Chemotaxonomische Identifikation einzelner Bakterienzellen mit Hilfe der Mikro-Raman- Spektroskopie Online-Monitoring von Bioaerosolen (OMIB)



Similar documents
Harz, Nadine Vogler, Anuradha Ramoji, Benjamin Dietzek, Christoph Krafft, Michael Schmitt, Jürgen Popp

Risks in Raw Meat Industry

Raman spectroscopy Lecture

Fluorescence Microscopy for an NMR- Biosensor Project

Near-field scanning optical microscopy (SNOM)

Optical coherence tomography as a tool for non destructive quality control of multi-layered foils

3D Raman Imaging Nearfield-Raman TERS. Solutions for High-Resolution Confocal Raman Microscopy.

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

Application of Automated Data Collection to Surface-Enhanced Raman Scattering (SERS)

h e l p s y o u C O N T R O L

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK

Time out states and transitions

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Hydrogen Bonds in Water-Methanol Mixture

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.

Review of NSOM Microscopy for Materials

Infrared Spectroscopy: Theory

Pump-probe experiments with ultra-short temporal resolution

Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University

LabRAM HR. Research Raman Made Easy! Raman Spectroscopy Systems. Spectroscopy Suite. Powered by:

2012 HORIBA Scientific. All rights reserved HORIBA Scientific. All rights reserved.

Raman Data Analysis. GeoRaman 2012 International School. N.Tarcea, Jürgen Popp

LabRAM HR Evolution. Research Raman Made Easy!

Near-field optics and plasmonics

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale

5.33 Lecture Notes: Introduction to Spectroscopy

Microscopes and the Metric System

Bio and Polymer Analytics. RD Instrumental Analytical Chemistry. Organic Trace Analytics. RD Environmental & Process Analytics

Introduction. Contamination sources

Elements of an integrated anti-fouling strategy with emphasis on MONITORING

Figure 1. A schematic representation of a PEO coatings: mushroom conformation on the left hand side and brush conformation on the right hand side.

BY2012 Microbiology Bacterial Fimbriae & Adherence

Applications of confocal fluorescence microscopy in biological sciences

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Infrared Spectroscopy 紅 外 線 光 譜 儀

Advanced Research Raman System Raman Spectroscopy Systems

Raman Spectroscopy Basics

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida

Sensitivity and Selectivity in Optical Spectroscopy and Imaging: A Molecular Approach

Raman Spectroscopy Study of the Pyrochlore Superconductors KOs 2 O 6 and RbOs 2 O 6

Microscopy: Principles and Advances

Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer...

Research Group. Towards small-molecule ligands to modulate leukocyte behavior

Prussian blue nanoparticles for laser-induced photothermal therapy of tumors

Laboratorio Regionale LiCryL CNR-INFM

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

CyFlow SL. Microbiology. Detection and Analysis of Microorganisms and Small Particles

How To Perform Raman Spectroscopy

electron does not become part of the compound; one electron goes in but two electrons come out.

CONCEPT OF DETERMINISTIC ION IMPLANTATION AT THE NANOSCALE

ADM-Aeolus pre-launch campaigns with an airborne instrument demonstrator

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Certofix protect More certainty, more safety, more success

APPLICATIONS OF FT RAMAN SPECTROSCOPY FOR THE CHARACTERIZATION OF CELLULOSE

Supporting Information

Optical Microscopy Quantifies Live Cells Without Labels

Edited by. C'unter. and David S. Moore. Gauglitz. Handbook of Spectroscopy. Second, Enlarged Edition. Volume 4. WlLEY-VCH. VerlagCmbH & Co.

Modeling and Simulation of Gene Regulatory Networks

An Overview of Cells and Cell Research

Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

Monitoring the identity of bacteria using their intrinsic uorescence

Acknowledgements. Developing collaborative lab experiments across disciplines through the identification of bacteria

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY

Bio 321 Lightmicroscopy Electronmicrosopy Image Processing

It has long been a goal to achieve higher spatial resolution in optical imaging and

DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007

Outline. Self-assembled monolayer (SAM) formation and growth. Metal nanoparticles (NP) anchoring on SAM

BioLaz Real Time Microbial Monitoring in Aseptic Pharmaceutical Manufacturing. March 2013

EXPERIMENT #1: MICROSCOPY

Back to Basics Fundamentals of Polymer Analysis

Supporting Information

Developments in Photoluminescence Characterisation for Silicon PV

THESES OF DOCTORAL (PH.D.) DISSERTATION DEVELOPMENT OF A FUNCTIONAL DAIRY FOOD ENRICHED WITH SPIRULINA (ARTHROSPIRA PLATENSIS)

Luisa Palumbo Dipartimento di Chimica IFM - NIS Centre of Excellence Università di Torino

Radical (Co)polymerization Kinetics Obtained From Droplet-Based Microfluidics

Applications of Infrared Multiple Angle Incidence Resolution Spectrometry

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene

MODULE 2D ENVIRONMENTAL MICROBIOLOGICAL LABORATORY ACCREDITATION PROGRAM (EMLAP) ADDITIONAL REQUIREMENTS

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A.

Bacterial Detection and Live/Dead Discrimination by Flow Cytometry

The effect of heavy metal ions on Staphylococcus aureus, complex biochemical and MALDI-TOF study. Dagmar Chudobová

Evaluation of Microbial Growth and Survival on Construction materials treated with Anabec NewBuild 30

*Corresponding author: Yoshitaka Nishiyama,

(Nano)materials characterization

Supporting Information. Rational design of Au nanorods assemblies for highly sensitive and selective SERS detection of prostate specific antigen

Adapted from Biology 15 Laboratory Supplemental Manual: Wrightsman, Ininns and Cannon- Moloznic.

Group Theory and Chemistry

MIBIE Summer School Molecular diagnostics of UTI & STI by using PCR, DHPLC and NGS

Applications of Quantum Chemistry HΨ = EΨ

GIANT FREQUENCY SHIFT OF INTRAMOLECULAR VIBRATION BAND IN THE RAMAN SPECTRA OF WATER ON THE SILVER SURFACE. M.E. Kompan

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

CURRICULUM VITAE. Yong-Cheol Park, Ph.D.

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service

A kinetic approach of sulphate behaviour in borosilicate glasses Implications for sulphate incorporation in nuclear waste glasses

Marine Microbiological Analysis of Ballast Water Samples

The influence of graphene curvature on hydrogen adsorption. Sarah Goler

Preface Light Microscopy X-ray Diffraction Methods

Nanoceanal Spectroscopy of Vibrariums and Electariums

BD Modified CNA Agar BD Modified CNA Agar with Crystal Violet

Introduction to Bioprocessing

Transcription:

1. Jenaer Workshop Spektralsensorik 0. September 00 Chemotaxonomische Identifikation einzelner Bakterienzellen mit Hilfe der Mikro-Raman- Spektroskopie Online-Monitoring von Bioaerosolen (OMIB) P. Rösch 1, M. Krause 1, R. Riesenberg und J. Popp 1, 1 Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, D-043 Jena, Germany Institut für Photonische Technologien, Albert-Einstein-Str. 9, D-04 Jena, Germany http://www.ipc.uni-jena.de/ email: petra.roesch@uni-jena.de Content Bioaerosol Why Raman spectroscopy on bacteria? Online monitoring and identification of bioaerosols (OMIB) Classification and identification of bacteria by means of Raman spectroscopy Localization of bacteria Bacterial characterization with nanometer resolution Summary and outlook 1

Motivation - Bioaerosol Pollen 10 µm Bacteria Allergies, Diseases, Food Spoilage, etc. Dandruff, Grit, etc. 10 µm Fungi, Yeast 10 µm 10 µm 1 µm Identification of microorganisms without cultivation and the possibility to perform additional microbiological investigations 3 Bacterial identification in clean room productions Why clean room? Bacteria Bacillus pumilus (10) Bacillus sphaericus (10) Bacillus subtilis (19) Micrococcus luteus () Micrococcus lylae (3) Staphylococcus aureus (3) Staphylococcus cohnii (6) Staphylococcus epidermitis () Staphylococcus hominis (3) Staphylococcus warneri (3) Escherichia coli (10) Limited amount of species needed to be identified!!!! 4

Content Bioaerosol Why Raman spectroscopy on bacteria? Online monitoring and identification of bioaerosols (OMIB) Classification and identification of bacteria by means of Raman spectroscopy Localization of bacteria Bacterial characterization with nanometer resolution Summary and outlook The Raman Effect Rayleigh scattering Stokes-Raman scattering ν laser ν vib Anti-Stokes-Raman scattering ν laser + ν vib virtual states v = 1 Eigenstates v = 3 v = v = 1 v = 0 6 v = 0 3

Experimental setup C microscope µm BS1 M L N IF CCD spectrometer BS High specificity High spatial resolution (< 1 µm) Minimal sample preparation MO S W laser Content Bioaerosol Why Raman spectroscopy on bacteria? Online monitoring and identification of bioaerosols (OMIB) Classification and identification of bacteria by means of Raman spectroscopy Localization of bacteria Bacterial characterization with nanometer resolution Summary and outlook 4

Identification of a single microorganism (3 nm) M. luteus DSM 34 M. luteus DSM 0030 S. cohnii DSM 6669 M. lylae DSM 031 S. cohnii DSM 61 E. coli DSM 43 B. pumilus DSM B. pumilus DSM 361 B. sphaericus DSM B. sphaericus DSM 396 S. cohnii DSM 619 S. cohnii DSM 060 S. warneri DSM 0036 S. warneri DSM 0316 B. subtilis DSM 10 B. subtilis DSM 34 S. epidermitis RP 6A 3000 00 000 100 1000 3000 00 000 100 1000 9 Classification of single microorganism (3 nm) Data analysis by means of support vector machine Number of strains Number of spectra Number of wrong classified strain spectra Recognition rate for strains (%) Number of wrong classified species spectra Recognition rate for species (%) B. pumilus 100 19 0. 9. B. sphaericus 9 1 1. 11. B. subtilis 34 1 94.0 96.6 E. coli 666 1 3.1 99.1 M. luteus 66 10 93. 96.6 M. lylae 40 1 9. 1 9. S. cohnii 4 60 0 9. 11 9. S. epidermidis 9 9 9.6 9 9.6 S. warneri 13 11 9.1 4 9. S. cerevisiae 3 4 0. 6.9 Average recognition rate 33.6 9.4 10 P. Rösch, M. Harz, K.-D. Peschke, O. Ronneberger, H. Burkhardt, A. Schüle, G. Schmautz, M. Lankers, S. Hofer, H. Thiele, H-W. Motzkus, and J. Popp, Anal. Chem. 006,, 163-10.

Identification of single microorganism (3 nm) Identification of an independent dataset Strain Number of Spectra Correctly Identified as Bacillus subtilis DSM 34 Bacillus sphaericus DSM Bacillus sphaericus DSM 396 Escherichia coli DSM 43 Escherichia coli DSM 49 Escherichia coli DSM 10 0 1 E. coli DSM 499, E. coli DSM 43, E. coli DSM 69 Micrococcus luteus DSM 0030 6 6 Micrococcus lylae DSM 031 Micrococcus lylae DSM 031 Staphylococcus cohnii DSM 6669 Staphylococcus cohnii DSM 61 Staphylococcus cohnii DSM 619 Staphylococcus cohnii DSM 060 Staphylococcus epidermidis RP 6A Staphylococcus epidermidis 19 0 1 S. warner, E. coli Staphylococcus warneri DSM 0036 Identification 130 1 11 System integration P. Rösch, M. Harz, K.-D. Peschke, O. Ronneberger, H. Burkhardt, A. Schüle, G. Schmautz, M. Lankers, S. Hofer, H. Thiele, H-W. Motzkus, and J. Popp, Anal. Chem. 006,, 163-10. 1 6

Particles from clean room samples µm Raman-Intensität µm 3000 00 000 100 1000 00 Wellenzahl / cm -1 13 Online monitoring and identification of bioaerosols (OMIB) Particle deposition B. sphaericus S. epidermidis E. coli Microscopy Fluorescence Monitoring Raman Identification Identification rate: ~ 96 % M. luteus DSM 34 M. luteus DSM 0030 M. lylae DSM 031 M. lylae DSM 031 S. cohnii DSM 6669 S. cohnii DSM 61 S. cohnii DSM 619 S. cohnii DSM 060 S. warneri DSM 0036 S. warneri DSM 0316 14 S. epidermidis RP 6A P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H-W. Motzkus, 3000 00 000 100 1000 M. Lankers, S. Hofer, H. Thiele and J. Popp, Appl. Environm. Microbiol. 00, 1, 166. Wavenumber / cm -1

Raman measurements on fluorescence marked bacteria SYTO 9 CH-stretching amide-i CN-stretching CH -scissoring 40µm 40µm 3000 00 000 100 1000 1 M. Krause, B. Radt, P. Rösch and J. Popp, J. Raman Spectrosc. 00, 3, 369-3. Content Bioaerosol Why Raman spectroscopy on bacteria? Online monitoring and identification of bioaerosols (OMIB) Classification and identification of bacteria by means of Raman spectroscopy Localization of bacteria Bacterial characterization with nanometer resolution Summary and outlook 16

Outlook: TERS - Tip enhanced Raman spectroscopy AFM-Cantilever Single SERS active particle Sample Illumination-/Collection- Optics Spatial resolution < 0 nm R. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, Chem. Phys. Lett., 000, 31, 131. 1 TER spectra on the bacterial cell TERS spectrum of a bacterial cell background 100 1600 1400 100 1000 00 600 U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert ChemPhysChem, 006,, 14-1430. 1 9

TERS: Characterization of cell wall components Amid I Amid II CO Streck (Aminos.) Amid III CC-Streck, CH-def. ip (Phe) NCO Deformation (Phe) Si (AFM-Tip) protein 100 1600 1400 100 1000 00 600 19 C=O (Ester) Phospholipid C=C Streck CH -deform CH -torsion.=ch in plane deform CC Streck lipid 100 1600 1400 100 1000 00 600 Si (AFM-Tip) Amid I Amid II CH 3, C(6)-H *COH CH -def CH -Kipp+OH-deform carbohydrate C-O-C in-plane symm. 100 1600 1400 100 1000 00 600 Si (AFM-Tip) Content Bioaerosol Why Raman spectroscopy on bacteria? Online monitoring and identification of bioaerosols (OMIB) Classification and identification of bacteria by means of Raman spectroscopy Localization of bacteria Bacterial characterization with nanometer resolution Summary and outlook 0 10

Summary and Outlook Identification of bacteria without cultivation by means of Raman spectroscopy and chemometric methods Localization of microorganisms with appropriate fluorescence staining techniques Adaptation of the database to the real condition Database with fluorescence stained bacteria Enlargement of meningitis database 1 Thanks! Prof. Dr. Jürgen Popp Dr. Denis Akimov, Dana Cialla, Valerian Ciobota, Susana Chatzipapadopoulos, Dr. Claudiu Dem, Thomas Dörfer, Torsten Frosch, Michaela Harz, Katharina Hering, Mario Krause, PD Dr. Antje Kriltz, Michael Kühnert, Christian Kuhnt, Susanne Liedtke, Tobias Meyer, Dr. Thomas Mayerhöfer, Dr. Robert Möller, Ute Neugebauer, Martin Presselt, Thomas Schüler, Stephan Stöckel, Katrin Strehle, PD Dr. Michael Schmitt, Dr. Nicu Tarcea, Dr. Beate Truckenbrodt, Stefanie Tschierlei, Ute Uhlemann, Angela Walter, Linda Zedler OMIB Prof. Dr. K. Baumann Prof. Dr. Dr. h.c. W. Kiefer Dr. Rainer Riesenberg Prof. H. Burkhardt, K.-D. Peschke and O. Ronneberger TERS Prof. Dr. V. Deckert, Dr. A. Rasmussen, C. Julien 11