SLOVNAFT LCF Operation experience



Similar documents
Maximize Conversion and Flexibility

FLEXICOKING technology for upgrading heavy oil and utilization of by-products

Refining of Crude Oil - Process

Upgrading of Heavy Oils with FLEXICOKING. ExxonMobil Research & Engineering Company Tim Hilbert

ASimple Guide to Oil Refining

********** An short and simple explanation of how oil is converted into gasoline and then brought to you, the consumer.

CRG CONSERVE RESOURCES GROUP ECO ENVIRONMENTAL ENGINEERING TECHNOLOGIES. NEW State of the Art. Advanced OIL REFINERY TECHNOLOGY & PROCESSES

Oil Refinery Processes A Brief Overview

Fact Sheet Technology. Bergius-Pier Process (1)

Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC)

Opportunities for optimization of refineries using. Thermal Conversion technologies

The. Brendan P. Sheehan, Honeywell Process Solutions, USA, and Xin Zhu, UOP, a Honeywell Company, USA, explore energy optimisation in plant processes.

AM Cost Effective Solutions for Reduction of Benzene in Gasoline

TITLE PAGE: Feasibility Study for a Petroleum Refinery for The Jicarilla Apache Tribe.

Refinery Equipment of Texas. Mini - Refinery Feasibility Overview

OIL MARKETS AND THEIR ANALYSIS IEA ENERGY TRAINING WEEK PARIS, APRIL 2013

Mini Oil Refinery Review. Rifka Aisyah

Petroleum Refinery Life Cycle Inventory Model (PRELIM) PRELIM v1.0

TIGAS Topsøe s s Improved Gasoline Synthesis

Hydrocracking Process Description and CRITERION / ZEOLYST Hydrocracking Catalyst Applications

A STUDY OF ENVIRONMENTAL BENEFITS OF INDUSTRIAL INTEGRATION

Yu. K. Vail and L. N. Gorshkova UDC

Technical Note: Conversion of fuel data to MWh

Glossary of Energy Terms

DIRECT-FIRED HEATERS: OPERATOR TRAINING. Intensive 2-Day Training Course for Facility Operators

Michael Williams Gasification Technologies Council, 28 th October Smaller scale Fischer-Tropsch enables biomass-to-liquids

Design Guidelines for Chemical Treatments in Distillation Columns

Canada s Oil Sands Overview and Bitumen Blending Primer. US National Academy of Science October 23, 2012

Avoiding co-product allocation in a simplified hypothetical refinery 1

TABLE OF CONTENT

Plutonio Crude oil from Angola

Gas Detection for Refining. HA University

Hydrogen plays a critical

Hydrogen from Natural Gas via Steam Methane Reforming (SMR)

How To Make A Mine Guard Fosil Process

Sulphur in Nigerian Diesel

Suncor Denver Refinery Overview

PRAXAIR, INC. Hydrogen: The Growth Story Continues. Charles Miller, Vice President Dan Yankowski, Vice President. February 9, 2005

Allocation of Costs, and Non Arm s Length Valuation of Shared Goods, on Oil Sands Projects

Investment Options for Crude & Condensate Stabilization and Splitting

FUEL OIL Crude Condensate Naphtha Ethane Reformate

Hydrogen Production via Steam Reforming with CO 2 Capture

Industry Description and Practices. Waste Characteristics

The Distillation Group, Inc.

STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS

Design Procedure. Step 2: The simulation is performed next. Usually the column is not difficult to converge, as the liquid reflux ratio is large.

STEADY STATE MODELING AND SIMULATION OF HYDROCRACKING REACTOR

FCC Operations Benchmarking: A Valuable Tool for Identifying Opportunities for Improved Profitability

PETROLEUM COKE VS STEAM COAL

PISA. Calculating new replacement values in property insurance

WATER WALL BOILER FOR AIR AND OXYGEN FIRED CLAUS SULPHUR RECOVERY UNITS

Did you know that. NEXBTL renewable diesel. Premium quality renewable diesel. As a drop-in biofuel, NEXBTL diesel behaves exactly like fossil diesel.

PRE FEASIBILITY REPORT

TABLE OF CONTENT

20,000 Barrel Per Day Crude Oil Refinery

12 November 2008 *** I:\CIRC\MEPC\01\642.DOC INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR

Best Practice in Boiler Water Treatment

Pet Coke Consulting, LLC. Phil Fisher Argus Conference, Houston September 19-21, 2012

Refinery Evaluation Model

Energy Saving Solutions. Bob Montgomery Technical Solutions Specialist Waterloo Manufacturing

FCC Catalyst Age Distribution Optimization Leads to Improved Profitability

Delayed Coking. Chapter 5

Degradation of polyolefine wastes into liquid fuels

Assignment 8: Comparison of gasification, pyrolysis and combustion

SKI Coal Gasification Technology. Feb. 23, 2012

Forgotten savings: Heat recovery from surface blowdown

Biogas as transportation fuel

PRESENTER: Yusuf Abdul General Manager- Technical Services. Guyana Sugar Corporation Inc. Ogle, East Coast Demerara GUYANA

High. times for. hydrogen. Nitin M. Patel and William F. Baade, Air Products and Chemicals, Inc., USA,

Bakken Crude Oil & Response Considerations. Objectives

How To Clean Up A Reactor Water Cleanup

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA DIPARTIMENTO INGEGNERIA CHIMICA MATERIALI AMBIENTE

Options for tar reforming in biomass gasification. Klas J. Andersson, Poul Erik Højlund Nielsen - IFC 2012

BorsodChem MCHZ, Czech Republic. 6,000 Nm 3 /h HTCR Topsøe Hydrogen Plant A Case Story: 18 Months from Engineering to Operation

Haldor Topsøe Catalysing Your Business

Prudential Industrials Conference Inside Our Best Ideas

Chuck Neece Director Research and Development FUMPA BioFuels

Coker Furnace On-Line Spalling

Kearl oil sands project

Coal-To-Gas & Coal-To-Liquids

THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies

It s time for H.E.R.O. Energy Saving Strategy for. Tunnel & Shuttle Kilns

Manufacturing Light Oil From Heavy Crude Ratqa Field, North Kuwait Dr. Luis C. Luzardo M. Kuwait Oil Company (KOC) Heavy Oil Development Group

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin

SOCAR TURKEY AEGEAN REFINERY

The Canada GTL Project

Martin RICHEZ. Franck ZANONCELLI

SINTERED METAL FILTER SYSTEMS FOR THE CHEMICAL PROCESS INDUSTRY

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide

Natural Gas Information Contents

steinecker Stromboli wort boiling system Perfect in every brewing process

LPG Burning Gas Turbine for Power Generation

Olefins from Syngas Potential for bio-based applications Dr. Thomas Wurzel, Lurgi GmbH. New Biofuels rd-24th June 2010, Berlin, Germany

R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler

THE NEW GASIFICATION PROJECT AT ENI SANNAZZARO REFINERY AND ITS INTEGRATION WITH A 1050 MWe POWER PLANT

COKE PRODUCTION FOR BLAST FURNACE IRONMAKING

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard

Case study: Velocys partnership with Waste Management, Ventech Engineers LLC and NRG Energy

CCS in the Oil refining Industry System Solutions and Assessment of Capture Potential

Case for Business Intelligence Concepts. Vladimir Rajacic Vladimir Vukojevic Aleksandar Kasa Marko Narancic Borko Rakic Ioannis Sdroulias

Transcription:

45 th International Petroleum Conference June, 2011 BRATISLAVA SLOVNAFT LCF Operation experience Robert ŽAJDLÍK, Ján GAZDÍK

LC- Finer, SLOVNAFT general data License ABB LUMMUS GLOBAL Inc. USA July 1995 Fluor Daniel & Mitsubishi Heavy Ind. June 1996 Start of construction June 1997 End of construction September 1999 Start-up on Vacuum Residue March 8th 2000 Performance test August 24th-27th,2000

LC-Finer unit Main objectives VR Conversion 565 degc+ Reactor Temperature 416 C Reactor Pressure 18 MPa Conversion 62% (design 65%) Desufurisation VR (0.95 1.2 wt%) Denitrification VGO (3300 4000 wtppm) Demetalisation VGO, VR (0.1 wtppm; 100 wtppm) MCRT Reduction VGO, VR (0.4 wt%; 22 wt%) Other...

LC- Finer, SLOVNAFT feed, products & yields Feed Vacuum residue 155 t/hr Diluent LCO 15 t/hr Diluent MCB 10 t/hr Make-up Hydrogen 22 kg/t Feed % Vacuum Residue 86 MCB 8 LCO 6 Total 100.0 Product % Gases 4 Naphtha fraction 6 Diesel fraction 24 VGO 28 Vacuum Residue 38 Total 100.0

LC- Fining family Build Company VR [t/hr] Bottom product 2010 GS Caltex 400 Stable FO 2013 Northwest Upgrading 193 IGCC 2010 Shell Canada 291 Stable HSSC 2007 Neste Oil 267 Fuel Oil 2003 Shell Canada 527 Stable HSSC 2000 Slovnaft 155 Stable LSFO 1998 AGIP Petroli 167 Stable LSFO 1988 Syncrude Canada 267 Coker Feed 1984 BP-Amoco 500 Coker Feed + 7 H-Oil technologies worldwide, (e.g. PKN Plock)

Importance of LC Fining for the company Net Cash Margin ranking of the European refineries, 2008, Wood Mackenzie 20 Bratislava; 17.39 15 Duna; 12.21 NCM in USD/bbl 10 5 Rijeka; 5.92 Sisak; 4.42 IES Mantova; 2.89 0-5

SLOVNAFT s technological change over last decade Production (in kilotonnes) 1998 2007 change Motor petrol 909 1 617 78% Motor diesel 1 863 2 864 54% Heavy fuel oil 1 065 207-81% Bitumen 228 36-84% Petrochemical and plastics 249 588 136% Other products 605 1 659 174% Total 4 919 6 536 33% Slovnaft now produces more valuable light products other 12% other 25% bitumen 5% bitumen 1% fuel oil 22% fuel oil 3% petchem 9% petchem 5% diesel 44% diesel 38% over USD 650 mn investments spent on change of product slate and fuels desulphurization light products > 85% of total production all motor fuels can be produced with 10 ppm quality petrol 18% 1998 before upgrade petrol 25% 2007 after upgrade

LC Finer - part of the complex EFPA Preparation: 1992-1996 Building: 1997-2000 Gases Gases Vacuum Resid Gases LCF VGO Refinery LN HN MD VGO HDS VGO LN HN MD VGO Resid. FCC MEROX LPG MEROX GAS MD C 4 Resid. Refinery Gases Natural Gas HP ETBE ALK C 4 from SC SH Gasoline

Flow Diagram... LC-Finer unit

100% Capacity utilisation LCF unit utilisation over decade Relative on stram factor Relative on stram factor, Capacity utilisation [%] 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Year

100.00% 90.00% 80.00% 70.00% 60.00% 50.00% 40.00% 30.00% 20.00% 10.00% 0.00% Yields (product rate/total liquid feed rate] VR VGO Gas Oil Kerosene H Naphtha L Naphtha yield on feed [kg/kg] 01.01.07 01.02.07 01.03.07 01.04.07 01.05.07 01.06.07 01.07.07 01.08.07 01.09.07 01.10.07 01.11.07 01.12.07 01.01.08 01.02.08 01.03.08 01.04.08 01.05.08 01.06.08 01.07.08 01.08.08 01.09.08 01.10.08 01.11.08 01.12.08 01.01.09 01.02.09 01.03.09 01.04.09 01.05.09 01.06.09 01.07.09 01.08.09 01.09.09 01.10.09 01.11.09 01.12.09 01.01.10 01.02.10 01.03.10 01.04.10 01.05.10 01.06.10 01.07.10 01.08.10 01.09.10 01.10.10 01.11.10 01.12.10 01.01.11 01.02.11 01.03.11 01.04.11 01.05.11 01.06.11

80 70 60 50 40 30 20 10 0 Raw 565 C+ conversion Net conv. Raw conv. 565C- in VTB 565C- in VR 10.08.10 26.02.11 14.09.11 22.01.10 18.12.08 06.07.09 01.06.08 14.11.07 28.04.07 10.10.06 Conversion / 565C- in VTB [wt%]

3.5 3 2.5 2 1.5 1 0.5 0 Sulfur in heavy products 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 14.11.07 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 26.02.11 14.09.11 01.04.12 28.04.07 10.10.06 Slufur content [%wt] 565 C recovery VTB [%w] S in VGO S in VTb S in VR 565C- in VTB

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Nitrogen in heavy products 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 01.04.12 14.09.11 14.11.07 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 26.02.11 28.04.07 10.10.06 Nitrogen content [%wt] Nitrogen content [wtppm] N in VTb N in VR N in VGO

Problematic issues Feed quality changes Sulfur and Nitrogen content Density MCRT Metal content Fouling of key equipments LP/HT separator and downstream HEX (E101) Atmospheric tower Vacuum column heater Vacuum column HEX train Mechanical issues (will not be discussed)

3.4 3.2 3 2.8 2.6 2.4 2.2 2 Nitrogen and Sulfur in VR feed 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 26.02.11 14.09.11 01.04.12 10.08.10 18.12.08 06.07.09 22.01.10 01.06.08 14.11.07 28.04.07 10.10.06 Sulfur [wt%] Nitrogen [wt%] Sulfur Nitrogen

Density and 10% BP of VR-feed Feed density Feed 10% BP 1030 560 1025 1020 520 Feed density [kg/m3] 1015 1010 1005 480 Feed 10% BP [ C] 1000 440 995 990 400 10.10.06 28.04.07 14.11.07 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 26.02.11 14.09.11 01.04.12

22 21 20 19 18 17 16 15 MCRT in VR-feed MCRT Recovered at 565 70 60 50 40 30 20 10 0 14.09.11 01.04.12 26.02.11 10.08.10 06.07.09 22.01.10 18.12.08 01.06.08 14.11.07 28.04.07 10.10.06 MCRT [wt%] Recovered 565 C

300 250 200 150 100 50 0 Metals in VR feed V Ni 14.09.11 01.04.12 26.02.11 10.08.10 06.07.09 22.01.10 18.12.08 01.06.08 14.11.07 28.04.07 10.10.06 metals content [mg/kg]

1.2 1 0.8 0.6 0.4 0.2 0 Catalyst addition rate CAR on VR+MCB CAR 7 day average CAR 14.09.11 01.04.12 26.02.11 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 14.11.07 28.04.07 10.10.06 CAR [kg/ton]

Invitation Sustainable development and HSE Aspects of Refinery and Petrochemical Operations Miestnosť: Hall B June 13, 2011 (Monday), 16:20 PROCESS OF WASTE CATALYST RECOVERY FROM RESIDUE HYDROCRACKER POLC, R.*; VDOVJAK, L.; DIKÁCZOVÁ, Z.

Fouling Critical Fouling Locations 22

Fouling Limitations Unit is stopped every 6 11 months, sometimes VT bypass needed Shutdown duration from 5 to 14 days Main reasons for S/D: Vacuum heater limits reached - either pressure in the passes or skin temperature in convent section VTB pumps suction loss 11E101 H2 preheat high delta p Roughly at about 40 tones of coke removed from equipments Vacuum bottom exchangers cleaning frequency: 11E302A/B - once per month 11E308 LP steam generator once per 5 weeks 11E309 once per 6 weeks 23

Modifications done Atmospheric bottoms (ATB) circuit installed Main goal to remove coke from the ATB ATB increased suction VTB increased suction 11E308 increased tube ID 11E101 modification increased tube ID and construction material changed, wash oil (HCO) Introduction of new low sediment catalyst Wash oil withdrawal downstream the exchangers Antifouling chemicals dozing Excessive test dome with several chemicals suppliers Vacuum furnace operation strategy Steam flow Decreased outlet temperature to 376 C Considering installation of spiral exchangers 24

VTB LP/HT V103 E309A E309B ATM C201 VAC C301 E308 C201 C301 Wash-oil P305 E302A E302B H301 VAC Heater H301 C301 bottom P304

Atmospheric tower bottom 400 320 350 290 300 260 Temperature [ C] 250 200 150 100 50 230 200 170 140 110 Total feed [t/h] 0 0 20 40 60 80 100 120 140 Operating days 80

LC Finer, SLOVNAFT

Thank you for your attention

100.00 99.00 98.00 97.00 96.00 95.00 94.00 93.00 92.00 91.00 90.00 Other achievements Hydrogen partial pressure treat gas purity make-up H2/feed 300 250 200 150 100 50 0 14.09.11 01.04.12 26.02.11 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 14.11.07 28.04.07 10.10.06 hydrogen purity [%vol] H2 make-up/feed rate [Nm3/m3]

200000 180000 160000 140000 120000 100000 80000 60000 40000 20000 0 Feed rates VR+LCO+MCB VR LCO MCB 25% 20% 15% 10% 5% 0% 26.02.11 14.09.11 01.04.12 10.08.10 06.07.09 22.01.10 18.12.08 01.06.08 14.11.07 28.04.07 10.10.06 Total Feed and VR rates [kg/hr] LCO/total feed and MCB/total feed fraction

1030 VTB density and viskosity and VR-density VTB density VR feed density VTB viskosity 1200 1010 1000 990 800 VTB density [kg/m3] 970 600 VTB viskosity [mpa.s] 950 400 930 200 910 0 10.10.06 28.04.07 14.11.07 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 26.02.11 14.09.11 01.04.12

100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% Sulfur removal efficiency Normalised conversion (410 C, 170 t/hr) Conversion normalised conv. 26.02.11 14.09.11 01.04.12 18.12.08 06.07.09 22.01.10 10.08.10 01.06.08 14.11.07 28.04.07 10.10.06 S Conversion [%w]

HDN Normalised conversion (410 C, 170 t/hr) Conversion normalised conv. 50% 45% 40% 35% N Conversion [%wt] 30% 25% 20% 15% 10% 5% 0% 10.10.06 28.04.07 14.11.07 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 26.02.11 14.09.11 01.04.12

120% 100% 80% 60% 40% 20% 0% -20% HDV removal efficiency conversion V est. on cat k0 2.0E+09 1.8E+09 1.6E+09 1.4E+09 1.2E+09 1.0E+09 8.0E+08 6.0E+08 4.0E+08 2.0E+08. 0.0E+00.......... V conversion and estimated V on catalyst(bfc) [%w] k0 activity factor

HDNi removal efficiency 100% conversion V est. on cat k0 2.0E+09 1.8E+09 Ni conversion and estimated Ni on catalyst(bfc) [%w] 80% 1.6E+09 1.4E+09 60% 1.2E+09 40% 1.0E+09 8.0E+08 20% 6.0E+08 4.0E+08 0% 10.10.06 28.04.07 14.11.07 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 26.02.11 14.09.11 01.04.12 2.0E+08 k0 activity factor -20% 0.0E+00

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Sediment - SHFT 22 21 20 19 18 17 16 15 14.09.11 01.04.12 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 26.02.11 14.11.07 28.04.07 10.10.06 Sediment [%wt] MCRT in Feed [wt%] Sediment in ATB Sediment in VTB MCRT

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Sediment - SHFT 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3-0.4-0.5-0.6 01.04.12 14.11.07 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 26.02.11 14.09.11 28.04.07 10.10.06 Sediments [%w] TI Feed [%wt] Sediment in ATB Sediment in VTB TOLUENE Insoluble

Location of SKIN temperature measurement points for fouling control of BRHCK key equipment. TI3394 ATM C201 VAC Heater H301 TI3305 TI3307 TI3314 TI3372 VAC C301 TI3398 TI3396 TI3312 TI3311 TI3395 VTB P205 TI3319 TI3333 P304 TI3374 TI3397

LC Finer overall on-stream performance Year VR Processed On-stream t hr 2000 825 553 6 908 2001 967 311 7 184 2002 1 040 494 7 564 2003 968 176 7141 TA year 2004 1 117 052 8249 2005 1 069 669 8140 2006 934 433 7162 TA year 2007 1 154 919 8456 2008 1 147 157 8488 2009 1 028 163 7399 2010 1 020 733 7342 TA year total 9 480 796

Feed deterioration impact on RX exotherms Reactor exotherms R101 R102 R103 cummulative dt H2 Make-up 180 350 160 300 140 120 100 80 60 40 250 200 150 100 20 50 0 0 10.10.06 28.04.07 14.11.07 01.06.08 18.12.08 06.07.09 22.01.10 10.08.10 26.02.11 14.09.11 Exotherm [ C] Hydrogen make-up rate [Nm3/m3 feed]