A Data-Driven Mapping of Five ACT-R Modules on the Brain
|
|
|
- Clare Warren
- 10 years ago
- Views:
Transcription
1 A Data-Driven Mapping of Five ACT-R Modules on the Brain Jelmer P. Borst 1,2 Menno Nijboer 2 Niels A. Taatgen 2 John R. Anderson 1 1 Dept. of Psychology, Carnegie Mellon University, USA 2 Articial Intelligence, University of Groningen, the Netherlands Abstract In this paper we present a new, data-driven mapping of five ACT-R modules on the brain. In the last decade, many studies have been published that evaluated ACT-R models based on their ability to predict fmri data in certain predefined brain regions. However, these predefined regions were based on a reading of the literature, and might not be optimal. Currently, we used the results of a model-based fmri analysis of five datasets to define a new brain mapping for the problem state, declarative memory, manual, visual, and aural modules. Both the original and the new mapping were applied to data of an experiment that elicited differential activity in these five modules; the results were compared to model predictions. The new mapping performed slightly better for the problem state, declarative memory, aural, and manual modules, but not for the visual module. In addition, it provides a more principled way of validating ACT-R models. Although the mapping is ACT-R specific, the methodology can be use to map any cognitive architecture or model to the brain. Keywords: ACT-R; model-based fmri; Region-of-Interest. Introduction Computational cognitive models often have an internal complexity that cannot be adequately assessed using only behavioral measures (Anderson, 2007; Myung, 2000; Pitt & Myung, 2002; Roberts & Pashler, 2000). Computational models typically provide a moment-by-moment account of cognition with a millisecond time resolution. In contrast, reaction times and accuracy are cumulative measures that give some indication of what happened during a task, but do not provide a moment-by-moment account. This situation is problematic, because the cognitive steps that lead up to a response can often be arranged in different ways (see e.g., Borst et al., 2010, Figure 2; Marewski & Mehlhorn, 2011). In the last decade, researchers have turned to eye movements (e.g., Salvucci, 2006) and neuroimaging data (e.g., Anderson, 2007; Just & Varma, 2007) for additional constraints and guidance in developing cognitive models. To constrain and validate models developed in the ACT-R cognitive architecture a methodology was developed to predict fmri data (for introductions, see Anderson et al., 2008; Borst & Anderson, 2013a). ACT-R simulates cognition as a set of independent modules that function around a central procedural module. There are modules for perception (visual, aural) and action (manual, vocal), and several central cognitive modules. These modules have been mapped onto small regions-of-interest (ROIs) in the brain, which are assumed to be active when the corresponding module is active. By convolving model activity with a hemodynamic response function, one can predict the Blood- Oxygen-Level-Dependent (BOLD) response in these regions which can subsequently be compared to fmri data to evaluate the model. Although this approach has been very successful in the last decade lists over 50 publications that apply this methodology the predefined mapping of modules on brain regions was based on a reading of the literature, and might therefore not be optimal. In this paper we will derive a new, data-driven mapping for five ACT-R modules from results presented in Borst and Anderson (2013b). To test the new mapping, we applied both the original and the new mapping to data of a multitasking experiment that was designed to elicit differential activity in the five ACT-R modules of interest (Nijboer et al., 2013). In the next section we will discuss the Borst and Anderson study on which we based the new mapping. Afterwards we will describe the new ROI definitions and the experiment, followed by the results. We finish with a discussion. Meta-model-based fmri To find the neural correlates of five ACT-R modules, Borst and Anderson (2013b) applied model-based fmri to five existing datasets with associated ACT-R models. Modelbased fmri is a relatively recent method for analyzing fmri data (e.g., Gläscher & O Doherty, 2010). Instead of regressing the condition-structure of the experiment against the fmri data, as is conventionally done, predictions derived from a computational model are regressed against the data. Thus, instead of showing where a certain experimental condition elicits activity in the brain, the method reveals which brain regions correspond to certain model constructs. Model-based fmri has been successfully applied to locate regions involved in reinforcement learning (e.g., Daw et al., 2006) and decision making (e.g., Gluth, Rieskamp, & Büchel, 2012; van Maanen et al., 2011). Although the method is typically used with parameter values of mathematical models, we have previously shown that it also can be used with computational models, such as ACT-R (Borst, Taatgen, & Van Rijn, 2011). Borst and Anderson (2013b) used model-based fmri to locate the neural correlates of five ACT-R modules: the problem state (also referred to as the imaginal module), declarative memory, aural and visual perception, and right-
2 Problem State Aural Manual x = 38 y = 50 z = 48 x = 58 y = 21 z = 4 x = 45 y = 32 z = 46 Declarative Memory Visual x = 46 y = 16 z = 26 x = 30 y = 84 z = 15 Manual Precentral Gyrus x = 33 y = 18 z = 57 Figure 1. The new ROI-definitions. Yellow indicates the new ROIs, the white squares indicate the old, predefined mapping. manual actions. These modules were localized in five existing datasets with associated ACT-R models, which ranged from paired-associate learning to multitasking. The results of these fives sets of analyses were combined in a meta-analysis to obtain a mapping that was independent of idiosyncrasies of the tasks and models. As expected, ACT-R s right-manual model was localized in the left motor cortex, extending from the precentral gyrus, through the postcentral gyrus, into the parietal lobe. The aural module mapped onto a region around the superior temporal gyrus in both hemispheres. The visual module correlated significantly with activity in the left and right middle occipital gyri, extending into the inferior parietal lobules. Both the problem state and declarative memory modules correlated significantly with activity around the inferior frontal gyrus and the anterior cingulate. In addition, the problem state module mapped onto an extensive region around the intraparietal sulcus. To further dissociate the neural correlates of the problem state module and declarative memory, Borst and Anderson investigated for which regions the declarative memory predictions explained significantly more variance than the problem state predictions and vice versa. This revealed a region in the inferior frontal gyrus for declarative memory, and, not surprisingly, the region around the intraparietal sulcus for the problem state module. In the next section we will use these results to develop new ROIs for these five modules. ROI definition Methods To create new ROIs we used the meta-analysis of Borst and Anderson (2013b). We thresholded their results on p < 10-7 and at least 250 voxels per cluster. For the manual, visual, and aural modules, we then took the most significant voxel as a seed, and repeatedly selected the most significant voxel bordering the currently selected region, until we reached 100 voxels. 1 For the problem state and declarative memory modules we followed the same procedure, except that we took the most significant voxels of the dissociation analysis as a seed. That is, for the problem state module we used a voxel close to the intraparietal sulcus as a seed, and for declarative memory a voxel close to the inferior frontal gyrus. These voxels were best in dissociating between problem state and declarative memory contributions to the BOLD signal, and will consequently lead to ROIs that can be used most successfully to distinguish between those modules. For reasons that will become clear below, we also defined a second manual ROI. Instead of using all results from the meta-analysis, we restricted ourselves to voxels in the precentral gyrus (as defined in the aal atlas; Tzourio- Mazoyer et al., 2002; inspired by Gluth et al., 2012). It is well known that the primary motor cortex is located in this region, which might improve the results. 2 Because only 80 significant voxels remained, this ROI is slightly smaller than the others. As described above, we took the most significant voxel for each module as a seed. For all modules this voxel was located in the left hemisphere, yielding left-hemisphere ROIs. We mirrored those ROIs to additionally create righthemisphere ROIs. The resulting ROIs are shown in Figure 1, in yellow. The white squares indicate the original mapping of ACT-R on the brain. For most modules the original and the new voxels is a somewhat arbitrary size. However, it results in ROIs that are small enough to yield a precise signal, while being large enough to account for anatomical and functional brain differences between subjects. 2 We only used this approach for the motor region, because we know from the literature exactly where it should be located. For the other modules this is less clear; even for the aural and visual modules one could choose several different regions.
3 A BOLD response Time (s) Time (s) C Example Easy-Easy Hard-Easy Easy-Hard Hard-Hard Problem State Manual HRF mapping at least partly overlap. However, the new mapping follows brain structures, unlike the original mapping. In addition, the new ROI for the problem state is more anterior than in the original mapping, and the new visual ROI is in a different location than the original ROI (located in the fusiform gyrus; x = -43, y = 60, z = 16). The new ROIs can be downloaded from both as binary images and MarsBar ROI definitions for use with SPM (Brett et al., 2002). Predicting the BOLD response B BOLD response Convolution model activity Time (s) model activity hemodynamic response function Figure 2. Predicting the BOLD response: A shows a hemodynamic response function, B demonstrates the convolution of model activity with the HRF, and C shows an example from one the tasks in Borst & Anderson (2013b). Adapted with permission from Figure 3 in Borst, Taatgen, & Van Rijn, 2013, Validating models of complex, real-life tasks using fmri. In A. Johnson & R. W. Proctor (Eds.), Neuroergonomics, Palgrave Macmillan. The reason for having a mapping between ACT-R and the brain is that it can be used to evaluate models. To this end, one can generate BOLD predictions for each ACT-R module by convolving the module s activity with the hemodynamic response function, and subsequently compare these predictions to the measured BOLD response in the ROIs. Figure 2 demonstrates how one can predict the BOLD response. Panel A shows a hemodynamic response function (HRF; e.g., Friston et al., 2007), which simulates the BOLD response in reaction to neural activity at time 0. Panel B shows the effect of convolving module activity (in gray) with this HRF. The size of the predicted BOLD response depends on the duration and the number of module actions. Panel C gives an example of this procedure applied to the problem state and manual modules of an actual model (Borst et al., 2010). For more details, equations, an example model, and Matlab code to generate BOLD predictions, please see Borst and Anderson (2013a). Experiment To compare the new mapping to the original mapping we applied them to an fmri dataset of Nijboer et al. (2013). In their experiment, 16 subjects were asked to perform three different tasks: a visual tracking task, an n-back task, and a tone-counting task. The tasks had to be performed both in isolation as well as in combination (e.g., n-back and tone counting concurrently), resulting in six different conditions. In the visual tracking task, subjects were asked to track a horizontally moving dot on the screen by pressing right and left keys with their right hand. In the tone-counting task, 20 tones were presented at pseudo-random intervals in a 30 second period. Tones could either be high or low; subjects were instructed to only count high tones (10-17 per trial). During the tone-counting task a fixation cross was presented in the center of the screen, subjects were asked to give a response after the trial. In the single task and in the tone-counting & n-back condition this response was given with the right hand, in the tone-counting & tracking condition it was given with the left hand. In the n-back task a stream of letters was presented on the screen. Each letter was displayed for 1000 ms, followed by a 1500 ms blank between letters. For each letter, subjects had to indicate whether it was the same or different as the letter 2-back, using their left hands. In the dual-task conditions, both tasks were displayed on the screen at the same time. Trials lasted 30 seconds in all conditions, followed by a 10 second response period in the tone-counting conditions. This corresponds to a total of 20 2-second fmri scans. For details on subjects, stimuli, and procedure, see Nijboer et al. (2013). Results We will discuss the results on a module-by-module basis. For each module, we will discuss model predictions and results in the original and in the new ROI. To generate model predictions we used the model of Nijboer et al. (2013). The model predictions were generated before the experiment was run; no attempt was made at fitting the predictions to the results. This makes it an unbiased and therefore suitable dataset for comparing the performance of the original and the new ROIs. Figure 3 shows the results for the problem state, declarative memory, aural, and visual modules; Figure 4 shows the results for the right and left manual modules. R 2 -values are reported in the figures. Problem State ACT-R s problem state module is used for maintaining information that is necessary to perform a task (e.g., Anderson, 2007; Borst et al., 2010). It can contain one chunk of information at a time and is similar in that respect to working memory in recent theories (e.g., Oberauer, 2009).
4 Problem State Declarative Memory Aural Visual Data-driven Mapping Predefined Mapping Model Predictions R 2 =.06 R 2 = R 2 =.19 R 2 = R 2 =.38 R 2 =.09 R 2 =.60 R 2 =.09 N-back Tracking Tone counting N-back & Tracking N-back & Tone counting Tone counting & Tracking Figure 3. Model predictions and results for the problem state, declarative memory, aural, and visual modules. The model assumed that the problem state module was required for the n-back task and for the dual-task conditions involving the n-back task. For n-back & tone counting it predicted additional activity (see Nijboer et al., 2013, for details). The original, predefined ROI indeed showed activity for all conditions involving the n-back task. In addition, it showed an increase at the end of the trial for conditions involving tone counting, which is probably related to giving a response for this task. The new, datadriven ROI shows a similar pattern, except that the conditions were more clearly separated. That is, especially n-back & tone counting maintained activity throughout the trial. Neither ROI showed any evidence of the predicted large increase in the n-back and tone-counting condition (indicating that the model should be improved, see Nijboer et al., 2013). Declarative Memory Declarative memory is ACT-R s memory for facts. Activity in the ROI is assumed to reflect retrieving facts from memory, not passive storage. The model predicted a very similar pattern for declarative memory as for the problem state. It expected considerable activity in the various n-back conditions, and a very small amount of activity in the tonecounting conditions (related to retrieving counting facts from memory). Both the predefined and the new ROI show activity for the n-back conditions, and some activity for the tonecounting conditions. The results in the new ROI seem slightly cleaner, with higher activity levels overall, and therefore a little more activity in the tone-counting conditions. The differences were minor, however. Aural The aural module processes sounds. In the current model it was used to listen to the tones and determine whether they were high or low. Both the original and the new ROI showed a clear response to the tone-counting conditions. However, the new ROI showed sustained activity levels, while the levels returned to baseline halfway the trial in the original ROI for the dual-task conditions. In addition, the conditions not involving sounds were more closely together in the new ROI, thereby presenting a clearer separation between conditions with and without sound.
5 Visual The visual module is used for processing visual stimuli. According to the model, it is activated most in the tracking task, to a lesser extent in the n-back task, and not at all in the tone-counting task. The results in both ROIs were dissimilar from the predictions. N-back & tracking reached the highest activation levels in the original ROI. In addition, the original ROI showed intermediate activity levels for n- back and tracking separately, and almost none or negative activity for the conditions involving tone counting. These results were not present in the new ROI, which seemed to exclusively reflect tracking activity. Manual Figure 4 shows the results for the manual module, separately for the left and the right hand of the model. Note that right-handed responses (tracking) will be reflected in the left motor cortex, and left-handed responses (n-back) in the right motor cortex. The final response in the tonecounting task was given with the right hand in the single task and tone counting & n-back conditions, and with the left hand in the tone counting & tracking condition. We therefore expected a late peak for the single tone-counting and tone counting & n-back conditions in the left motor cortex, and for tone counting & tracking in the right motor cortex. The model predictions reflect these considerations. The results in the original, predefined ROI matched this pattern closely. The results in the new ROI, on the other hand, did not: most conditions show some activity in the left ROI. However, the alternative ROI, based on voxels in the precentral gyrus, did reflect the model predictions closely. It was very similar to the predefined mapping, but showed a less negative response in conditions that did not use the respective hands. Discussion The results in the new, data-driven ROIs were in general similar to the results in the original, predefined ROIs. This was not unexpected, given that the predefined ROIs have been applied successfully in a large number of studies. Although the differences were relatively minor, the new ROIs present a more principled, data-driven mapping of ACT-R on the brain, which follows anatomical brain structures. In addition, the new ROIs for the problem state, declarative memory, and aural modules were better at differentiating between the different conditions of the experiment. The BOLD response in the new manual ROI, based on all voxels, fitted badly to the model predictions. However, when we restricted the voxels to the precentral gyrus it also matched slightly better to the model predictions than the original ROI. The results in the new visual ROI were clearly different from the results in the original ROI. Whereas the BOLD response in the original ROI responded both to the n-back and tracking conditions, the new ROI responded exclusively to the tracking task. It seems that the new ROI is only involved in visual-spatial perception, whereas the original R 2 =.85 R 2 =.42 R 2 =.88 N-back Tracking Tone counting N-back & Tracking N-back & Tone counting Tone counting & Tracking Figure 4. Model predictions and results for the manual module. ROI also reflected detailed processing of the letters in the n- back task. The regions in the respective ROIs indeed correspond to the dorsal where and ventral what streams of visual perception (e.g., Haxby et al., 1991; Mishkin, Ungerleider, & Macko, 1983). Because there is no ground truth, it was difficult to compare the two mappings (note that we do no claim that these are the only regions reflecting the modules processing, and neither that these regions exclusively reflect the modules). In the current paper we used a priori model predictions as a way of comparing the performance of the two mappings. However, the model is obviously not perfect (for instance, neither mapping reflected the predicted R 2 =.50 R 2 =.47 R 2 =.55
6 activity in the problem state and declarative memory modules; see Nijboer et al., 2013, for a discussion on the model). We therefore judged the mappings both on how well they matched the model predictions, and how well they could differentiate between the different conditions. Although the presented results are specific to the ACT-R cognitive architecture, we have shown that the methodology itself worked well. The methodology can be used for any cognitive architecture or model, and provides a powerful way of constraining and guiding modeling efforts. In conclusion, we would recommend using the new ROIs for the problem state, declarative memory, aural, and manual (based on the precentral gyrus) modules. With respect to the visual module it seems better to use the original predefined ROI in the fusiform gyrus, at least for ACT-R s visual module. However, given that the new ROI seems to reflect visual-spatial activity, it might be used as an ROI for ACT-Rs visual-location buffer, which has not been mapped onto a brain region up to now. References Anderson, J. R. (2007). How Can the Human Mind Occur in the Physical Universe? New York: Oxford University Press. Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. (2008). A central circuit of the mind. Trends Cogn Sci, 12(4), doi: /j.tics Borst, J. P., & Anderson, J. R. (2013a). Using the Cognitive Architecture ACT-R in combination with fmri data. In B. U. Forstmann & E.-J. Wagenmakers (Eds.), Model- Based Cognitive Neuroscience. Springer. Borst, J. P., & Anderson, J. R. (2013b). Using Model-Based functional MRI to locate Working Memory Updates and Declarative Memory Retrievals in the Fronto-Parietal Network. Proceedings of the National Academy of Sciences USA, 110(5), Borst, J. P., Taatgen, N. A., Stocco, A., & Van Rijn, H. (2010). The Neural Correlates of Problem States: Testing fmri Predictions of a Computational Model of Multitasking. PLoS ONE, 5(9), e Borst, J. P., Taatgen, N. A., & Van Rijn, H. (2011). Using a Symbolic Process Model as input for Model-Based fmri Analysis: Locating the Neural Correlates of Problem State Replacements. NeuroImage, 58(1), doi: /j.neuroimage Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using an SPM toolbox. NeuroImage, 16(2). Daw, N. D., O Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., & Penny, W. D. (2007). Statistical Parametric Mapping. The Analysis of Functional Brain Images. Academic Press. Gläscher, J. P., & O Doherty, J. P. (2010). Model-based approaches to neuroimaging: combining reinforcement learning theory with fmri data. Wiley Interdisciplinary Reviews: Cognitive Science, 1(4), Gluth, S., Rieskamp, J., & Büchel, C. (2012). Deciding When to Decide: Time-Variant Sequential Sampling Models Explain the Emergence of Value-Based Decisions in the Human Brain. The Journal of Neuroscience, 32(31), Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., Rapoport, S. I. (1991). Dissociation of Object and Spatial Visual Processing Pathways in Human Extrastriate Cortex. Proceedings of the National Academy of Sciences USA, 88(5), Just, M. A., & Varma, S. (2007). The organization of thinking: what functional brain imaging reveals about the neuroarchitecture of complex cognition. Cognitive, Affective, & Behavioral Neuroscience, 7(3), Marewski, J. N., & Mehlhorn, K. (2011). Using the ACT-R architecture to specify 39 quantitative process models of decision making. Judgment and Decision Making, 6(6), Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object Vision and Spatial Vision: two Cortical Pathways. Trends in Neurosciences, 6, Myung, I. (2000). The Importance of Complexity in Model Selection. Journal of Mathematical Psychology, 44(1), Nijboer, M., Borst, J. P., Taatgen, N. A., & Van Rijn, H. (2013). Predicting Interference in Concurrent Multitasking. In R. West & T. Stewart (Eds.), Proceedings of the 12th International Conference on Cognitive Modeling. Ottawa, Canada. Oberauer, K. (2009). Design for a working memory. In B. H. Ross (Ed.), Psychology of Learning and Motivation (Vol. 51, pp ). Academic Press. Pitt, M., & Myung, I. (2002). When a good fit can be bad. Trends in Cognitive Sciemce, 6(10), Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107(2), Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human Factors, 48(2), Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), doi: /nimg Van Maanen, L., Brown, S. D., Eichele, T., Wagenmakers, E.-J., Ho, T., Serences, J., & Forstmann, B. U. (2011). Neural correlates of trial-to-trial fluctuations in response caution. The Journal of Neuroscience, 31(48), doi: /jneurosci
NEURO M203 & BIOMED M263 WINTER 2014
NEURO M203 & BIOMED M263 WINTER 2014 MRI Lab 1: Structural and Functional Anatomy During today s lab, you will work with and view the structural and functional imaging data collected from the scanning
Subjects: Fourteen Princeton undergraduate and graduate students were recruited to
Supplementary Methods Subjects: Fourteen Princeton undergraduate and graduate students were recruited to participate in the study, including 9 females and 5 males. The mean age was 21.4 years, with standard
Cognitive Neuroscience. Questions. Multiple Methods. Electrophysiology. Multiple Methods. Approaches to Thinking about the Mind
Cognitive Neuroscience Approaches to Thinking about the Mind Cognitive Neuroscience Evolutionary Approach Sept 20-22, 2004 Interdisciplinary approach Rapidly changing How does the brain enable cognition?
MarsBaR Documentation
MarsBaR Documentation Release 0.44 Matthew Brett March 17, 2016 CONTENTS 1 About MarsBaR 3 1.1 Citing MarsBaR............................................. 3 1.2 Thanks..................................................
2 Neurons. 4 The Brain: Cortex
1 Neuroscience 2 Neurons output integration axon cell body, membrane potential Frontal planning control auditory episodes soma motor Temporal Parietal action language objects space vision Occipital inputs
Function (& other notes)
LAB 8. ANATOMY OF THE HUMAN BRAIN In this exercise you each will map the human brain both anatomy and function so that you can develop a more accurate picture of what s going on in your head :-) EXTERNAL
THE HUMAN BRAIN. observations and foundations
THE HUMAN BRAIN observations and foundations brains versus computers a typical brain contains something like 100 billion miniscule cells called neurons estimates go from about 50 billion to as many as
Obtaining Knowledge. Lecture 7 Methods of Scientific Observation and Analysis in Behavioral Psychology and Neuropsychology.
Lecture 7 Methods of Scientific Observation and Analysis in Behavioral Psychology and Neuropsychology 1.Obtaining Knowledge 1. Correlation 2. Causation 2.Hypothesis Generation & Measures 3.Looking into
An fmri study on reading Hangul and Chinese Characters by Korean Native Speakers
언 어 치 료 연 구, 제14 권 제4호 Journal of Speech & Hearing Disorders 2005, Vol.14, No.4, 29 ~ 36 An fmri study on reading Hangul and Chinese Characters by Korean Native Speakers Hyo-Woon Yoon(Brain Science Research
The Effects of Musical Training on Structural Brain Development
THE NEUROSCIENCES AND MUSIC III: DISORDERS AND PLASTICITY The Effects of Musical Training on Structural Brain Development A Longitudinal Study Krista L. Hyde, a Jason Lerch, b Andrea Norton, c Marie Forgeard,
Visual Attention and Emotional Perception
Visual Attention and Emotional Perception Luiz Pessoa 1 and Leslie G. Ungerleider 2 (1) Department of Psychology, Brown University, Providence, RI (2) Laboratory of Brain & Cognition, National Institute
7 The use of fmri. to detect neural responses to cognitive tasks: is there confounding by task related changes in heart rate?
7 The use of fmri to detect neural responses to cognitive tasks: is there confounding by task related changes in heart rate? This chapter is submitted as: D. van t Ent, A. den Braber, E. Rotgans, E.J.C.
Levels of Analysis and ACT-R
1 Levels of Analysis and ACT-R LaLoCo, Fall 2013 Adrian Brasoveanu, Karl DeVries [based on slides by Sharon Goldwater & Frank Keller] 2 David Marr: levels of analysis Background Levels of Analysis John
Overlapping mechanisms of attention and spatial working memory
Review 119 Overlapping mechanisms of attention and spatial working memory Edward Awh and John Jonides Spatial selective attention and spatial working memory have largely been studied in isolation. Studies
Anna Martelli Ravenscroft
Left vs Right processing of & Place in fovea & periphery Psych204b Background: Anna Martelli Ravenscroft Vision depends on multiple regions of the brain, from the specialized photoreceptors of the retina,
Effects of long-term practice and task complexity on brain activities when performing abacus-based mental calculations: a PET study
Eur J Nucl Med Mol Imaging (2009) 36:436 445 DOI 10.1007/s00259-008-0949-0 ORIGINAL ARTICLE Effects of long-term practice and task complexity on brain activities when performing abacus-based mental calculations:
MRI DATA PROCESSING. Compiled by: Nicolas F. Lori and Carlos Ferreira. Introduction
MRI DATA PROCESSING Compiled by: Nicolas F. Lori and Carlos Ferreira Introduction Magnetic Resonance Imaging (MRI) is a clinical exam that is safe to the patient. Nevertheless, it s very important to attend
Life Interests and Values (LIV) cards
Life Interests and Values (LIV) cards www.liv.org Pictoral support for individuals with restricted communication ability to indicate activities and life participation which is most relevant to them 24
RESTing-state fmri data analysis toolkit (REST) Manual
ing-state fmri data analysis toolkit (REST) Manual Xiaowei Song 1, Xiangyu Long 1, Yufeng Zang 1 1 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875,
Video-Based Eye Tracking
Video-Based Eye Tracking Our Experience with Advanced Stimuli Design for Eye Tracking Software A. RUFA, a G.L. MARIOTTINI, b D. PRATTICHIZZO, b D. ALESSANDRINI, b A. VICINO, b AND A. FEDERICO a a Department
The Wondrous World of fmri statistics
Outline The Wondrous World of fmri statistics FMRI data and Statistics course, Leiden, 11-3-2008 The General Linear Model Overview of fmri data analysis steps fmri timeseries Modeling effects of interest
ACT-R: A cognitive architecture. Terese Liadal [email protected] Seminar AI Tools Universität des Saarlandes, Wintersemester 06/07
ACT-R: A cognitive architecture Terese Liadal [email protected] Seminar AI Tools Universität des Saarlandes, Wintersemester 06/07 Dozenten: A. Ndiaye, M. Kipp, D. Heckmann, M. Feld 1 If the brain were
CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS.
CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS. 6.1. CONNECTIONS AMONG NEURONS Neurons are interconnected with one another to form circuits, much as electronic components are wired together to form a functional
An Introduction to ERP Studies of Attention
An Introduction to ERP Studies of Attention Logan Trujillo, Ph.D. Post-Doctoral Fellow University of Texas at Austin Cognitive Science Course, Fall 2008 What is Attention? Everyone knows what attention
MICHAEL S. PRATTE CURRICULUM VITAE
MICHAEL S. PRATTE CURRICULUM VITAE Department of Psychology 301 Wilson Hall Vanderbilt University Nashville, TN 37240 Phone: (573) 864-2531 Email: [email protected] www.psy.vanderbilt.edu/tonglab/web/mike_pratte
It s All in the Brain!
It s All in the Brain! Presented by: Mari Hubig, M.Ed. 0-3 Outreach Coordinator Educational Resource Center on Deafness What is the Brain? The brain is a muscle In order to grow and flourish, the brain
NeuroImage xxx (2010) xxx xxx. Contents lists available at ScienceDirect. NeuroImage. journal homepage: www.elsevier.
YNIMG-07011; No. of pages: 12; 4C: NeuroImage xxx (2010) xxx xxx Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Delineating self-referential processing
Using Neuroscience to Understand the Role of Direct Mail
Millward Brown: Case Study Using Neuroscience to Understand the Role of Direct Mail Business Challenge Virtual media has experienced explosive growth in recent years, while physical media, such as print
Visual area MT responds to local motion. Visual area MST responds to optic flow. Visual area STS responds to biological motion. Macaque visual areas
Visual area responds to local motion MST a Visual area MST responds to optic flow MST a Visual area STS responds to biological motion STS Macaque visual areas Flattening the brain What is a visual area?
Neural Effects of Expert Acquisition in Working Memory
The Journal of Neuroscience, October 25, 2006 26(43):11187 11196 11187 Behavioral/Systems/Cognitive Neural Mechanisms of Expert Skills in Visual Working Memory Christopher D. Moore, 1,2 Michael X. Cohen,
Neuroimaging module I: Modern neuroimaging methods of investigation of the human brain in health and disease
1 Neuroimaging module I: Modern neuroimaging methods of investigation of the human brain in health and disease The following contains a summary of the content of the neuroimaging module I on the postgraduate
Journal of Serendipitous and Unexpected Results
Journal of Serendipitous and Unexpected Results Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction Craig M.
Agent Simulation of Hull s Drive Theory
Agent Simulation of Hull s Drive Theory Nick Schmansky Department of Cognitive and Neural Systems Boston University March 7, 4 Abstract A computer simulation was conducted of an agent attempting to survive
The Effects of Moderate Aerobic Exercise on Memory Retention and Recall
The Effects of Moderate Aerobic Exercise on Memory Retention and Recall Lab 603 Group 1 Kailey Fritz, Emily Drakas, Naureen Rashid, Terry Schmitt, Graham King Medical Sciences Center University of Wisconsin-Madison
Auditory memory and cerebral reorganization in post-linguistically deaf adults
Auditory memory and cerebral reorganization in post-linguistically deaf adults Implications for cochlear implantation outcome D Lazard, HJ Lee, E Truy, AL Giraud Ecole Normale Supérieure, Inserm U960,
DISSECTION OF THE SHEEP'S BRAIN
DISSECTION OF THE SHEEP'S BRAIN Introduction The purpose of the sheep brain dissection is to familiarize you with the threedimensional structure of the brain and teach you one of the great methods of studying
Brain and Cognition. Brain responses differ to faces of mothers and fathers
Brain and Cognition 74 (2010) 47 51 Contents lists available at ScienceDirect Brain and Cognition journal homepage: www.elsevier.com/locate/b&c Brain responses differ to faces of mothers and fathers Marie
NeuroImage. Taking perspective into account in a communicative task. Iroise Dumontheil a,, Olivia Küster a, Ian A. Apperly b, Sarah-Jayne Blakemore a
NeuroImage 52 (2010) 1574 1583 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Taking perspective into account in a communicative task Iroise Dumontheil
Vision: Receptors. Modes of Perception. Vision: Summary 9/28/2012. How do we perceive our environment? Sensation and Perception Terminology
How do we perceive our environment? Complex stimuli are broken into individual features, relayed to the CNS, then reassembled as our perception Sensation and Perception Terminology Stimulus: physical agent
Software Packages The following data analysis software packages will be showcased:
Analyze This! Practicalities of fmri and Diffusion Data Analysis Data Download Instructions Weekday Educational Course, ISMRM 23 rd Annual Meeting and Exhibition Tuesday 2 nd June 2015, 10:00-12:00, Room
Sheep Brain Dissection Picture Guide
Sheep Brain Dissection Picture Guide Figure 1: Right Hemisphere of Sheep s Brain Figure 2: Underside of Sheep s Brain Figure 3: Saggital cut of Sheep s Brain to reveal subcortical structures Figure 4:
NeuroImage 79 (2013) 1 9. Contents lists available at SciVerse ScienceDirect. NeuroImage. journal homepage: www.elsevier.
NeuroImage 79 (2013) 1 9 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Selectivity for large nonmanipulable objects in scene-selective visual
Decoding mental states from brain activity in humans
NEUROIMAGING Decoding mental states from brain activity in humans John-Dylan Haynes* and Geraint Rees Abstract Recent advances in human neuroimaging have shown that it is possible to accurately decode
Brain Function, Spell Reading, and Sweep-Sweep-Spell by Abigail Marshall, March 2005
Brain Function, Spell Reading, and Sweep-Sweep-Spell by Abigail Marshall, March 2005 This is not phonics or a phonetic process; it is simply letter and word recognition. Ronald D. Davis T wo of the most
Brain areas underlying visual mental imagery and visual perception: an fmri study
Cognitive Brain Research 20 (2004) 226 241 Research report Brain areas underlying visual mental imagery and visual perception: an fmri study Giorgio Ganis a,b,c, *, William L. Thompson a, Stephen M. Kosslyn
The neural origins of specific and general memory: the role of the fusiform cortex
Neuropsychologia 43 (2005) 847 859 The neural origins of specific and general memory: the role of the fusiform cortex Rachel J. Garoff, Scott D. Slotnick, Daniel L. Schacter Department of Psychology, Harvard
CELL PHONE INDUCED PERCEPTUAL IMPAIRMENTS DURING SIMULATED DRIVING
CELL PHONE INDUCED PERCEPTUAL IMPAIRMENTS DURING SIMULATED DRIVING David L. Strayer, Frank A. Drews, Robert W. Albert, and William A. Johnston Department of Psychology University of Utah Salt Lake City,
PRIMING OF POP-OUT AND CONSCIOUS PERCEPTION
PRIMING OF POP-OUT AND CONSCIOUS PERCEPTION Peremen Ziv and Lamy Dominique Department of Psychology, Tel-Aviv University [email protected] [email protected] Abstract Research has demonstrated
Functional neuroimaging. Imaging brain function in real time (not just the structure of the brain).
Functional neuroimaging Imaging brain function in real time (not just the structure of the brain). The brain is bloody & electric Blood increase in neuronal activity increase in metabolic demand for glucose
Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex
doi:10.1093/scan/nst097 SCAN (2014) 9,1175^1184 Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex Corrado Corradi-Dell
The Capacity of Visual Short- Term Memory Is Set Both by Visual Information Load and by Number of Objects G.A. Alvarez and P.
PSYCHOLOGICAL SCIENCE Research Article The Capacity of Visual Short- Term Memory Is Set Both by Visual Information Load and by Number of Objects G.A. Alvarez and P. Cavanagh Harvard University ABSTRACT
Partial Least Squares (PLS) Regression.
Partial Least Squares (PLS) Regression. Hervé Abdi 1 The University of Texas at Dallas Introduction Pls regression is a recent technique that generalizes and combines features from principal component
Bootstrapping Big Data
Bootstrapping Big Data Ariel Kleiner Ameet Talwalkar Purnamrita Sarkar Michael I. Jordan Computer Science Division University of California, Berkeley {akleiner, ameet, psarkar, jordan}@eecs.berkeley.edu
MEDIMAGE A Multimedia Database Management System for Alzheimer s Disease Patients
MEDIMAGE A Multimedia Database Management System for Alzheimer s Disease Patients Peter L. Stanchev 1, Farshad Fotouhi 2 1 Kettering University, Flint, Michigan, 48504 USA [email protected] http://www.kettering.edu/~pstanche
Independence of Visual Awareness from the Scope of Attention: an Electrophysiological Study
Cerebral Cortex March 2006;16:415-424 doi:10.1093/cercor/bhi121 Advance Access publication June 15, 2005 Independence of Visual Awareness from the Scope of Attention: an Electrophysiological Study Mika
NeuroImage 49 (2010) 994 1005. Contents lists available at ScienceDirect. NeuroImage. journal homepage: www.elsevier.
NeuroImage 49 (2010) 994 1005 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg CNS activation and regional connectivity during pantomime observation:
Network Analysis I & II
Network Analysis I & II Dani S. Bassett Department of Physics University of California Santa Barbara Outline Lecture One: 1. Complexity in the Human Brain from processes to patterns 2. Graph Theory and
Cortical Visual Impairment An introduction
Cortical Visual Impairment An introduction This is a general introduction to Cortical Visual Impairment intended for families and support workers who may live with or support children and adults with learning
Learning with Your Brain. Teaching With the Brain in Mind
Learning with Your Brain Should what (and how) we teach be associated with what we know about the brain and the nervous system? Jonathan Karp, Ph.D. Dept of Biology 5/20/2004 Teaching With the Brain in
Skill acquisition. Skill acquisition: Closed loop theory Feedback guides learning a motor skill. Problems. Motor learning practice
Motor learning theories closed loop theory schema theory hierarchical theory Skill acquisition Motor learning practice Fitt s three stages motor imagery physical changes Skill acquisition: Closed loop
Recoding, storage, rehearsal and grouping in verbal short-term memory: an fmri study p
Neuropsychologia 38 (2000) 426±440 www.elsevier.com/locate/neuropsychologia Recoding, storage, rehearsal and grouping in verbal short-term memory: an fmri study p R.N.A. Henson a, b, *, N. Burgess b, c,
Education and the Brain: A Bridge Too Far John T. Bruer. Key Concept: the Human Brain and Learning
Education and the Brain: A Bridge Too Far John T. Bruer Key Concept: the Human Brain and Learning John T. Bruer Scholar in cognitivist approaches to human learning and instruction. His argument refers
Figure 1 Typical BOLD response to a brief stimulus.
Temporal BOLD Characteristics and Non-Linearity Douglas C. Noll, Alberto Vazquez Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA Introduction While many early neuroimaging studies
Masters research projects. 1. Adapting Granger causality for use on EEG data.
Masters research projects 1. Adapting Granger causality for use on EEG data. Background. Granger causality is a concept introduced in the field of economy to determine which variables influence, or cause,
The effect of multitasking on the grade performance of business students
Research in Higher Education Journal The effect of multitasking on the grade performance of business students Abstract Yvonne Ellis Columbus State University Bobbie Daniels Jackson State University Andres
The Stroop effect in kana and kanji scripts in native Japanese speakers: An fmri study
Available online at www.sciencedirect.com Brain & Language 107 (2008) 124 132 www.elsevier.com/locate/b&l The Stroop effect in kana and kanji scripts in native Japanese speakers: An fmri study Emily L.
Neural correlates of consciousness
Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Cognitive Neuroscience Geraint Rees UCL Institute of Cognitive Neuroscience and Wellcome Trust Centre for
The Visual Cortex 0 http://www.tutis.ca/neuromd/index.htm 20 February 2013
T he Visual Cortex 0 Chapter contents Contents Chapter 2... 0 T he Visual Cortex... 0 Chapter Contents... 1 Introduction... 2 Optic Chiasm... 2 Where do the eye's ganglion cells project to?... 3 To where
How are Parts of the Brain Related to Brain Function?
How are Parts of the Brain Related to Brain Function? Scientists have found That the basic anatomical components of brain function are related to brain size and shape. The brain is composed of two hemispheres.
Your Brain on Google: Patterns of Cerebral Activation during Internet Searching
REGULAR RESEARCH ARTICLES Your Brain on Google: Patterns of Cerebral Activation during Internet Searching Gary W. Small, M.D., Teena D. Moody, Ph.D., Prabha Siddarth, Ph.D., Susan Y. Bookheimer, Ph.D.
Using hemispheric preference as a predictor of success in a limited-residency information systems doctoral program
Using hemispheric preference as a predictor of success in a limited-residency information systems doctoral program Steven R. Terrell, Nova Southeastern University, [email protected] Abstract Due to the
Appendix 4 Simulation software for neuronal network models
Appendix 4 Simulation software for neuronal network models D.1 Introduction This Appendix describes the Matlab software that has been made available with Cerebral Cortex: Principles of Operation (Rolls
Validating cluster size inference: random field and permutation methods
NeuroImage 20 (2003) 2343 2356 www.elsevier.com/locate/ynimg Validating cluster size inference: random field and permutation methods Satoru Hayasaka and Thomas E. Nichols* Department of Biostatistics,
Data Analysis Methods: Net Station 4.1 By Peter Molfese
Data Analysis Methods: Net Station 4.1 By Peter Molfese Preparing Data for Statistics (preprocessing): 1. Rename your files to correct any typos or formatting issues. a. The General format for naming files
MODELING AND PREDICTION OF HUMAN DRIVER BEHAVIOR
MODELING AND PREDICTION OF HUMAN DRIVER BEHAVIOR Andrew Liu and Dario Salvucci* MIT Man Vehicle Laboratory, Rm 37-219, 77 Massachusetts Ave., Cambridge, MA 02139 *Nissan Cambridge Basic Research, 4 Cambridge
2401 : Anatomy/Physiology
Dr. Chris Doumen Week 7 2401 : Anatomy/Physiology The Brain Central Nervous System TextBook Readings Pages 431 through 435 and 463-467 Make use of the figures in your textbook ; a picture is worth a thousand
RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 29 (2008) Indiana University
RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 29 (2008) Indiana University A Software-Based System for Synchronizing and Preprocessing Eye Movement Data in Preparation for Analysis 1 Mohammad
Processing Strategies for Real-Time Neurofeedback Using fmri
Processing Strategies for Real-Time Neurofeedback Using fmri Jeremy Magland 1 Anna Rose Childress 2 1 Department of Radiology 2 Department of Psychiatry University of Pennsylvania School of Medicine MITACS-Fields
[email protected] 2005 2009 Tulsa Community College (Associate of Arts -Psychology)
Curriculum Vitae Personal Information Surname: Given Name: Trujillo James Paul Address: Paulinastraat 62 Postal code, city and country: Email: 2595GK, Den Haag, NL [email protected] Date of birth:
