Developing Human Connectome Project The Developing Human Connectome Project David Edwards Jo Hajnal Stephen Smith Daniel Rueckert
Developing Human Connectome Project The Developing Human Connectome Project David Edwards Jo Hajnal Stephen Smith Daniel Rueckert
The Connectome Developing Human Connectome Project A comprehensive mapping of neural connections and their variation Grand challenge in neuroscience Powerful tool for research Mapped at different scales Micro (micron) Macro (millimetre) Network mathematics
Human Connectomics Developing Human Connectome Project Comprehensive mapping of normal adult brain $30 million, 5 year project US consortium + Smith Group weeks Birth Conception Puberty Adulthood Years
The Developing Human Connectome Project Developing Human Connectome Project The first map of growing connectivity: over a critical period of development in utero and ex utero normal and abnormal Critical neuroscience questions: How does connectivity assemble? Genetic and environmental influences? Can connectivity explain intractable neurodevelopmental disorders?
Informatics-enabled science Developing Human Connectome Project Open-access Open-source Outward-facing Focus on usability & interoperability Computing infrastructure for Web-based tools for sharing of data, tools & ideas High-throughput informatics for mining and analysis of very big connectomic datasets Collaboration through scientific social networking A dense connectome of a single subject (~1 TB)
Structural connections: the wiring diagram of the brain Developing Human Connectome Project White matter tracts carry information Visualised in live humans using diffusion Magnetic Resonance Imaging (dmri)
White matter tracts in a newborn infant Developing Human Connectome Project
White matter tracts in a newborn infant Developing Human Connectome Project
I year Brain Atlases Gousias et al, NeuroImage 2008, 2012. Makropoulos et al IEEE 2014 in press d 28 weeks 32 weeks 38 weeks 44 weeks
A Brain Connectome: Interconnectivity between 83 brain regions Robinson et al, NeuroImage 2010, 50: 910-18
L e f t Initial sparse, coarse, consensus connectome for infants born preterm aged 1-2 years An t e ri o r D e g r e e C e n tr a l i ty Mid. frontal Sup. frontal Lat. orbital Ant. orbital Med. orbital Ant. orbital Med. orbital Sup. frontal Lat. orbital Mid. frontal 20 Inf. frontal Pos. orbital Sub-genu Sub-genu Pos. orbital Inf. frontal Ant. cingulate Ant. cingulate R i g h t Precentral Postcentral Insula Caudate Nucleus Acc Caudate Putamen Thalamus Thalamus Putamen Insula Precentral Postcentral 1 B e tw e e n n e s s C e n tr a l i ty (% ) Sup. parietal Parietal lobe Sup. temporal Globus pallidus Pos. cingulate Med/Inf temporal Cuneus Pos. cingulate Globus pallidus Cuneus Med/Inf temporal Ant/Med temporal lobe Sup. temporal Parietal lobe Sup. parietal 14 Pos. temporal lobe Lingual Lingual Pos. temporal lobe Occipital lobe Occipital lobe 0 Po st e ri o r Pandit et al, Cerebral Cortex 2013;cercor.bht086
L e f t Rich club organization. An t e ri o r D e g r e e C e n tr a l i ty Mid. frontal Sup. frontal Ant. orbital Sup. frontal Ant. orbital Mid. frontal 20 Lat. orbital Med. orbital Med. orbital Lat. orbital Inf. frontal Pos. orbital Sub-genu Sub-genu Pos. orbital Inf. frontal R i g h t Precentral Postcentral Insula Ant. Ant. cingulate cingulate Caudate Caudate Nucleus Acc Putamen Thalamus Putamen Thalamus Insula Precentral Postcentral 1 B e tw e e n n e s s C e n tr a l i ty (% ) Sup. parietal Parietal lobe Sup. temporal Globus pallidus Pos. cingulate Med/Inf temporal Cuneus Globus pallidus Ant/Med temporal Pos. lobe cingulate Med/Inf temporal Cuneus Sup. temporal Sup. parietal Parietal lobe 14 Pos. temporal lobe Lingual Lingual Pos. temporal lobe Occipital lobe Po st e ri o r Occipital lobe 0 Pandit et al, Cerebral Cortex 2013;cercor.bht086 Collin G et al. Cereb. Cortex 2013;cercor.bht064 The Author 2013. Published by Oxford University Press.
Problems with Brain Atlases Which one? How many regions?
Iterated random sampling 500 randomly distributed regions of ~equal size (250 per hemisphere) Repartition And Repeat Tractography
4 dimensional brain atlases Kuklisova-Murgusova et al, Neuroimage. 2011;54(4):2750-63 Serag et al, Neuroimage. 2012;59(3):2255-65.
Rich club connectivity in term infants Ball et al, Proc Nat Acad Sci USA 2014 in press
Rich Cllub connectivity in preterm infants Ball et al, Proc Nat Acad Sci USA 2014 in press
Ball et al, Proc Nat Acad Sci USA 2014 in press
Functional Connections: co-ordinated activation Developing Human Connectome Project Brain structures activate together when engaged in a task Functional connections mapped by functional connectivity Magnetic Resonance Imaging (fcmri) Adult fcmri images courtesy of Marcus Raichle (NeuroImage. 2007;37(4):1083-90)
Resting-state networks in a single infant Page Fransson 35 al. (2007) Proc. Imperial Natl. Acad. College Sci. USA 104, 15531-15536 London
Growth of motor representation in human brain Resting-state fmri of spontaneous motor system activity from 29 to 44 weeks gestational age. Displayed on 4D brain altas Doria et al, Proc Natl Acad Sci U S A. 2010;107(46):20015-20
Growth of the default mode and motor networks Doria et al, Proc Natl Acad Sci U S A. 2010;107(46):20015-20
Whole brain resting-state correlation map Toulmin et al, In progress
Functional Thalamocortical Connectivity
Feasibility: imaging the fetus Raw Motion correction Analysis 28 week fetus (Jiang et al, TMI 2007; Murgasova et al, Med Im Anal 2012; Makropulos et al MICCAI 2012)
Serena Counsell Daniel Rueckert Jo Hajnal Paul Aljabar Gareth Ball Maria Murgusova Emma Robinson Olga Kapellou Kanwal Bhatia Latha Srinivasan James Boardman Denis Azzopardi Laura Bassi Michaela Groppo Mary Rutherford Frances Cowan Tom Arichi Recognition and thanks