Constrained Renewable Resource Allocation in Fuzzy Metagraphs via Min- Slack



Similar documents
Managing Multiple Outsourcing: Service Quality and Volume Issues

Authenticated Encryption. Jeremy, Paul, Ken, and Mike

Mininum Vertex Cover in Generalized Random Graphs with Power Law Degree Distribution

Improved PKC Provably Secure against Chosen Cipher text Attack

DYNAMIC PROGRAMMING APPROACH TO TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE

Life Analysis for the Main bearing of Aircraft Engines

Important result on the first passage time and its integral functional for a certain diffusion process

Protecting E-Commerce Systems From Online Fraud

tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu -

Quality and Pricing for Outsourcing Service: Optimal Contract Design

CCD CHARGE TRANSFER EFFICIENCY (CTE) DERIVED FROM SIGNAL VARIANCE IN FLAT FIELD IMAGES The CVF method

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform

Modern Portfolio Theory (MPT) Statistics

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Change Your History How Can Soccer Knowledge Improve Your Business Processes?

Online Load Balancing and Correlated Randomness

Section 3: Logistic Regression

ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS WITH COMPOUND POISSON DEMAND

No 28 Xianning West Road, Xi an No 70 Yuhua East Road, Shijiazhuang.

Architecture of the proposed standard

Reputation Management for DHT-based Collaborative Environments *

An ID-Based Public Key Cryptosystem based on Integer Factoring and Double Discrete Logarithm Problem

Applying the actuarial control cycle in private health insurance

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis

Control of Perceived Quality of Service in Multimedia Retrieval Services: Prediction-based mechanism vs. compensation buffers

A Graph-based Proactive Fault Identification Approach in Computer Networks

AC Circuits Three-Phase Circuits

Fundamentals of Tensor Analysis

Non-Linear and Unbalanced Three-Phase Load Static Compensation with Asymmetrical and Non Sinusoidal Supply

Term Structure of Interest Rates: The Theories

The influence of advertising on the purchase of pharmaceutical products

Traffic Information Estimation Methods Based on Cellular Network Data

Personalized Web Search by User Interest Hierarchy

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

Network Analyzer Error Models and Calibration Methods

Recall from Last Time: Disjoint Set ADT

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

An RSA-based (t, n) threshold proxy signature scheme with freewill identities

Advantageous Selection versus Adverse Selection in Life Insurance Market

The international Internet site of the geoviticulture MCC system Le site Internet international du système CCM géoviticole

Chapter 3 Chemical Equations and Stoichiometry

Game of Platforms: Strategic Expansion into Rival (Online) Territory

Sun Synchronous Orbits for the Earth Solar Power Satellite System

Higher. Exponentials and Logarithms 160

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

ERLANG C FORMULA AND ITS USE IN THE CALL CENTERS

(Analytic Formula for the European Normal Black Scholes Formula)

Lecture 20: Emitter Follower and Differential Amplifiers

Buffer Management Method for Multiple Projects in the CCPM-MPL Representation

How To Write A Recipe Card

QUANTITATIVE METHODS CLASSES WEEK SEVEN

(404) (404)

A simple algorithm to generate the minimal separators and the maximal cliques of a chordal graph

Modelling Exogenous Variability in Cloud Deployments

Incomplete 2-Port Vector Network Analyzer Calibration Methods

Upper Bounding the Price of Anarchy in Atomic Splittable Selfish Routing

Uses for Binary Trees -- Binary Search Trees

Managing the Outsourcing of Two-Level Service Processes: Literature Review and Integration

Bank Incentives, Economic Specialization, and Financial Crises in Emerging Economies

Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

A Note on Approximating. the Normal Distribution Function

December Homework- Week 1

PROXIMITY OPERATIONS OF ON-ORBIT SERVICING SPACECRAFT USING AN ECCENTRICITY/INCLINATION VECTOR SEPARATION

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means

Logistic Regression for Insured Mortality Experience Studies. Zhiwei Zhu, 1 Zhi Li 2

Whole Systems Approach to CO 2 Capture, Transport and Storage

Hardware Modules of the RSA Algorithm

A Probabilistic Approach to Latent Cluster Analysis

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?

Tax Collection, Transfers, and Corruption: the Russian Federation at the Crossroads 1)

A Formal Model for Data Flow Diagram Rules

DYNAMIC MODEL BASED PREDICTIVE CONTROL FOR MOBILE ROBOTS

Traffic Flow Analysis (2)

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Oracle PL/SQL Programming Advanced


Sci.Int.(Lahore),26(1), ,2014 ISSN ; CODEN: SINTE 8 131

VOL. 25, NÚM. 54, EDICIÓN JUNIO 2007 PP

C H A P T E R 1 Writing Reports with SAS

CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.

Constraint-Based Analysis of Gene Deletion in a Metabolic Network

Combinatorial Analysis of Network Security

Adverse Selection and Moral Hazard in a Model With 2 States of the World

Facts About Chronc Fatgu Syndrom - sample thereof

NerveCenter Protocol and Perl Metrics. November 2014 NCSD-PPM-01

Resistive Network Analysis. The Node Voltage Method - 1

Boolean Algebra. ECE 152A Winter 2012

EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS

Transcription:

Intrntonl Journl of ppld Oprtonl Rsrch Vol 1, No 1, pp 7-17, Summr 011 Journl hompg: wwworlur Constrnd Rnwl Rsourc llocton n Fuzzy Mtgrphs v Mn- Slck S S Hshmn* Rcvd: Jnury 31, 011 ; ccptd: My 1, 011 strct Ths ppr dscusss tht th fuzzy mtgrphs cn usd s tool for schdulng nd control of fuzzy procts Oftn, vll rsourcs for xcutng procts my lmtd It s ssumd th rsourcs rqurd to ccomph ch ctvty of proct (mtgrph dgs s rnwl On of th common mthods for schdulng procts s usng th mn-slck So, frst, th forwrd nd ckwrd computtons for dtrmnstc mtgrphs r dscrd Thn, ssumng tht th complton tm of ctvts r postv trpzodl fuzzy numrs, th forwrd nd ckwrd computtons r gnrlzd for fuzzy mtgrphs Consquntly, complton tm of proct, rt nd ltst tm of strt nd nd of ctvts nd flotng tm of thm r otnd s fuzzy numrs o, crtcl ctvts nd crtcl pths r dfnd Thn, for schdulng, y usng th slctd rnkng mthod, th ctvts of proct (mtgrph dgs sd on mn-slck scndng wr ordrd Through som numrcl xmp, clculton stps nd th rsults r llustrtd Kywords Mtgrph, Fuzzy, Constrnd Rnwl Rsourc, Proct Schdulng 1 Introducton In mny rl world procts, th durton of ctvts s non-dtrmnstc nondtrmnstc chrctr my stochstc or fuzzy Rcnt works dfn th fuzzy chrctrs for th proct ntworks cus th fuzzy mod r closr to rlty nd smplr to us [1-7] On th othr hnd, complton of proct on tm hs sgnfcnt ffcts on ts cost, rvnu nd usfulnss Thrfor, th mn octv of proct mngrs s to vod ny dly Howvr, du to th lmtton, to chv ths gol, optml proct schdulng s vtl In rcnt yrs, mny rsrchrs usd th mtgrphs for nlyss of systms On of ths pplctons s proct plnnng nd control usng th mtgrph Mtgrph nd som of ts pplctons r dscrd n [8] Mtgrph nd ts spcfctons hv n dscrd n [9-11] Mtgrphs my hv othr pplctons pplctons of mtgrph n dcson support systms r shown n [1, 13] Mtgrphs r usd n workflow mngmnt [14-16] Hrrchcl modlng y mtgrphs s don n [17] Modl mngmnt usng th Ptr nt nd mtgrphs hs n llustrtd n [18] Rfrnc [19] dscrs th modl ntgrton usng mtgrphs y usng th mtgrphs, ntrprs modlng cn xcutd [0] Implct ntgrty constrnts usng mtgrphs hs n dscrd n [1] Trpzodl fuzzy numr s proposd for stmton of ctvty tm of proct [, ] proct cn * Corrspondng uthor ( E-ml: s_s_hshmn@yhoocom (S S Hshmn S S Hshmn Dprtmnt of Industrl Engnrng, rdl rnch, Islmc zd Unvrsty, rdl, Irn

8 S S Hshmn/ IJOR Vol 1, No 1, 7-17, Summr 011 (Srl #1 shown s mtgrph [16] To th st of our knowldg, thr s not ny ppr ddrssng th fuzzy mtgrph schdulng So, ths ppr dscusss th constrnd rnwl rsourc llocton n fuzzy mtgrphs Th m s th complton of proct wth lowst dly suct to rsourc lmtton Fuzzy mn-slck s crtron s dvlopd n ordr to rch th m Th proposd lgorthm s llustrtd through n xmpl Ths ppr hs th followng structur Scton ntroducs th mtgrphs Scton 3 dscrs th knds of pths n mtgrph Scton 4 dtrmns th crtcl pth mthod n dtrmnstc mtgrphs Scton 5 gnrlzs th crtcl pth mthod for fuzzy mtgrphs y usng th slctd mthod nd dfnton of nw s for comprson of fuzzy trpzodl numrs, Scton 6 schdu th mtgrph dgs sd on mnmum fuzzy slck tm whn th vll rsourc s rnwl nd constrnd Scton 7 s dvotd to conclusons nd rcommndtons Mtgrph Dfnton 1 mtgrph s dntfd wth F ( X, E, D X { x, 1,,, I} s clld th gnrtng st x s clld th lmnt of X E {, 1,,, n} s th st of dgs Ech dg s ordrd pr s ( V, W V X s clld th nvrtx of nd W X s clld th outvrtx of such tht, V W It s supposd tht th durton of dg s known nd rprsntd y d such tht d D Fgur 1 shows mtgrph In ths mtgrph X { x1, x, x3, x4, x5, x6, x7}, E { 1,, 3, 4, 5}, 1 ({ x1},{ x3}, =({x 3, x 4 }, {x 7 }, 3 ({ x1, x},{ x7}, 4 ({ x},{ x6}, 5 ({ x5, x6},{ x7} Fg 1 mtgrph

Constrnd Rnwl Rsourc llocton 9 Dfnton If Dfnton 3 If k V thn V { k } s th conput of lmnt k W thn W } s th cooutput of lmnt k k { k 3 Pths 31 Smpl Pth n lmnt x X s connctd to lmnt x X f th squnc of dgs ( k, k 1,,, K xsts such tht, x V 1, x W K nd k 1,,, K 1 W k V k 1 Ths squnc of dgs s clld smpl pth from x to x x s clld sourc nd x s clld trgt K s clld th lngth of smpl pth In fgur 1 45 s smpl pth from x to x 7 3 Mtpth mtpth s th st of dgs tht s shown wth M (, C s th sourc st nd C s th trgt st s th nvrtx lmnts tht r not o outvrtx lmnts C s th outvrtx lmnts tht r not o nvrtx lmnts Mtgrph n fgur 1 s mtpth wth x, x, x, } nd C x } { 1 4 x5 { 7 4 Crtcl pth mthod for dtrmnstc mtgrph Suppos tht th durton of dg dtrmnstc nd known It s shown y d Thn, y usng th followng lgorthm [16], complton tm of mtpth nd ts crtcl pth nd othr spcfctons such s th rt nd ltst tms of strtng nd fnshng nd crtcl dgs cn dtrmnd Stg 1 Forwrd computtons For ch lmnt x, st Q 0nd mrk x Lt Q 0 for ll othr lmnts Lt E M (, C Whl E for ch dg n E such tht ll lmnts n th nvrtx of r mrk st ES mx{ Q } xv Such tht ES s th rt strt tm of dg Thn, for ch xk W st Qk mx{ Qk,( ES d }, E E { } nd mrk t Rpt th ov oprtons whl E Thn, T (rt complton tm of mtpth s otnd l St T T mx{ Q }, x X

10 S S Hshmn/ IJOR Vol 1, No 1, 7-17, Summr 011 (Srl #1 Stg ckwrd computtons l l For ch lmnt x C, st L T nd mrk x Lt L T for ll othr lmnts Lt E0 M (, C Whl E 0 for ch dg n E0 such tht ll lmnts n th outvrtx of r mrk st LF mn{ L } xw LF s th ltst fnsh tm of dg Such tht Thn, for ch xk V st Lk mn{ Lk,( LF d }, E0 E0 { } nd mrk t Rpt th ov oprtons whl E 0 So, ordrd pr Q, L cn otnd for ch lmnt of mtgrph ( Exmpl 1 Consdr th mtgrph of fgur dg d for ch dg s wrttn undr th Fg Mtgrph of xmpl 1 y usng th lgorthm, rsults r otnd s fgur 3 Fg 3 Rsults for xmpl 1

Constrnd Rnwl Rsourc llocton 11 Dfnton 4 Elmnt x s crtcl f nd only f Q L In xmpl 1 lmnts x1, x, x6, x9, x10 r crtcl Dfnton 5 V s th crtcl nvrtx f nd only f mx( Q mn( L So, n xmpl 1, nvrtx of dgs 1, 4, 5 r crtcl Not tht, mx( Q mn( L xv xv Thorm 1 n nvrtx V s crtcl f t contns ny crtcl lmnts Proof: ssum tht V contns two lmnts Elmnt s crtcl nd lmnt s noncrtcl So, Q L nd mx( Q mn( L or mx( Q, Q mn( L, L or xv mx( Q, Q mn( Q, L xv Cs 1 Q Q L In ths cs, mx{ Q} Q nd mn{ L} Q Thrfor, Q Q nd consquntly, Q Q nd nvrtx V s crtcl Cs Q Q L In ths cs, mx{ Q} Q nd mn{ L} Q So, nvrtx V s crtcl Cs 3 Q L Q In ths cs, mx{ Q} Q nd mn{ L} L nd Q L Consquntly, Q L So, nvrtx V s crtcl Dfnton 6 Th slck tm of dg s dfnd s Slck( mn( L mx( Q d Dfnton 7 Edg s crtcl f nd only f Slck ( 0 Thorm If th nvrtx of dg contns crtcl lmnt wth complton tm T nd th outvrtx of ths dg contns crtcl lmnt wth complton tm T such tht T T d, thn s th crtcl dg Proof: Snc, r crtcl lmnts, thn xw xv xw xv mn ( L T, xv x V xw xv mx( Q T So, mn( L mx( Q T T d nd fnlly, Slck ( d d 0 Consquntly, Slck ( 0 5 Crtcl pth mthod n fuzzy mtgrph If th complton tm of dgs s not dtrmnstc, t my stochstc or fuzzy Hr, t s supposd tht th complton tm of dg s postv trpzodl fuzzy numr Som of rsrchrs support ths lf [, 3, 4, 5, 6, 7, 1] Rfrncs [, 3] ntroduc th oprtons on fuzzy numrs Som of thm r s follows If ( 1, 1, c1, d1 nd (,, c, d r two rtrry trpzodl fuzzy numrs thn

1 S S Hshmn/ IJOR Vol 1, No 1, 7-17, Summr 011 (Srl #1 ( 1, 1, c1 c, d1 d ( 1 d, 1 c, c1, d1 x(, (mx(,,mx( 1,,mx( c1, c,mx( d1, n(, (mn(,,mn(,,mn( c, c,mn( d, m 1 d m 1 1 1 1 d Stg 1 Forwrd computtons For ch lmnt x, st Q (0,0,0,0 nd mrk x Lt Q (0,0,0,0 for ll othr lmnts Lt E M (, C Whl E for ch dg n E such tht ll lmnts n th nvrtx of r mrk st ES mx{ Q } xv Such tht E S s th rt strt tm of dg Thn, for ch xk W st Qk mx{ Qk,( ES d }, E E { } nd mrk t Rpt th ov oprtons whl E Thn, T (th rt complton tm of mtpth s otnd l St T T mx{ Q }, x X Stg ckwrd computtons l For ch lmnt x C, st L T nd mrk l x Lt L T for ll othr lmnts Lt E0 M (, C Whl E 0 for ch dg n E0 such tht ll lmnts n th outvrtx of r mrk st LF mn{ L } xw Such tht L F s th ltst fnsh tm of dg Thn, for ch xk V st Lk mn{ Lk,( LF d }, E0 E0 { } nd mrk t Rpt th ov oprtons whl E 0 So, ordrd pr ( Q, L cn otnd for ch lmnt of mtgrph In ckwrd computtons, w must comput th sutrcton of two postv trpzodl fuzzy numrs Ths sutrcton must postv trpzodl fuzzy numr ut sd on sutrcton dfnton n ths scton, th sutrcton of two postv trpzodl fuzzy numrs my non-postv nd ths rsult n ckwrd computtons s not fsl So, w pply th othr sutl sutrcton oprtor tht supposd n [4] Ths sutrcton oprtor s dfnd s follows: If LF ( lf 1, lf, lf 3, lf 4, LS ( 1,, 3, 4 nd d ( d, d, d, d thn 1 3 4

Constrnd Rnwl Rsourc llocton 13 LS 4 3 1 LF d ( mx(0, mn( lf mx(0, mn( lf mx(0, mn( lf mx(0, mn( lf 1 4 4 3, d, 4,mn( lf,mn( lf, mn( lf 3 3 1, d 4 d d Exmpl consdr th fuzzy mtgrph shown n fgur 4 1 3 Fg 4 Th mtgrph of xmpl ftr th forwrd nd ckwrd computtons, rsults r shown n fgur 5 Fg 5 Rsult of computtons of crtcl pth mthod n xmpl

14 S S Hshmn/ IJOR Vol 1, No 1, 7-17, Summr 011 (Srl #1 Now, w cn gnrlz th prvous dfntons nd thorms for fuzzy mtgrphs Dfnton 8 If Q L thn lmnt x s crtcl Dfnton 9 If mx( Q mn( L thn V s th crtcl nvrtx xv xv Thorm 3 n nvrtx V s crtcl f t contns ny crtcl lmnts Thorm 4 If th nvrtx of dg contns crtcl lmnt wth complton tm T nd th outvrtx of ths dg contns crtcl lmnt wth complton tm T such tht T T d thn s th crtcl dg Consdr tht th nvrs of thorms 3, 4 my ncorrct Dfnton 10 Th slck tm of dg s dfnd s Slck( mn( L mx( Q d Dfnton 11 Edg s crtcl f nd only f Slck ( (0,0,0,0 In xmpl, complton tm of mtgrph s (10, 15, 155, 170 nd dgs, 4, 5 r crtcl So, Slck ( Slck( 4 Slck( 5 0,0,0,0 Edgs 1,3 r non-crtcl nd slck tms of thm r Slck ( 1 (3,15,5,7, Slck ( 3 (3,15,5,7 x W x V 6 Constrnd rnwl rsourc llocton n fuzzy mtgrphs Suppos tht vll rsourc for xcutng th mtgrph rnwl nd constrnd Thrfor, th mn octv of proct mngrs s to vod ny dly So, frst, crtcl dgs must xcutd o, othr dgs must n scndng ordr sd on slck tm of dgs Howvr, w nd sutl rnkng mthod for ordrng mthod tht dscrd n [5] s slctd for chvng ths purpos In th slctd mthod, t s supposd tht,, r ny two fuzzy numrs wth rtrry contnuous mmrshp functons ( x, x, ( x, x o, suppos tht nd s gvn numr G ( nd G ( for fuzzy numrs, r dfnd s whr U U G ( G ( mx( x x mx( x x U U L U U L, L, L ( x dx ( x dx ( x dx ( x dx mn( x x mn( x x Dfnton 1 f nd only f G ( G (

Constrnd Rnwl Rsourc llocton 15 Th ov dfnton cn xtndd for mor thn two fuzzy numrs Suppos tht th slck tms of non-crtcl dgs r shown wth Slck( ( s 1, s, s 3, s 4 In ths ppr, th followng vlu s proposd for Notc tht th slctd fuzzy rnkng mthod cn ordr th slck tms sd on s k NC 4 k1 NC Whr NC s th st of non-crtcl dgs nd NC s th numr of NC mmrs 1 4 Exmpl 3 Consdr th fuzzy mtgrph shown n fgur 6 Fg 6 Mtgrph of xmpl 6 y usng th proposd mthod dscrd n scton 5, fuzzy slck tm of dgs r otnd Thn, fuzzy slck tms r ordrd sd on slctd mthod nd proposd n 77 scton 6 n ths xmpl s Rsults r summrzd n tl 1 6

16 S S Hshmn/ IJOR Vol 1, No 1, 7-17, Summr 011 (Srl #1 Tl 1 Fuzzy slck tms n xmpl 3 Ordrd fuzzy slck tm of (0,0,0,0 (0,0,0,0 5 (0,0,0,0 8 (0,1,16,5 1 (0,1,16,5 3 (0,1,16,5 7 (8,15,5,7 4 (7,7,33,39 6 (7,7,33,39 9 7 Conclusons nd rcommndtons In ths ppr, t s shown tht th uncrtn procts cn dfnd s mtgrphs wth fuzzy dg tms Ths ppr y gnrlzng th crtcl pth mthod for fuzzy mtgrphs nd computng th fuzyy slck tms nd rnkng thm sd on nw crtr gvs th prml s for schdulng fuzzy mtgrphs whn th vll rsourc s rnwl nd constrnd In futur studs, comnton of fuzzy mn-slck wth othr known crtr such s mnltst fnsh tm n fuzzy nvronmnt or usng th othr rnkng mthod my usful Rfrncs 1 Chns, S, Zlnsk, P, (001 Crtcl pth nlyss n th ntwork wth fuzzy ctvty tms Fuzzy Sts nd Systms, 1(, 195-04 Chn, C T, Hung, S F, (007 pplyng fuzzy mthod for msurng crtclty n proct ntwork Informton Scnc, 177(1, 448-458 3 Kucht, D, (001 Us of fuzzy numrs n proct rsk (crtclty ssssmnt Intrntonl Journl of Proct Mngmnt, 19(5, 305-310 4 Ln, F T, Yo, J S, (003 Fuzzy crtcl pth mthod sd on sgnd-dstnc rnkng nd sttstcl confdnc ntrvl stmts Journl of supr computng, 4(3, 305-35 5 Lu, S Y, Lu, S C, Ln, J W, (004 Modl formulton nd dvlopmnt of fuzzy GERT ntworks Journl of th Chns Insttut of Industrl Engnrs, 1, 156-166 6 Lootsm, F, (1989 Thory nd Mthodology stochstc nd fuzzy PERT Europn Journl of Oprtonl Rsrch, 143(, 174-183 7 McChon, C S, L, E S, (1988 Proct ntwork nlyss wth fuzzy ctvty tms Computr nd Mthmtcs wth pplctons, 15(10, 89-838 8 su,, lnnng, R W, (007 Mtgrph nd Thr pplcton Sprngr US, Intgrtd Srs n Informton Systms 9 su,, lnnng, R W, (1994 Cyc n Mtgrphs 7 th Hw Intrntonl Confrnc on Systms Scnc 10 su,, lnnng, R W, (1995 Mtgrphs, Omg, 3(1, 13-5 11 su,, lnnng, R W, (1998 Th nlyss of ssumptons n Modl ss Usng Mtgrphs Mngmnt Scnc, 44(7, 98-995

Constrnd Rnwl Rsourc llocton 17 1 su,, lnnng, R W, (1994 Mtgrphs: Tool for modlng Dcson support systms Mngmnt Scnc, 40(1, 1579-1600 13 su,, lnnng, R W, (1996 Mtgrph- sd DSS nlyss Worknch 9th Hw Intrntonl Confrnc on Systm Scnc 14 su,, lnnng, R W, (1997 Mtgrph Trnsformton nd Workflow Mngmnt Procdngs of th Thrtth nnul Hw Intrntonl Confrnc on Systm Scnc 15 su,, lnnng, R W, (1999 Mtgrphs n workflow Support Systms Dcson Support Systms, 5(3, 199-08 16 su,, lnnng, R W, (001 Workflow nlyss Usng ttrutd Mtgrphs Procdngs of th 34 th Hw Intrntonl Confrnc on Systm Scnc 17 su,, lnnng, R W, Shtu,, (1997 Mtgrphs n Hrrchcl Modlng Mngmnt Scnc, 43(5, 63-639 18 su,, lnnng, R W, (199 Mtgrphs nd Prt Nts n Modl Mngmnt Procdngs of th Scond nnul workshop on Informton tchnologs nd systms, 64-73 19 su,, lnnng, R W, (1994 Modl ntgrton usng Mtgrphs Informton Systms Rsrch, 5(3, 195-18 0 su,, lnnng, R W, (199 Entrprs Modlng usng Mtgrphs Dcson support systms, Exprncs nd Expcttons, 183-19 1 su,, lnnng, R W, (1995 Dscovrng Implct Intgrty Constrnts n Rul ss usng Mthgrphs 8 th Hw Intrntonl Confrnc on Systm Scnc Chn, S J, Hwng, C L, (199 Fuzzy multpl ttrut dcson mkng: mthods nd pplctons Lctur nots n conomcs nd mthmtcl systms, Sprngr-Vrlg, rln, Grmny 3 Zmrmnn, H J, (1996 Fuzzy st thory nd ts pplcton, 3rd Edton, Kluwr cdmc, Puhrs, oston 4 Soltn,, H, R, (007 proct schdulng mthod sd on fuzzy thory Journl of Industrl nd Systm Engnrng, 1(1, 70-80 5 Modrrs, M, Sd-Nzhd, S, (001 Rnkng fuzzy numrs y prfrnc rto Fuzzy Sts nd Systms, 118(3, 49-436