Comment.Math.Univ.Carolin. 46,3(2005)391 397 391 Bi-ideal-simple semirings VáclavFlaška,TomášKepka,JanŠaroch Abstract. Commutative congruence-simple semirings were studied in[2] and [7](but see also[1],[3] [6]). The non-commutative case almost(see[8]) escaped notice so far. Whatever, every congruence-simple semiring is bi-ideal-simple and the aim of this very short note is to collect several pieces of information on these semirings. Keywords: bi-ideal-simple, semiring, zeropotent Classification: 16Y60 1. Introduction A semiring is a non-empty set equipped with two binary operations, denoted as addition and multiplication, such that the addition makes a commutative semigroup, the multiplication is associative and distributes over the addition from both sides. The additive(multiplicative, resp.) semigroup of the semiring may, but need not, contain a neutral and/or an absorbing element. An element will be called bi-absorbing if it is absorbing for both the operations. If such an element exists,itwillbedenotedbythesymbol o(= o S ).Wethushave o+x=ox=xo=o forevery x S. Let Sbeasemiring. Weput A+B= {a+b; a A, b B}, AB= {ab; a A, b B}and2A={a+a; a A}foranytwosubsets Aand Bof S. A semiring S is called congruence-simple if it has just two congruence relations. 2. Bi-ideals Let Sbeasemiring. Anon-emptysubset Iof Siscalledabi-ideal of Sif (S+I) SI IS I(i.e., Iisanidealbothoftheadditiveandthemultiplicative semigroup of the semiring S). The following seven lemmas are easy. 2.1Lemma. Aone-elementsubset {w}of Sisabi-idealifandonlyif w=o S is a bi-absorbing element of S. This research has been supported by the Grant Agency of the Charles University, Grant #444/2004 and by the institutional grant MSM 0021620839.
392 V.Flaška,T.Kepka,J.Šaroch 2.2Lemma. Thesubsets S, S+ S, SS+ S, SSS+ S,...arebi-idealsof S. 2.3Lemma. SaS+ Sisabi-idealof Sforevery a S. Intheremaininglemmas,assumethat o S. 2.4Lemma. Theset {x S; xsx=o}isabi-ideal. 2.5Lemma. Theset {x S; x+xsx=o}isabi-ideal. 2.6Lemma. Theset {x S;2x=o}isabi-ideal. 2.7Lemma. Thesets(o:S) l = {x S; xs= o},(o:s) r = {x S; Sx=o} and(o:s) m = {x S; SxS= o}arebi-ideals. 3. Bi-ideal-free semirings 3.1 Proposition. A semiring S is bi-ideal-free(i.e., it has no proper bi-ideal) if andonlyif S= SaS+ Sforevery a S. Proof: The assertion follows easily from 2.3. 4. Bi-ideal-simple semirings introduction Asemiring Swillbecalledbi-ideal-simpleif S 2and I= Swhenever Iis abi-idealof Swith I 2. 4.1Proposition. Asemiring Sisbi-ideal-simpleifandonlyifatleastone(and thenjustone)ofthefollowingfivecasestakesplace: (1) S =2; (2) S 3and S= SaS+ Sforevery a S; (3) S 3, o Sand S= SaS+ Sforevery a S, a o; (4) S 3, o S, S+ S= oand SaS= Sforevery a S, a o; (5) S 3, o S, SS= oand S+ a=sforevery a S, a o. Proof: We prove only the direct implication, the converse one being trivial. So, let Sbeabi-ideal-simplesemiring. Wewillassumethat S 3and,moreover, inviewof3.1,that Sisnotbi-ideal-free. Then o Sby2.1andwehaveto distinguish the following three cases. (i) Let S+ S= o.if SS= o,theneverysubsetof Scontaining oisabi-ideal andthen S =2,acontradiction.Thus SS o,andhence(o:s) l = oby 2.7. Similarly(o:S) r = oand,bycombination,weget(o:s) m = o(use 2.7again). Now,if a S, a o,then SaS oand,since S+ S= o,the set SaSisabi-ideal.Thus SaS= Sand(4)istrue. (ii) Let SS= o. Theneveryidealof S(+)isabi-ideal,andsothesemigroup S(+) is ideal-simple. Now,(5) is clear. (iii) Let S+ S o SS. Wehave(o : S) l = o = (o : S) r by2.7, and hence(o:s) m = o,too. Further, S+ S = S by2.2. Now,if a S,
Bi-ideal-simple semirings 393 a o,then bac oforsome b, c S,and b=d+e, d, e S. Then o bac=dac+eac SaS+ Sandconsequently, SaS+ S= Sby2.3. It meansthat(3)istrue. Intherestofthissection,weassumethat Sisabi-ideal-simplesemiringwith o S. 4.2Proposition. If Sisanil-semiring(i.e.,forevery x Sthereexists n 1 with x n = o),then SS= o. Proof:Theresultisclearfor S =2,andsolet S 3.If a S, a o,issuch thateither S= SaS+Sor S= SaS,then a=bac+w, b, c S, w S {0},and wehave a=b 2 ac 2 + bwc+w=b 3 ac 3 + b 2 wc 2 + bwc+w=...,acontradiction with b n = o.thus SaS+ S S SaSandtherestisclearfrom4.1. 4.3Lemma. If S 3and SS o,thenforevery a S, a o,thereexist elements b, c, d Ssuchthat bac o ada. Proof: Combine 2.4, 2.7 and 4.2. 4.4Lemma. Justoneofthefollowingtwocasestakesplace: (1) x+xsx=oforevery x S; (2)forevery a S, a o,thereexistsatleastone b Swith a+aba o. Proof: Use 2.5. 4.5Lemma. Justoneofthefollowingtwocasestakesplace: (1)2x=oforevery x S; (2)2a oforevery a S, a o. Proof: Use 2.6. 5. Congruence-simple semirings 5.1 Proposition. Every congruence-simple semiring is bi-ideal-simple. Proof:If Iisabi-ideal,thentherelation(I I) id S isacongruenceof S. 5.2Proposition. Let Sbeabi-ideal-simplesemiringwith o Sandlet a S, a o. If risacongruenceof Smaximalwithrespectto(a, o) / r,then S/ris a congruence-simple semiring. Proof: S/risnon-trivial. If sisacongruenceof Ssuchthat r sand r s, then(a, o) sand I= {x S;(x, o) s}isabi-idealof S. Since I 2,we have I= Sand s=s S. 5.3Corollary. Let Sbeabi-ideal-simplesemiringwith o S.Then Scanbe imbedded into the product of congruence-simple factors of S.
394 V.Flaška,T.Kepka,J.Šaroch 6. Bi-ideal-simple semirings of type 4.1(4) 6.1. If S is a bi-ideal-simple semiring of type 4.1(4), then the multiplicative semigroup of S is ideal-simple. 6.2. Let Sbeamultiplicativeideal-simplesemigroupwith S 3and o S. Setting S+ S= owegetabi-ideal-simplesemiringoftype4.1(4). 7. Bi-ideal-simple semirings of type 4.1(5) 7.1. If Sisabi-ideal-simplesemiringoftype4.1(5),then T(+)isan(abelian) subgroupof S(+),where T= S \ {o}. 7.2. Let T(+)beanabeliangroup, T 2, o / T and S= T {o}. Setting SS= S+ o=o+s= owegetabi-ideal-simplesemiringoftype4.1(5). 8. Additively zeropotent semirings In this section, let S be an additively zeropotent semiring(a zp-semiring for short). Thatis, o S and2s = o. Wedefinearelation on S by a b iff b (S+ a) {a}. Itiseasytocheckthat isarelationoforderwhichis compatiblewiththetwooperationsdefinedon S.Thatis, isanorderingofthe semiring S. Clearly, o is the greatest element of S. 8.1Lemma. If S 2,thenanelement a S, a o,ismaximalin S \ {o}if andonlyif S+ a=o. Proof: Obvious. Intherestofthissection,wewillassumethat S= S+ S. 8.2Lemma. If S 2,then Shasnominimalelements. Proof:If a S, a o,then a=b+c, b a.if b=a,then a=a+c=a+2c= a+o=o,acontradiction. 8.3Corollary. Either S =1or Sisinfinite. 8.4 Lemma. The only idempotent element of S is the bi-absorbing element o. Proof: Let b 2 = bforsome b S. Then b=c+dand b=b 3 = b(c+d)b= bcb+bdb.ofcourse, c b, d b,andhence cd bd, cd cb, o=2cd bd+cb and bd+cb=o.finally, o=bob=bdb+bcb=b. 8.5Corollary. If Scontainsaleft(orright)unit,then S =1. 8.6Lemma. If a k = a l forsome a Sand1 k < l,then a k = o. Proof: Therearepositiveintegers m, nsuchthat m(l k)=k+ n. Now,if b=a k+n,then b=a k a n = a l a n = a k a l k a n = a l a l k a n = a k a l k a l k a n = =a k a m(l k) a n = a 2k+2n = b 2.By8.4, b=o,andhence a k = a l = a k a l k = a k a l k a l k = =a k a m(l k) = a k a k+n = a k b=o.
Bi-ideal-simple semirings 395 8.7Lemma. Let a, b Sand k, l 1besuchthat a k = a l + b.then a 2k = o. Moreover,if 2k l,then a k = o. Proof:Wehave a 2l + a l b=a l (a l + b)=a k+l =(a l + b)a l = a 2l + ba l. Consequently, a 2k =(a l +b) 2 = a 2l +a l b+ba l +b 2 = a 2l +ba l +ba l +b 2 = o.if2k l, then a 2k = oimplies a l = oandhence a k = a l + b=o. 8.8Lemma. If a Sisanon-nilpotentelement,thenthepowers a 1, a 2, a 3,... are pair-wise incomparable. Proof: Combine 8.6 and 8.7. 8.9Lemma. If a, b Saresuchthat aba a,then a=o. Proof: If aba=a,then(ab) 2 = ab, ab=oby8.4and a=aba=oa=o. If aba+c=a,then ab=abab+cb=(ab) 2 + cb, ab=oby8.7and a=o,too. 8.10Lemma. If a, b Saresuchthat ab=a o(ab=b o,resp.),then a b(b a,resp.). Proof: Firstly, a bby8.4. Now,if a b,then b=a+c, ac bc, c b, ac ab=a, o=2ac a+bcand a+bc=o. Thus o=a(a+bc)=a 2 + abc= a 2 + ac=a(a+c)=ab=a,acontradiction.similarlythesecondcase. 8.11Proposition. Let Sbeazp-semiringwith S+ S= Sand S 2.Then: (i) Sisinfinite; (ii) theorderedset(s, )hasnominimalelements; (iii) the bi-absorbing element o is the only idempotent element of S; (iv) Scontainsneitheraleftnorarightunit; (v)if a Sisnotnilpotent,thentheelements a i, i 1,arepair-wiseincomparablein(S, ); (vi)if a o,then aba aforevery b S; (vii) if o a b,then ab a; (viii) if o b a,then ab b. Proof:See8.2,8.3,8.4,8.5,8.8,8.9and8.10. 9. Bi-ideal-simple zp-semirings 9.1 Proposition. Let S be a zp-semiring with S 3. Then S is bi-ideal-simple ifandonlyifatleastone(andthenjustone)ofthefollowingtwocasestakes place: (1) S+ S= oand SaS= Sforevery a S, a o; (2) S= S+ SaSforevery a S, a o. Proof: The result follows easily from 4.1. Intherestofthissection,let Sbeabi-ideal-simplesemiringsuchthat S+S o. Then S+ S= Sand Sisinfinite(see8.11).Moreover,by4.2, Sisnotnil.
396 V.Flaška,T.Kepka,J.Šaroch 9.2Lemma. Let V beafinitesubsetof S \ {o}.thenthereexistsatleastone element a Ssuchthat a oand a vforevery v V. Proof:Firstly,by9.1,wehave S= S+SbSforevery b S, b o.inparticular, SbS o, SS oand,by4.3,forevery w V thereisatleastone a w Swith wa w w o. Then a w oand wa w w wby8.9. Now,asequence v 1,...,v k, k 2,ofelementsfrom V willbecalledadmissibleinthesequeliftheseelements arepair-wisedistinctand v i a i v i v i+1 forsome a i S,1 i k 1. Ifthereisnoadmissiblesequence,then wa w w oand wa w w v forall w, v V. Theresultisprovedinthiscase, andhencewecanassumethat v 1,...,v k, k 2,isanadmissiblesequencewithmaximallength k. Let mbemaximalwithrespectto1 m kand v k bv k v m foratleastone b S.Then m < kby8.9and v m a m v m v m+1 implies v k bv k a m v k bv k v m+1, acontradictionwiththemaximalityof m. Wehavethusshownthat v k cv k v i forall1 i kand c S.Inparticular, o v k a k v k v i forsome a k Sand all i,1 i k.finally,itfollowsfromthemaximalityof kthat v k a k v k vfor every v V. 9.3Corollary. Denoteby Athesetofmaximalelementsof (S \ {o}, )(see 8.1)andassumethateveryelementfrom S \ {o}issmallerorequaltoanelement from A.Thentheset Aisinfinite. 9.4 Proposition. Just one of the following two cases takes place: (1) x+xsx=oand x m + x n = oforevery x Sandallpositiveintegers m, n; (2)forevery a S, a o,thereexistsatleastone b Ssuchthat a+aba o. Proof: Takingintoaccount4.4,wemayassumethat x+xsx=oforevery x S. Then x+x 3 = oandweput I= {a S; a+a 2 = o}. Clearly, Iisan idealof S(+). Moreover,if a Iand b S,then ab+abab=(a+aba)b=o. Thus ab I,similarly ba Iandweseethat Iisabi-idealof S. If I= {o},then a+a 2 oforevery a S, a o.but a 2 + a 4 = a(a+a 3 )= ao=oand a 2 I. Itfollowsthat a 2 = oforevery a S,acontradictionwith 4.2. Thus I {o}andweget I= Sand x+x 2 = oforevery x S. Further, x+x=obythezp-propertyand x+x n = oforevery n 3,since x+xsx=o. If2 n m,then x n + x m = x n 1 (x+x m n+1 )=x n 1 o=o. 9.5Proposition. Denoteby Athesetofmaximalelementsoftheorderedset (S \ {o}, ).If Aisnon-empty,then x+xsx=oforevery x S(i.e.,thecase 9.4(1) takes place). Proof: Combine 8.1 and 9.4. 10. An open problem 10.1. Noexampleofanon-trivialzp-semiring Swith S+ S= S(see8.11)is known(atleasttotheauthorsofthepresentbriefnote).
Bi-ideal-simple semirings 397 References [1] Eilhauer R., Zur Theorie der Halbkörper, I, Acta Math. Acad. Sci. Hungar. 19(1968), 23 45. [2] El Bashir R., Hurt J., Jančařík A., Kepka T., Simple commutative semirings, J. Algebra 236(2001), 277 306. [3] Golan J., The Theory of Semirings with Application in Math. and Theoretical Computer Science, Pitman Monographs and Surveys in Pure and Applied Mathematics 54, Longman, Harlow, 1992. [4] Hebisch U., Weinert H.J., Halbringe. Algebraische Theorie und Anwendungen in der Informatik, Teubner, Stuttgart, 1993. [5] Hutehins H.C., Weinert H.J., Homomorphisms and kernels of semifields, Period. Math. Hungar. 21(1990), 113 152. [6] Koch H., Über Halbkörper, die in algebraischen Zahlkörpern enhalten sind, Acta Math. Acad. Sci. Hungar. 15(1964), 439 444. [7] Mitchell S.S., Fenoglio P.B., Congruence-free commutative semirings, Semigroup Forum 37(1988), 79 91. [8] Monico C., On finite congruence-simple semirings, J. Algebra 271(2004), 846 854. Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic (Received October 12, 2004, revised March 9, 2005)