Comparison of natural radioactivity removal methods for drinking water supplies: A review



Similar documents
Dissolved Mineral Radioactivity in Drinking Water

EPA Radionuclides Rule and the RadNet Program

Antoine Henri Becquerel was born in Paris on December 15, 1852

Azeri, Chirag & Gunashli Full Field Development Phase 3 Environmental & Socio-economic Impact Assessment. A10.1 Introduction...

Natural radioactivity in waste from former non-uranium mining areas in Norway

Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Hardness ions also interfere with many chemical processes such as chemical compounding and aqueous cleaners.

Granular Ferric Hydroxide for Elimination of Arsenic from Drinking Water

Perspectives of a method for measuring soil-gas radon by an opened counting vial

COUNCIL DIRECTIVE 2013/51/EURATOM

Water Softening for Hardness Removal. Hardness in Water. Methods of Removing Hardness 5/1/15. WTRG18 Water Softening and Hardness

Please find enclosed the Operational Unit 2 (OU2) Lincoln Park Water Use Survey plan for your review.

RADON Although radon is agas, its decay products are not, and they occur either as unattached

Questionnaire for NORM service providers

COMPENDIUM OF EPA-APPROVED ANALYTICAL METHODS FOR MEASURING RADIONUCLIDES IN DRINKING WATER

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

Facility Classification Standards

Radiation Protection from NORM and TENORM in the Oil and Gas Industry: Regulatory and Non-Regulatory Approaches

Study of Arsenic Levels in Private Wells in the Great Miami River Watershed

The objective of this chapter is to provide criteria with which to assess the safety of

MEMORANDUM OF UNDERSTANDING BETWEEN THE ENVIRONMENTAL PROTECTION AGENCY AND THE NUCLEAR REGULATORY COMMISSION

Guidelines for Arsenic Removal Treatment for Small Public Drinking Water Systems

CERTIFICATION TO OPERATE WATER AND WASTEWATER TREATMENT SYSTEMS APPLICATION INSTRUCTIONS

[2] At the time of purchase of a Strontium-90 source, the activity is Bq.

Drinking Water Treatment Systems

Analytical Grade Ion Exchange Resins

Department of Environmental Engineering

Radiological Protection Principles concerning the Natural Radioactivity of Building Materials

ECOAZUR BLUEWATER WATER PURIFICATION PLANTS

RADON AND HEALTH. INFORMATION SHEET October What is radon and where does it come from?

Atoms and Elements. Atoms: Learning Goals. Chapter 3. Atoms and Elements; Isotopes and Ions; Minerals and Rocks. Clicker 1. Chemistry Background?

Treatment Technologies for Arsenic Removal

Hardness - Multivalent metal ions which will form precipitates with soaps. e.g. Ca 2+ + (soap) Ca(soap) 2 (s)

ION EXCHANGE FOR DUMMIES. An introduction

NORM MANAGEMENT GUIDELINES & PRINCIPLES

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

4. CHEMICAL, PHYSICAL, AND RADIOLOGICAL INFORMATION

short mean lives), emitting alpha particles, which have a high LET. Thus radon causes

Standard methods in water analysis

Municipal Standard Solutions. Water Treatment WATER TECHNOLOGIES

CENTRAL ARIZONA SALINITY STUDY ---- Phase I. Technical Appendix O. Municipal TDS Research

Irrigation Water Quality for Greenhouse Production

Iron and manganese are two similar elements

UNCONVENTIONAL METHODS FOR PROVIDING SAFE DRINKING WATER IN SMALL SYSTEMS: ARSENIC REMOVAL DEMONSTRATION

GUIDELINES FOR LEACHATE CONTROL

Physics 1104 Midterm 2 Review: Solutions

Water Pollution. A Presentation for Café Scientifique Cherie L. Geiger, Ph.D. Department of Chemistry, UCF

Chemistry at Work. How Chemistry is used in the Water Service

Treatment of Arsenic Residuals from Drinking Water Removal Processes

Natural and Man-Made Radiation Sources

Christopher Harto Argonne National Laboratory

A radiation weighting factor is an estimate of the effectiveness per unit dose of the given radiation relative a to low-let standard.

Removal of arsenic from drinking water and soil bioremediation

Hardness Comparisons

EPB 311- Strategies for Dealing with Groundwater Treatment Systems Having High Natural Ammonia

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

THE NWF WATER PURIFICATION PROCESS FRESH WATER IN A NATURAL WAY. Esko Meloni Ferroplan Oy

Atoms, Ions and Molecules The Building Blocks of Matter

Treatment options for hydrogen sulfide. Testing for hydrogen sulfide

DEPARTMENT OF ENVIRONMENTAL REGULATION. Technical Document DETERMINING REPRESENTATIVE GROUND WATER SAMPLES, FILTERED OR UNFILTERED

Basics of Nuclear Physics and Fission

VIPCLEAN Via Goretta 96/A Mappano di Caselle (TO) Tel Fax

Feasibility study of crystallization process for water softening in a pellet reactor

The decay of progeny continues until stable, non-radioactive progeny are formed. At each step in the decay process, radiation is released.

Inventory of Performance Monitoring Tools for Subsurface Monitoring of Radionuclide Contamination

Metal Ion + EDTA Metal EDTA Complex

NATURAL RADIOACTIVITY FROM THE SOIL OF SÃO BERNARDO DO CAMPO

Table 1. Uranium-238 Decay Chain

Subject: Technical Letter 22 April 1977 Removal of Water Supply Contaminants -- Copper and Zinc

Geoscience for Population Health Risk Assessment

Chapter 15 Radiation in the Environment 1

Use of Nano-scale materials in Water Purification

Parts per million (ppm) or Milligrams per liter (mg/l): one part by weight of analyte to 1 million parts by weight of the water sample.

Basic Nuclear Concepts

Woods Chem-1 Lec Atoms, Ions, Mole (std) Page 1 ATOMIC THEORY, MOLECULES, & IONS

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

Life Cycle Assessment of Three Water Scenarios: Importation, Reclamation, and Desalination

MOLES AND MOLE CALCULATIONS

Removal of Sulfate from Waste Water by Activated Carbon. Mohammed Sadeq Salman Computer Centre/ University of Baghdad

Guidance on Radioactive Materials in Sewage Sludge and Ash at Publicly Owned Treatment Works

Iron and Manganese BACTERIA AND IRON AND MANGANESE

Chemistry 122 Mines, Spring 2014

Reuse of Alternative Water Sources for Cooling Tower Systems Two Case Studies Using Non-Traditional Water Sources

Potassium-Argon (K-Ar) Dating

Introduction to Nuclear Physics

Electrochemistry - ANSWERS

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions

TREATMENT OF PHOSPHATE FERTILIZER PLANT WASTE WATER IN FLORIDA FOR DISCHARGE AND RE USE PURPOSES

Chapter 2 Atoms, Molecules, and Ions

ION EXCHANGE RESINS INTRODUCTION

medical diagnostics caesium-137 naturally occurring radio nuclides in the food radon in indoor air potassium in the body

Drinking Water Treatment for Small Communities. A Focus on EPA s Research

Complete. Water Solutions. for Rural India

Overview of the Multi-nuclide Removal Equipment (ALPS) at Fukushima Daiichi Nuclear Power Station. March 29, 2013 Tokyo Electric Power Company

Advanced Water Treatment and Membrane Technology in Japan

( + and - ) ( - and - ) ( + and + ) Atoms are mostly empty space. = the # of protons in the nucleus. = the # of protons in the nucleus

General Chemistry and Metals

LA-UR Title: Author(s): Green, Andrew A. Schlemann, Shea A. Young, Daniel L. Intended for:

Solar Energy Production

Water Treatment. Session Objectives

Transcription:

Comparison of natural radioactivity removal methods for drinking water supplies: A review E. Esmeray, M. E. Aydin Selcuk University Environmental Engineering Department, Konya Turkey e-mail: eesmeray@selcuk.edu.tr Received March 10, 2008; Accepted April 14, 2008 Abstract: In this study, natural radioactivity removal methods have been compared for present drinking water supplies (privately owned wells or small water works) which have radioactivity values higher than determined standards (WHO & EPA standards). There are several methods known to remove radioactivity from water such as aeration to remove Rn 222, adsorption by granular activated carbon (GAC) to remove Uranium, ion exchange methods (IX) to remove Ra 266 and Ra 288, reverse osmosis (RO) to remove Gross alpha and Gross Beta, Uranium and various adsorption methods to remove other radionuclides. Main factor of preferring a removal method depends on radioactive material s physical and chemical features. However, the methods have to be tested for different types of water qualities. In this aspect method s designation, setup, cost, advantage/disadvantage, yield ratio, waste, equipment, source water quality has been considered. Keywords: Natural radioactivity, Removal methods, Drinking water, GAC, RO, IX Introduction The activity concentrations of natural radioactivity in groundwater are connected to the activity concentrations of uranium ( 238 U and 235 U) and thorium( 232 T) and their decay products in the ground and bedrock. This is due to groundwater reacting with ground and bedrock and releasing quantities of dissolved components that depend on mineralogical and geochemical composition of the soil and rock, chemical composition of the water, the degree of weathering of the rock, redox conditions and residence time of groundwater in the soil and bedrock (Vesterbacka, 2007). Radiation of natural origin at the Earth s surface consists of two components namely cosmic rays and radiation from the radioactive nuclides in the earth s crust. The latter component, the terrestrial radiation, mainly originates from the so-called primordial radioactive nuclides that were made in the early stage of the formation of the solar system. Uranium, thorium and potassium are, however, the main elements contributing to natural terrestrial radioactivity (UNSCEAR, 1993). All nuclear reactions are not spontaneous. Some reactions occur when stable isotopes are bombarded with particles such as neutrons. This method of inducing a nuclear reaction to proceed is termed artificial radioactivity. Since about 1940, a set of new elements with atomic numbers over 92 (the atomic number of the heaviest naturally occurring element, Uranium) have been artificially made. They are called the transuranium elements. Natural and artificial radioactivity rate in the earth is given in Figure1. In several European countries, the ground water may contain high amounts of natural radionuclides, derived mainly from the 238 U-series. Elevated levels of natural radionuclides in ground waters are mainly associated with uranium and thorium bearing soil and rock minerals, or with uranium, thorium and radium deposits. Countrywide surveys of natural radioactivity in drinking water have been conducted in several European countries. The surveys made in the Nordic countries especially indicate that high concentrations of radon and other radionuclides Presented at the VI th International Conference of Modern Management of Mine Producing, Geology and Environmental Protection, (SGEM 2007),Albena-Varna, Bulgaria, 11 15 June 2007 142

usually occur in water extracted from wells, which have been drilled in bedrock. In surface waters the concentrations are usually low as in ground waters occurring in soil deposits. In most European countries ground water is widely used as a raw water source for water works. There is also an increasing tendency to replace surface water with ground water. However, this involves an increased risk of natural radionuclides in water. (IDS-WATER, 2007) Natural Artificial 15% 85% Fig 1. Natural and artificial radioactivity rate in the earth Removal methods of natural radioactivity High levels of natural radionuclides in drinking water are accompanied with potential health risks for the population by increasing the radiation dose. Therefore, water should be purified before using it. Various processes based on different principles can be applied to remove the radioactivity from water. Some of them are aeration, the granular activated carbon (GAC) filtration, Ion exchangers (IX), Reverse Osmosis (RO) or the nanofiltration (NF). In addition that some equipment originally designed for removing iron (Fe) and manganese (Mn) are capable of removing also natural radionuclides. Aeration is a method that is usually applied to remove radon ( 222 Rn) from drinking water. Aeration must be used if the concentration of radon is high, however the granular activated carbon (GAC) filtration can be used when the radon concentration of water is moderately low. Different natural radionuclides can also be removed using various types of adsorptive filters. If our drinking water supplies are contains uranium ( 238 U, 234 U) and radium ( 226 Ra), ion exchangers should be used. Ion exchangers can also used to remove lead ( 210 Pb) and polonium ( 210 Po) but these needs to be studied in more detail. Membrane techniques are capable of removing uranium, 226 Ra, 210 Pb and 210 Po concurrently. These techniques are Reverse Osmosis (RO) or the nanofiltration (NF). The removal of uranium, 226 Ra, 210 Pb and 210 Po from drinking water depends on their speciation. In order to find effective removal methods for these nuclides the knowledge on their speciation in ground water should be known. When selecting methods for removal of 210 Pb and 210 Po from ground waters it must be taken into consideration that these radionuclides exist mainly bound in particles in water. Installing a new treatment technology requires an investment of both time and money. There are several alternative compliance options that may be more appropriate for some systems. Each option has its own considerations that should be weighed against a system s particular circumstances. Some natural radionuclides, their removal methods and removal efficiency are given below (Tables 1-7). 143

Table 1. Radon removal techniques and efficiency (EPA, 2006) Aeration (BAT) (example tech. given below) 70-99 % Packed Tower 90-99 % Diffused buble 70-99 % Tray 80-90 % Spray 80-90 % Mechanical Surface >90 % GAC (POU-POE) Very Small Systems 80-99 % High EBCT requirements Potential radiation exposure problem Potential waste disposal problems *BAT: Best available treatment technology, EBCT: Empty-bed contact time, POU: Point of use, POE: Point of entry Table 2. Radium removal techniques and efficiency (EPA, 2006) Coagulation/Filtration (Selectivity sequence given below) Ra +2 > Ba +2 > Ca +2 > Mg +2 > Na +2 > H +2 Lime softening Membrane processes Selective Complexers Table 3. Uranium removal techniques and efficiency (EPA, 2006) Coagulation/Filtration Lime softening Anion Exchange Activated Alumina Membrane processes 80-95 % 85-99 % 65-95 % 80-95 % 97 + % Table 4. Gross alpha, beta particle & photon emitters removal techniques (EPA, 2006) Natural Radionuclides Gross alpha Reverse osmosis (RO) Beta particle & Photon Emitters Ion Exchange (IX), Reverse osmosis (RO) Table 5. Summary of Natural radionuclides removal techniques Natural Radionuclides Radium-226 Radium-228 Gross Alpha (Excluding Radon and Uranium) Uranium Beta Particle and Photon Cation exchange, lime softening, reverse osmosis Reverse osmosis Anion exchange, lime softening, reverse osmosis, enhanced coagulation Ion exchange, reverse osmosis 144

Comparison of Removal Methods Table 6. Treatment Options Summary (Texaswater.tamu.edu, 2006) Technology Contaminants* Initial Cost ± Limitations Ion Exchange arsenic (As),perchlorate (P), $400- $1500 Competing contaminants nitrate (N), radium (R), uranium (U), gross beta emitters (β) Reverse As, P, N, U, R, β, adjusted alpha $300-$1000 Poor water recovery Osmosis emitters (α) Distillation As, N, R, U $300-$1200 Energy requirement Aeration Radon $3000- Off-gas GAC Radon $300-800 aeration is a better choice * Does not imply co-treatment capabilities for all contaminants listed. ± Only estimate of unit cost does not include installation or O & M costs. Table 7. Applicability of best available technologies and small system compliance technologies (EPA, 2000) Designation Treatment Treatment Technology Capabilities Source Water Consideration BAT and/or &SSCT? Customer Served (SSCTs only) Radium (Ra) Uranium (U) Gross Alpha (G) Beta/p Boton (B) Operator Skill Required IX BAT&SSCT 25-10,000 All ground water Intermediate Point of Use (POU) SSCT 25-10,000 All ground water Basic IX Reverse Osmosis Advanced (RO) BAT&SSCT 25-10,000 (Ra,G,B) 25-501,000 (U) Surface waters usually requiring pre-filtration POU RO SSCT 25-10,000 Surface waters usually requiring pre-filtration Lime Softening BAT&SSCT 25-10,000 (Ra) 25-501,000 (U) Green Sand Filtration Co-precipitation with Barium Sulfate Electrdialysis/ Electrdialysis Reversal Pre-formed Hydrous Manganese oxide filtration Coagulation/ filtration Basic All waters Advanced SSCT 25-10,000 Typically ground water SSCT 25-10,000 Ground water with suitable water quality Basic Intermediate to Advanced SSCT 25-10,000 All ground water Basic to Intermediate SSCT 25-10,000 All ground water Intermediate AA SSCT 25-10,000 All ground water Advanced BAT&SSCT 25-10,000 Wide range of Advanced water qualities 145

Results and Discussion Aeration and GAC are effective treatment technologies for radon. Of the two technologies, only aeration will be listed as a BAT and likely be the technology of choice in almost all cases. GAC will likely be considered for only very small systems and for POU/POE. Removal efficiencies of more than 98% can be achieved, for example, with diffused bubble and packed tower aerators. Most aeration facilities can be constructed to achieve radon removal efficiencies of more than 95% or even more than 99%. All technologies effective for hardness removal are generally effective for radium removal. Cation exchange, lime softening and reverse osmosis are the technologies currently being applied for radium removal. Most conventional technologies have some capability for uranium removal. Anion exchange has been successfully applied for uranium removal from small ground water systems. Suggestions Selecting a water treatment device takes a lot of consideration. The first thing that we want to do before purchasing a system is get your water tested by a certified third-party lab that will test for all constituents. We may run across free water tests being offered by treatment unit distributors.these tests often only test for superficial things in the water such as salt and hardness, and don t include many potential contaminants that pose health effects. We want our results to come from an unbiased lab that is giving us the information that we really want and need, not from someone who is trying to sell us a unit. Once we know what is in our water, we must select a treatment unit or combination of units that will remove those contaminants. If we have multiple contaminants of concern, then we need to look at the system s ability to remove all of them. We mentioned the ion exchange process earlier as a system that you must be cautious using if more than one chemical is present. For most systems, prefilters help remove pollutants such as solids that may disrupt the removal process in the main treatment unit. Upon investigating potential treatment options, we will want to compare the initial cost of the unit and other operation and maintenance costs. We ll want to consider the operation and maintenance requirements to keep the system running as it should and also how long the system is expected to last (life expectancy) if properly maintained. Look at how well the system is going to be able to remove the contaminant. Also consider the reputation of the manufacturer/seller as well as the warranties that they offer. Finally, it is important that we understand the wastes associated with the unit and ensure we have a means for disposal. We don t want to spend money on a system, run it for a while, and then find out that all you have done is generate waste without a way to properly dispose of it. (EPA, 2006) Acknowledgement: This authors wish to acknowledge the financial assistance given by the BAP of Selcuk University without whom this project would not have been possible. References Anonim., 2006, Onsite Drinking Water Treatment, http://texaswater.tamu.edu/resources/drinkg water_factsheets/onsitedrinkingwatertreatment033106.ppt EPA (Environmental Protection Agency), 2006,. A Regulators Guide to the Management of Radioactive Residuals from Drinking Water Treatment Technologies, http://www.epa.gov/radiation/docs/tenorm/816-r-05-004.pdf EPA., 2000. National Primary Drinking Water Regulations; Radionuclides, Final Rule. December 7, 2000 Federal Register. Vol. 65, No. 236. IDS-WATER, 2007, http://www.idswater.com ITS, 1997, Institution of Turkish Standards. Annual Progress Report. UNSCEAR, 1993, United Nation Scientific Committee on the Effect of Atomic Radiation. Report, United Nations, New York VESTERBACKA, 2007, Natural radioactivity in drinking water in Finland, Boreal Environmental research 12:11-16 ISSN: 1239-6095, February 2007 WHO, 1993, Guidelines for Drinking Water Quality. Recommendations, Vol. 1, 2nd edition. World Health Organization, Geneva. 146