KnowingtheformfactorsumSpforanyobjectinthe scenealsohasanotheradvantage:ifweknowthatan objectisconvex,theself-formfactormustbezero.the dierenceoftheformfactorsumtooneisthusahinton theerrorthatwasmadeapproximatingtheformfactorstothisobject.thiserrorcanthenbe`corrected' byscalingthecomputedirradiancewith1=(1 Sp). Thismethodmaysoundlikeabadhack,butitcan signicantlyimprovethequalityofthesolution,for instancenearthecommonboundaryoftwoperpendicularpatches,whereduetoasingularityintheform factorkernel,numericalproblemsresultinbadform factorapproximations.forisotropicincomingradiance atapatchthiscorrectioncancompletelycompensate theapproximationerrorforthispatch.furthermore, byenforcingthattheformfactorsumisone,wecan guaranteeconvergenceoftheiterativesolverforhierarchicalradiosity,whichisjacobiinourcase. 4.ARenerforBoundedInteractions Basedonthesetofmethodstocomputerangescommontoalltypesofobjects,wehaveshownhowto computeboundsontheradiancelp(q)reectedat QduetoobjectP.Usingthesebounds,therener thenhastomeasuretheresultingerrorwithrespect tosomenormandcomparetheerrortoauserdened errorthreshold. Twocommonchoicesforthenormtomeasuretheerror arethel1-normusingdlp(q)e blp(q)corthel1- normwith(dlp(q)e blp(q)c)area(q).usingthe L1-norm,shadowsarebetterapproximated(atsignicantcostincomputationtime),butthenormhas problemsalongsingularities.ontheotherhand,the L1-normdoesnotexhibitthisbehavior,butitisnot assensitivetoshadows,becauselargerradianceranges areallowedforsmallpatches. Acompromisebetweenthesetwomeasuresisusing (dlp(q)e blp(q)c)size(q),wheresize(q)isameasurefortheone-dimensionalextentofq,forinstance theradiusoftheboundingsphere.insomesense,this measurecorrespondstousingthel2-norm,butitalso makesthin,longobjectsmorelikelytobesubdivided thanrounderobjectswiththesamearea. 5.IncludingVisibility 5.1. Error for Partial Visibility Intheprevioussection,wehaveignoredinter-object visibility,whichinourimplementationisdetermined bycastinganumberofsampleraysbetweentheobjects.ofcoursesuchasamplingschemeisnotconservativeanymore,becausetheresults\totalvisibility" or\totalocclusion"onlymeanthatnosampleraywas foundproovingtheopposite. Ifpartialocclusionisdetected,theminimumvalueof thetransportissettozero,asitisdonein[4].however,thissimpleapproachdoesnotdeliversatisfactory

cluster objects in cluster shaft cross lowerboundtozerodoesnotrelativelyincreasetheerrorapproximationasmuchasitshould.weaccount areusuallywiderthannecessary.thus,decreasingthe boundsforunoccludedlighttransport,thesebounds results:becauseouralgorithmcomputesconservative sections forthiseectbyscalingtheerrorinthecaseofpartial Figure 5. Visibility tests through a cluster. and3turnedouttobeuseful.notethatusinggibson'ssampledboundsandsettingthelowerboundto zeroresultsinabetterrelativeerrorincrease. visibilitybyaconstantfactor,wherevaluesbetween2 Inordertospeedupvisibilitycomputation,wereuse 5.2. erarchy.whentheraydoesnotintersectthebounding theclusterhierarchyalsoasahierarchicalspatialdensityapproximation,asproposedin[14].ifarayistobe shotthroughthescene,theraytraversestheclusterhi- Visibility Accelleration boxofacluster,thecompletesubtreecanbeskipped forintersectiontests.ifthereisanintersectionwith furtherlookatthechildren,asalsodescribedin[14]. ricobjectwithhomogenousdensitywithouttakinga approximatedbyconsideringtheclusterasavolumet- theattenuationoftheraythroughtheclustercanbe theclusterstheraycaneithertraverseitschildren,or cluster'sdensityisapproximatedandonthedecision Theresultingspeedupandqualitydependsonhowthe Wecomputetheobjectdensityinapreprocessingstep whetheraclustercanbeassumedtobehomogenous withrespecttoacertainrayornot. bysamplingraysthrougheveryclusteralongthethree mainaxes.forallthreedirectionsthepercentageof unoccludedraysisstoredasapproximationforthecluster'stransparency.toapproximatethetransparency ofaclusterwithrespecttoaparticularray,weinterpolatebetweenthethreemaintransparenciesaccording localvisibilityofthecluster. cessingstepissmallcomparedtothegainedspeedup, totheray'sdirection.thetimespentfortheprepro- thesamplerayscanalsobeusedtoapproximatethe asisshowninsection6.furthermore,theresultsof plecriteriontakingintoconsiderationthatavisibility Todecidewhetheraclustercanbeapproximatedbya raypassingthroughthesceneisarepresentativefor homogenousmediumforaparticularray,weuseasim- samplingtheshaftbetweentwoobjects.approximatingtheclusterashomogenouscanbeinappropriate,if thesetofvisibilityraysbetweentwoobjectsonlyintersectsasmallpartofthecluster.inthiscase,the willproducealargeerror,whereasforvisibilitycomputationinverticaldirectionbetweenthelargepatches, approximationbytheexpectedvisibilitycanbearbitrarilywrong(seefig.5).forthehorizontallightexchangebetweenthesmallpatches,theapproximation theuniformdensityassumptionissucient. Asaresult,weonlyusetheexpectedtransparencyapproximationofthecluster,ifthesizeoftheclusterinaltothefeature-basedvisibilityapproachbySillionetweentheobjects.Note,thatthiscriterionisorthogo- smallerthanthecross-sectionofthesetofallraysbe- al.[14].ourapproachexploitscoherencebetweenvisibilityrays,whilethefeature-basedapproachisbased Lookingattheeciencygainbythisapproachitisinterestingtonoticethatnotonlydoesthetimedecrease onthecoherencewithinthecluster. signicantlytoshootaraythroughthescene,butunfortunatelyalsothenumberoflinksincreases.the reasonisclear:assoonasaclusterisapproximatedby ahomogeneousmedium,theraywillbeattenuatedby compensatedbythefastershootingofrays. computationtimefortheadditionallinksismorethan avaluebetween0and1,whichisinterpretedaspartialvisibility,whichthenresultsinnersubdivision. However,aswewillshowinSection6,theincreased lightsourceemittinglightonlyononeside.asalso noticedbyothers(e.g.[4]),lightsourcesinsideaclusterareverylikelytocreateartifactsthatcanbeseen appearance.iftheclusterisapporximatedbyisotropic infig.6(lefthalf).becausetheboxlightisinsidea cluster,theclusterexhibitsaverynonuniformexternal toaverysimplesceneofanemptyroomwithabox benetsofourobjectinterface,wecomputedasolution Toshowhowasolutioncanbeimprovedexploitingthe notunpacked,resultinginunderestimated(sidewalls) unpacktheclusterbecomesclearlyvisible.inregions farawayfromthelightsourcecluster,theclusteris emission,theboundary,wherethealgorithmdecidesto 6.Results 6.1. Clustered Light Source

resultingnumberofcreatedlinksisalmostthesame. 6.2. Planar Patches, Curved Patches, and Clusters closeenoughtothelightclustertoenforceopeningthe Figure 6. Simple box scene with a source in a cluster. In the right half image better mations. lightcluster,suddenlythe\true"illuminationbecomes oroverestimatedillumination(ceiling).ifapatchis visible,similarto\popping"inlevel-of-detailapproxi- bounds the leaving the were used in order avoid artifacts. Theseproblemsareusuallysolvedbyputtinglight sourcesalwaysontopoftheclusteringhierarchy,or Inourapproach,theycanalsobesolvedbycomputing byalwaysreningclusterswithlightsourcesrst[4]. betterboundsonthelightleavingthecluster.because subdivisionoftheinteractionbetweenlampclusterand emissivepartsofthelamp.forthatreason,acoarse thattheceilingcanonlyreceivelightfromthenotselfrectionsoflightexchange,ouralgorithmcanndout wecomputeconservativeboundsontheinterestingdi- wallsstrongvariationoftheexitantlightofthecluster BothhalfsinFig.6havebeencomputedwiththesame isdetected,resultinginnersubdivision. ceilingissucient.fortheinteractionwiththeside cluster,whichwasnotmadefortheleftimage.the usedtobetterboundthelightleavingthelightsource halfimageboundsontheinteractiondirectionwere parameters.theonlydierenceisthatfortheright Themainideaofourapproachistohaveauniform viewtovariouskindsofsceneobjects.todemonstrate this,wecomputedaglobalilluminationsolutiontoa slightlyarticialsceneoffourtreesinaroomilluminatedbyanarealightsource.thetreesaremodeled withtruncatedcones,whichareclusteredaccording totheirbranchingdepth.notethateverytruncated resultingproblems. increasingtheinputcomplexityenormouslywithall wouldhavetobesubdividedintoatleastfourobjects, coneisonlyoneinputobject,i.e.noinitialtessellationwasperformed.forotheralgorithms,everycone infig.7took280sona195mhzr10kcpu.other objectsonly.thecomputationofthesolutionshown Consequently,thesceneconsistsofabout4000input insteadofjacobiisdicultinthecontextofclusters andconcavesurfaces. iterationwithoutmultigridding.gauss-seideliteration statisticdataoncomputationofthescenecanbefound intable1.thesolutionwascomputedusingjacobi Althoughourcomputationofboundsisrathercomplex bilityaccellerationrequiresveadditionalsecondsfor comparedtoothermethods,thepercentageoftime spentonitissmall(lessthan5%).usingourvisi- preprocessing,butdecreasestimeforvisibilitytestsby about25%from336sto246s. tationtook853s,againona195mhzr10kcpu.a patcheswith24primarylightsources.thecompulutionofarailwaystationscene,obtainedwithour Fig.8showstwoviewsoftheglobalilluminationso- algorithm.thesceneconsistsofabout37,000input 6.3. Complex Test Scene signicanteciencygainwasachievedbyourvisibility accellerationmethod(from1051sto853s),although additional19shadtobespentonvisibilitypreprocessing.asummaryofthetimingscanbefoundintable2. 7.ConclusionsandFutureWork Wehavepresentedanewclusteringalgorithmtoef- cientlycomputediuseglobalilluminationsolutions forcomplexscenesofverygeneraltypesofobjects. Patches,curvedandplanar,subelementsofpatches, andclustersarealltreateduniformlyusingasimple boundsareoftentoopessimistic,buttheyhavethe transportneglectingvisibilitycanbecomputed.these Usingthesebounds,conservativeboundsonthelight interfacetoqueryeachparticipatingobjectforitsgeometricandlightingpropertiesintheformofbounds. advantagethatnolighttransportcangetlostdueto betweenalltypesofobjectsarewellcomparable.the uniformlythecomputederrorvaluesforinteractions uniformviewtoobjectsdoesalsoallowobjectstode- samplingproblems.becauseallobjectsarehandled

Theuniformtreatmentofallobjectsimmediatelysug- thaninpreviousapproaches. gestsanobject-orientedimplementationofthisframe- work.inourimplementation,thewholelighttransport Sincenothingintheaboveframeworkpreventsitsapplicationtonon-diuseenvironments,itwouldbeinterestingtoextendtheapproachinthisdirection.The usedtoovercometheirrestrictiontoapproximations withpointclusters. sameframeworkcouldbeappliedto[1]andcouldbe Trees inputpatches clusters iterations subdividedpatches vis.acc.onvis.acc.o livermoreinformationabouttheirexternalbehaviour iscomputedinanabstracthrobjectclass,fromwhich patchandclusterclassesarederived. links 25,379 4,095 2,0463 25,407 2,046 4,095 computationtime visibilitycomputation 311,587 292s 246s 297,183 377s 336s 3 visibilitypreprocessing boundscomputation 13s 5s 13s 0s RailwayStation inputpatches clusters iterations subdividedpatches vis.acc.onvis.acc.o 26,778 6,616 26,778 6,616 Table 1. Timings for 74,6224 4 tree scene links computationtime visibilitycomputation visibilitypreprocesing 991,556 853s 689s 953,342 73,986 boundscomputation 19s 36s 1052s 916s 32s 0s References [1]PerH.Christensen,DaniLischinski,EricStollnitz,and Table 2. Timings for railway station scene [2]PerH.Christensen,EricJ.Stollnitz,DavidSalesin,and ACMTransactionsonGraphics,16(1):3{33,January1997. DavidH.Salesin.Clusteringforglossyglobalillumination. [3]Jo~aoL.D.CombaandJorgeStol.Anearithmeticanditsapplicationstocomputergraphics.In 1994. WorkshoponRendering,pages287{301,Darmstadt,June TonyD.DeRose.Waveletradiance.InFifthEurographics [4]S.GibsonandR.J.Hubbold.Ecienthierarchicalrenementandclusteringforradiosityincomplexenvironements. AnaisdoVIISibgrapi,pages9{18,1993.Availablefrom ComputerGraphicsForum,15(5):297{310,dec1996. arith. http://www.dcc.unicamp.br/stol/export/papers/ane- [6]PatHanrahan,DavidSalzman,andLarryAupperle.A [5]StevenJ.Gortler,PeterSchroder,MichaelCohen,and (SIGGRAPH'91Proceedings),25(4):197{206,1991. rapidhierarchicalradiosityalgorithm.computergraphics (SIGGRAPH'93Proceedings),27:221{230,August1993. PatM.Hanrahan.Waveletradiosity.ComputerGraphics [7]W.HeidrichandH.-P.Seidel.Ray-tracingproceduraldisplacementshaders.InProceedingsofGraphicsInterface [8]WolfgangHeidrich,PhilippSlusallek,andHans-PeterSeidel.Samplingproceduralshadersusinganearithmetic. [9]DaniLischinski,BrianSmits,andDonaldP.Greenberg. '98,1998. ics(siggraph'94proceedings),pages67{74,1994. Boundsanderrorestimatesforradiosity.ComputerGraph- ACMTransactionsonGraphics,1998. [12]LeonA.ShirmanandSalimS.Abi-Ezzi.Theconeof [11]H.Schirmacher.Hierarchischevolumen-radiosity.Technical [10]RamonE.Moore.IntervalAnalysis.Prentice-Hall,1966. normalstechniqueforfastprocessingofcurvedpatches. Report9,UniversitatErlangen-Nurnberg,1996. [13]FrancoisSillion.Auniedhierarchicalalgorithmforglobal ceedings),12(3):261{272,september1993. ComputerGraphicsForum(EUROGRAPHICS'93Pro- [14]FrancoisSillionandGeorgeDrettakis.Feature-basedcon- IEEETransactionsonVisualizationandComputerGraphics,1(3),September1995. illuminationwithscatteringvolumesandobjectclusters. [15]FrancoisSillion,GeorgeDrettakis,andCyrilSoler.Aclustrolofvisibilityerror:Amulti-resolutionclusteringalgoronments.InRenderingTechniques'95(Proceedingsoteringalgorithmforradiancecalculationingeneralenvi- GRAPH'95Proceedings),pages145{152,August1995. rithmforglobalillumination.computergraphics(sig- [16]BrianSmits,JamesArvo,andDonaldGreenberg.AclusterputerGraphics(SIGGRAPH'94Proceedings),pages435ingalgorithmforradiosityincomplexenvironments.Com- 205.Springer,August1995. SixthEurographicsWorkshoponRendering),pages196{ [17]MarcStamminger,WolframNitsch,PhilippSlusallek,and diosity implementationandexperiences.inproceedings FifthInternationalConferenceinCentralEuropeonComputerGraphicsandVisualization WSCG'97,1997. Boundedradiosity{illuminationongeneralsurfacesand clusters.computergraphicsforum(eurographics Hans-PeterSeidel.Isotropicclusteringforhierarchicalra- 442,July1994. [18]MarcStamminger,PhilippSlusallek,andHans-PeterSeidel. '97Proceedings),16(3),September1997.

Figure 7. Tree scene. Figure 8. Radiosity solutions of a railway station scene computed with the new algorithm.