Magneto-Optical Studies on Internal Photovoltaic Processes in Organic Solar Cells



Similar documents
Organic semiconductors

High and Low Bandgap Polyfluorene Copolymers for Organic Solar Cells Xiwen Chen

Exciton dissociation in solar cells:

Enhanced Charge Separation in Organic Photovoltaic Films Doped with Ferroelectric Dipoles. Supporting Information

POLYMER BASED PHOTOVOLTAICS

Understanding Organic Photovoltaic Cells: Electrode, Nanostructure, Reliability, and Performance. Myung-Su Kim

Interface Design to improve stability of polymer solar cells for potential space applications

Effect of 2D delocalization on charge. R. Österbacka

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Les Matériaux Accepteurs pour les Cellules Solaires Organiques

ac Impedance Characteristics and Modeling of Polymer Solution Light-Emitting Devices

Celle solari di terza generazione (a fotosintesi )

Chapter 8. Exciton solar cells ORGANIC SOLAR CELLS

Project 2B Building a Solar Cell (2): Solar Cell Performance

Solar Cell Parameters and Equivalent Circuit

Dependence of the characteristics of organic solar cells on cathode polymer interface

EE 332 Photovoltaic Cell Design Iowa State University Electrical and Computer Engineering Dept

High Efficiency Black Polymer Solar Cells November 2012 Annual Report

Materials for Organic Electronic. Jeremy Burroughes FRS FREng

Stability and degradation mechanisms. in organic solar cells

Timothy M. Burke, Sean Sweetnam, Koen Vandewal, and Michael D. McGehee* FULL PAPER. 1. Introduction. 2. Background Information

Ricerca su celle fotovoltaiche innovative

Electrochemical Impedance Spectroscopy (EIS): A Powerful and Cost- Effective Tool for Fuel Cell Diagnostics

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria

SPFraphene Determination Analysis and Its Structure

Conjugated Polymers for Optoelectronic Applications

sensors ISSN

CELL POTENTIAL, E. Terms Used for Galvanic Cells. Uses of E o Values CELL POTENTIAL, E. Galvanic Cell. Organize halfreactions

LN240(30)P-3-xxx ( W poly)

Laserbearbeitung von dünnen Schichten auf Rolle-zu-Rolle-Anlagen

Spectral Characterisation of Photovoltaic Devices Technical Note

Exciton Fission & Solar energy conversion beyond the limit. Xiaoyang Zhu, Columbia University 1

Improving power efficiencies in polymer polymer blend photovoltaics

Vega Spans and NiOx-TX Spans

A Review of Charge Transport and Recombination in Polymer/Fullerene Organic Solar Cells

Exciton Diffusion. Exciton Diffusion

Solution-processed charge extraction interlayers and electrodes for organic solar cells

The Current status of Korean silicon photovoltaic industry and market Sangwook Park LG Electronics Inc.

Development and application of novel multiscale modeling techniques for studying the loss processes in polymer solar cell nanodevices

GEOMETRIC CHARACTERIZATION AND OPTIMIZATION OF 3D ORGANIC FLEXIBLE SOLAR CELLS. A Thesis. Presented to the. Faculty of. San Diego State University

Chapter 2 Solution-Processed Organic Photovoltaics

III. Reaction Kinetics

New materials for PV Mirjam Theelen

Light Trapping in Organic Solar Cells

An organic semiconductor is an organic compound that possesses similar

ES Program ORNL. Michael R. Starke, PhD Oak Ridge National Laboratory Power and Energy Systems Energy & Transportation Science Division

MADRISOLAR. Nazario Martín (UCM) Tomás Torres (UAM) Manuel Yáñez (UCM) Ibón Alkorta (CSIC)

Applied Physics of solar energy conversion

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

Chapter 1. Introduction of Electrochemical Concepts

Implementation of High Step-Up Solar Power Optimizer for DC Micro Grid Application

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

Esnek Güneş Pilleri ve Fotovoltaik Tekstiller

XRaySwitchingStudyonThinFilmSiliconPhotovoltaicSolarPanel

Morphology and material stability in polymer solar cells

Aspects of an introduction to photochemistry

Excited state interaction in P-OLEDS implications for efficiency and lifetime

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30

OLED - Technologie der Zukunft

Competition between the charge transfer state and the singlet states of donor or acceptor limiting the efficiency in polymer:fullerene solar cells

Low-cost Printed Electronic Nose Gas Sensors for Distributed Environmental Monitoring

"Os Avanços na P&D em Células Solares Orgânicas no Brasil"

Optimizing performance and understanding stability issues in polymer:fullerene solar cells

Photoinduced volume change in chalcogenide glasses

Charge generation in polymer-fullerene bulkheterojunction

Arizona Institute for Renewable Energy & the Solar Power Laboratories

Solar Solutions and Large PV Power Plants. Oscar Araujo Business Development Director - Americas

Light management for photovoltaics using surface nanostructures

Introduction to OLED technology 1. General characteristics

High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons

ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely

The Physics of Energy sources Renewable sources of energy. Solar Energy

CHAPTER 21 ELECTROCHEMISTRY

Merocyanine Dyes as Donor Materials in Vacuum-Deposited Organic Solar Cells: Insights into Structure-Property-Performance Relationships

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

R&D from material preparation up to next generation manufacturing: opportunities for local companies

and LUMINOUS CHEMICAL VAPOR DEPOSITION INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A.

ITO PPA. Aluminum Electrode. Substrate ITO PPA. Substrate

Bulk-heterojunction Hybrid Solar Cells Based on Colloidal CdSe Quantum Dots and Conjugated Polymers

PV in Baltic Eco-energy Cluster

Solar PV Cells Free Electricity from the Sun?

Computer Simulations of Edge Effects in a Small-Area Mesa N-P Junction Diode

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

Solar Energy Discovery Lab

ANALYSIS 2: Photovoltaic Glass Replacement

Architectures for Improved Organic Semiconductor Devices. Jonathan H. Beck

Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

The Status and Outlook for the Photovoltaics Industry. David E. Carlson March 14, 2006

Solar Hydrogen Generation For Energy Storage. Laura Meda Istituto eni-donegani Via Fauser 4, Novara

Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar

Solar Hydrogen Generation For Energy Storage

The strength of the interaction

Photoelectrocatalytic Treatment and By-Product Formantion

OLED display. Ying Cao

Diodes and Transistors

Microstockage d énergie Les dernières avancées. S. Martin (CEA-LITEN / LCMS Grenoble)

Electronic transport properties of nano-scale Si films: an ab initio study

PSIM Tutorial. How to Use Solar Module Physical Model Powersim Inc.

en fi lm af Zhang Yang instruktøren bag den kinesiske fi lmperle Badeanstalten Premiere 31. oktober

Transcription:

Magneto-Optical tudies on Internal Photovoltaic Processes in Organic olar Cells Bin Hu Department of Materials cience and Engineering University of Tennessee, Knoxville Wu Han National Laboratory for Optoelectronics Huazhong University of cience and Technology

Content: I. Overview II. Recent progress III. Perspective Topics: Excited states Inter-molecular interface Electrode interface

ITO Metal Interface issues in organic solar cells Inter-molecular interface Exciton D:A interface dissociation Exciton Device interface OCH 3 O C 60 PCBM Polymer chain Polymer chain Binding energy at D:A interface Charge collection at electrode interface

Inter-molecular interface: Overview Two necessary conditions: 1. Interfacial electrical polarization to break excitons 2. Interfacial energy offsets to facilitate exciton dissociation Two key questions: 1. At D:A interface, are electrons and holes bound? 2. What control the binding energy of e-h pairs at D:A interface?

Experimental tools to study D:A interface Light absorption Exciton Charge-transfer complex LUMO Polymer chain C 60 HOMO Donor CT complex LUMO HOMO Acceptor PA Ab PL EL MFE PC O. Inganäs. JAC. 131, 11819, 2009 B. Hu, Adv. Func. Mater. 18, 2611, 2008

Photocurrent change (%) Our experimental tool Magnetic field effects of photocurrent: Jsc changes with B. Bin Hu, Adv. Mater. 21, 1500, 2009 Z. Xu & B. Hu, Adv. Func. Mater. 18, 2611, 2008 Magnetic field effects of photocurrent to show internal OPV processes B etup N Light ITO PV film Al olar cell Inside polymer Low field (< 200 mt) Dissociation D:A interface High field (> 200 mt) Increase inglet ratio Increase Jsc(Dissociation: e + h) Decrease triplet ratio Decrease Jsc (Charge reaction:t + C e + h) Experimental evidence: inglet MEHPPV: Only increasing component Triplet P3HT: Both increasing and decreasing components 1.5 1.0 0.5-0.5-1.0 ITO/polymer/Al MEHPPV Triplet charge reaction P3HT inglet dissociation 0 40 80 120 160

Isc change (%) Photocurrent change (%) Photocurrent change (%) Our experimental tool Magnetic field effects of photocurrent: Jsc changes with B. ITO/polymer/Al Exciton 1.5 CT MEHPPV 1.0 0.5 Triplet charge reaction P3HT -0.5 inglet dissociation -1.0 PCBM 0 40 80 120 160 Polymer chain MEHPPV: Triplet 1.2% P3HT: Triplet = high H. D. Burrows, JAC, 2003 ITO/PEDOT/P3HT+(x%)PCBM/Al 1 0-1 -2-3 0% 1% >5% 0 40 80 120 160 Low PCBM doping ignature of CT complexes 0.6 P3HT:PCBM 0.5 0.4 0.3 0.2 0.1 0 200 400 600 800 1000 High PCBM doping-real solar cell

Dissociation in polymer and D:A interface Isc P3HT:PCBM P3HT 150 mt B Inside polymer At D:A interface

Isc change (%) Isc change (%) Low-field (< 200 mt): dissociation within PV polymer New polymer versus P3HT 1.0 P3HT 0.5 PTB -0.5 R 1 OOC 0 40 80 120 160 R 2 R 2 Y. Liang, et.al. JAC. 131, 56, 2009 n 1.2 0.8 0.4-0.4-0.8 P3HT:PCBM x=0% x=5% 0 40 80 120 160 Meganetic field (mt) n-c 6 H 13 P3HT n 5% PCBM doping in P3HT is equivalent to pure PTB.

Isc change (%) Isc change (%) Photocurrent (ma/cm 2 ) Dissociation with new acceptor ICBA Information from IV curves High Voc Large Isc ITO/PEDOT/P3HT:ICBA(x)/Ca/Al 1.0 P3HT 0.5-0.5 5% ICBA 0 50 100 150 ITO/PEDOT/P3HT:x/Ca/Al 6 FF=62.4% =3.2% PCBM 0 FF=63.9% ICBA -6 =5.1% -12-0.8-0.4 0.4 0.8 Voltage (V) ITO/PEDOT/P3HT:PCBM(x)/Ca/Al 1.0 P3HT 0.5 5% PCBM -0.5 0 50 100 150 ICBA Our information:dissociation with ICBA can be further improved by 50% ICBA:partial dissociation Collaboration with Prof. Yongfang Li PCBM:complete dissociation

Isc change (%) Photocurrent change (%) PCBM doping effects on dissociation at D:A interface Exciton CT ITO/PEDOT/P3HT+(x%)PCBM/Al 1 0-1 -2-3 0% 1% >5% 0 40 80 120 160 Low PCBM doping Polymer chain PCBM ignature of CT complexes 0.6 P3HT:PCBM 0.5 0.4 0.3 0.2 0.1 0 200 400 600 800 1000 High PCBM doping: real solar cell

Binding energy at D-A interfaces Magnetic field + electric field Exciton CT Isc P3HT P3HT:PCBM - + 150 mt B Polymer chain PCBM Low field: dissociation in P3HT High field: dissociation at D:A interface Electric field dissociates CT states at D-A interfaces. + Magnetic field effects of photocurrent detect existence of CT states Binding energy of CT states

Isc (ma/cm 2 ) Isc change (%) Isc change (%) Binding energy at D:A interface in organic solar cells 2.0 1.5 1.0 0.5 PTB2:PCBM=1:1 0V -2V 0 300 600 900 Low binding energy R 1 OOC Huidong Zang, et.al., Adv. Energy. Mater. 1, 923, 2011 R 2 R 2 n 0.4 0.3 0.2 0.1 ITO/PEDOT/Polymer:PCBM/Ca/Al 10 0-10 -20 P3HT:PCBM PTB:PCBM 0.4 0.8 Voltage (V) P3HT:PCBM=1:0.8 0V -2V Annealed 0 300 600 900 Magnatic field (mt) High binding energy n-c 6 H 13 n

Perspective: D:A binding energy W A Anode Donor F D Vacuum F A Acceptor F D W C Cathode Built-in electric field e-h capture radius r Two forces: e K 2 B T Coulomb attraction + Drifting r Mobilities Energy U 1 e 4 r 2 1 2 m v e 2 e 1 2 m h v 2 h Columb interaction Kinetic Energy

Current (ma/cm 2 ) Isc (ma/cm 2 ) Interface-enhanced charge collection ITO/PEDOT/P3HT:PCBM/Ca/Al 32 24 16 8-8 0-16 0.1un FF 1 un 72 71 68 65 62-1.0-0.5 0.5 1.0 Voltage (V) 5 0-5 -10-15 -20 (a) Inverted cell (PCE:7.8%) Normal cell (PCE:6.0%) Gold MoO 3 PTB7:PC 70 BM PTB7:PC 70 BM TiOx ITO-Glass 0.2 0.4 0.6 0.8 Bias (V) Aluminum Calcium PTB7:PC 70 BM PTB7:PC 70 BM PEDOT:P ITO-Glass Interface increases Jsc: increasing charge collection.

Capacitance (nf) Capacitance (nf) Interface effects on charge accumulation Photoinduced impedance studies Gold MoO 3 PTB7:PC 70 BM PTB7:PC 70 BM Aluminum Calcium PTB7:PC 70 BM PTB7:PC 70 BM 25 20 15 10 5 0 (a) TiOx ITO-Glass Norma cell 0.30V 1 sun 0.1sun -1.0-0.5 0.5 1.0 Bias (V) More accumulation 40 30 20 10 0 (b) PEDOT:P ITO-Glass Inverted cell 6V 1 sun 0.1 sun -1.0-0.5 Bias (V) 0.5 1.0 Less accumulation

Capacitance (nf) Perspective: Electrode interface 12 11 10 9 8 7 6 Inverted cell Normal cell 0 20 40 60 80 100 Light intensity (mw/cm 2 ) An interfacial layer Electrical polarization Charge tunneling Decreasing traps

Acknowledgement NF-ECC project for organic solar cells: Magneto-Optical tudies of Charge Dissociation, Transport, and Collection in Organic olar Cells The research has been collaborated with Dr. Ilia Ivanov at ORNL Prof. Luping Yu at University of Chicago Prof. Tzung-Fang Guo at NCKU Prof. Yongfang Li at Institute of Chemistry (China) Prof. Guanghua Wei at Taiwan Jiaotong University

Mingxing Li Qing Liu Michael tanford The research was done by Huidong Zang, Yu-Che Hsiao, Qing Liu, Mingxing Li, and Michael tanford. Huidong Zang Yu-Che Hsiao