Bi-ideal-simple semirings



Similar documents
COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

ON ROUGH (m, n) BI-Γ-HYPERIDEALS IN Γ-SEMIHYPERGROUPS

Online EFFECTIVE AS OF JANUARY 2013

ON SOME CLASSES OF REGULAR ORDER SEMIGROUPS

Fundamentele Informatica II

THE PRODUCT SPAN OF A FINITE SUBSET OF A COMPLETELY BOUNDED ARTEX SPACE OVER A BI-MONOID

Boolean Algebra Part 1

CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions

Rough Semi Prime Ideals and Rough Bi-Ideals in Rings

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

Some Special Artex Spaces Over Bi-monoids

INCIDENCE-BETWEENNESS GEOMETRY

Degree Hypergroupoids Associated with Hypergraphs

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

Abstract Algebra Cheat Sheet

6 Commutators and the derived series. [x,y] = xyx 1 y 1.

1 = (a 0 + b 0 α) (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

A 2-factor in which each cycle has long length in claw-free graphs

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Left-Handed Completeness

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath

ADDITIVE GROUPS OF RINGS WITH IDENTITY

Math 312 Homework 1 Solutions

ACTA UNIVERSITATIS APULENSIS No 15/2008 PRODUCTS OF MULTIALGEBRAS AND THEIR FUNDAMENTAL ALGEBRAS. Cosmin Pelea

Applications of Fermat s Little Theorem and Congruences

Boolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris Hui-Ru Jiang Spring 2010

Algebraic Properties and Proofs

Section IV.21. The Field of Quotients of an Integral Domain

Discrete Mathematics, Chapter 4: Number Theory and Cryptography

On the Algebraic Structures of Soft Sets in Logic

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

MAT188H1S Lec0101 Burbulla

CS 103X: Discrete Structures Homework Assignment 3 Solutions

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

THREE DIMENSIONAL GEOMETRY

calculating the result modulo 3, as follows: p(0) = = 1 0,

s-convexity, model sets and their relation

Local periods and binary partial words: An algorithm

Factorization Algorithms for Polynomials over Finite Fields

The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure Figure 47.1

MA651 Topology. Lecture 6. Separation Axioms.

Invertible elements in associates and semigroups. 1

4. FIRST STEPS IN THE THEORY 4.1. A

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

GENERATING SETS KEITH CONRAD

Proposition 4: SAS Triangle Congruence

Lights and Darks of the Star-Free Star

GROUP ALGEBRAS. ANDREI YAFAEV

26 Ideals and Quotient Rings

it is easy to see that α = a

Solution to Homework 2

Solutions to In-Class Problems Week 4, Mon.

C H A P T E R Regular Expressions regular expression

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska

2. Let H and K be subgroups of a group G. Show that H K G if and only if H K or K H.

So let us begin our quest to find the holy grail of real analysis.

Max-Min Representation of Piecewise Linear Functions

ON DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

Separation Properties for Locally Convex Cones

k, then n = p2α 1 1 pα k

Group Fundamentals. Chapter Groups and Subgroups Definition

Chapter 13: Basic ring theory

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries

Row Ideals and Fibers of Morphisms

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

Summary. Operations on Fuzzy Sets. Zadeh s Definitions. Zadeh s Operations T-Norms S-Norms. Properties of Fuzzy Sets Fuzzy Measures

3.1 Triangles, Congruence Relations, SAS Hypothesis

Factoring finite abelian groups

Baltic Way Västerås (Sweden), November 12, Problems and solutions

SMALL SKEW FIELDS CÉDRIC MILLIET

A simple criterion on degree sequences of graphs

Unit 3 Boolean Algebra (Continued)

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:

Chapter 7: Products and quotients

How To Factor By Gcf In Algebra 1.5

Finite dimensional C -algebras

Continued Fractions and the Euclidean Algorithm

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS

1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.

Homework until Test #2

CH3 Boolean Algebra (cont d)

Section The given line has equations. x = 3 + t(13 3) = t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Quotient Rings and Field Extensions

On an algorithm for classification of binary self-dual codes with minimum distance four

INTRODUCTORY SET THEORY

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl)

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

Matrix Representations of Linear Transformations and Changes of Coordinates

The confidence-probability semiring Günther J. Wirsching Markus Huber Christian Kölbl

Transcription:

Comment.Math.Univ.Carolin. 46,3(2005)391 397 391 Bi-ideal-simple semirings VáclavFlaška,TomášKepka,JanŠaroch Abstract. Commutative congruence-simple semirings were studied in[2] and [7](but see also[1],[3] [6]). The non-commutative case almost(see[8]) escaped notice so far. Whatever, every congruence-simple semiring is bi-ideal-simple and the aim of this very short note is to collect several pieces of information on these semirings. Keywords: bi-ideal-simple, semiring, zeropotent Classification: 16Y60 1. Introduction A semiring is a non-empty set equipped with two binary operations, denoted as addition and multiplication, such that the addition makes a commutative semigroup, the multiplication is associative and distributes over the addition from both sides. The additive(multiplicative, resp.) semigroup of the semiring may, but need not, contain a neutral and/or an absorbing element. An element will be called bi-absorbing if it is absorbing for both the operations. If such an element exists,itwillbedenotedbythesymbol o(= o S ).Wethushave o+x=ox=xo=o forevery x S. Let Sbeasemiring. Weput A+B= {a+b; a A, b B}, AB= {ab; a A, b B}and2A={a+a; a A}foranytwosubsets Aand Bof S. A semiring S is called congruence-simple if it has just two congruence relations. 2. Bi-ideals Let Sbeasemiring. Anon-emptysubset Iof Siscalledabi-ideal of Sif (S+I) SI IS I(i.e., Iisanidealbothoftheadditiveandthemultiplicative semigroup of the semiring S). The following seven lemmas are easy. 2.1Lemma. Aone-elementsubset {w}of Sisabi-idealifandonlyif w=o S is a bi-absorbing element of S. This research has been supported by the Grant Agency of the Charles University, Grant #444/2004 and by the institutional grant MSM 0021620839.

392 V.Flaška,T.Kepka,J.Šaroch 2.2Lemma. Thesubsets S, S+ S, SS+ S, SSS+ S,...arebi-idealsof S. 2.3Lemma. SaS+ Sisabi-idealof Sforevery a S. Intheremaininglemmas,assumethat o S. 2.4Lemma. Theset {x S; xsx=o}isabi-ideal. 2.5Lemma. Theset {x S; x+xsx=o}isabi-ideal. 2.6Lemma. Theset {x S;2x=o}isabi-ideal. 2.7Lemma. Thesets(o:S) l = {x S; xs= o},(o:s) r = {x S; Sx=o} and(o:s) m = {x S; SxS= o}arebi-ideals. 3. Bi-ideal-free semirings 3.1 Proposition. A semiring S is bi-ideal-free(i.e., it has no proper bi-ideal) if andonlyif S= SaS+ Sforevery a S. Proof: The assertion follows easily from 2.3. 4. Bi-ideal-simple semirings introduction Asemiring Swillbecalledbi-ideal-simpleif S 2and I= Swhenever Iis abi-idealof Swith I 2. 4.1Proposition. Asemiring Sisbi-ideal-simpleifandonlyifatleastone(and thenjustone)ofthefollowingfivecasestakesplace: (1) S =2; (2) S 3and S= SaS+ Sforevery a S; (3) S 3, o Sand S= SaS+ Sforevery a S, a o; (4) S 3, o S, S+ S= oand SaS= Sforevery a S, a o; (5) S 3, o S, SS= oand S+ a=sforevery a S, a o. Proof: We prove only the direct implication, the converse one being trivial. So, let Sbeabi-ideal-simplesemiring. Wewillassumethat S 3and,moreover, inviewof3.1,that Sisnotbi-ideal-free. Then o Sby2.1andwehaveto distinguish the following three cases. (i) Let S+ S= o.if SS= o,theneverysubsetof Scontaining oisabi-ideal andthen S =2,acontradiction.Thus SS o,andhence(o:s) l = oby 2.7. Similarly(o:S) r = oand,bycombination,weget(o:s) m = o(use 2.7again). Now,if a S, a o,then SaS oand,since S+ S= o,the set SaSisabi-ideal.Thus SaS= Sand(4)istrue. (ii) Let SS= o. Theneveryidealof S(+)isabi-ideal,andsothesemigroup S(+) is ideal-simple. Now,(5) is clear. (iii) Let S+ S o SS. Wehave(o : S) l = o = (o : S) r by2.7, and hence(o:s) m = o,too. Further, S+ S = S by2.2. Now,if a S,

Bi-ideal-simple semirings 393 a o,then bac oforsome b, c S,and b=d+e, d, e S. Then o bac=dac+eac SaS+ Sandconsequently, SaS+ S= Sby2.3. It meansthat(3)istrue. Intherestofthissection,weassumethat Sisabi-ideal-simplesemiringwith o S. 4.2Proposition. If Sisanil-semiring(i.e.,forevery x Sthereexists n 1 with x n = o),then SS= o. Proof:Theresultisclearfor S =2,andsolet S 3.If a S, a o,issuch thateither S= SaS+Sor S= SaS,then a=bac+w, b, c S, w S {0},and wehave a=b 2 ac 2 + bwc+w=b 3 ac 3 + b 2 wc 2 + bwc+w=...,acontradiction with b n = o.thus SaS+ S S SaSandtherestisclearfrom4.1. 4.3Lemma. If S 3and SS o,thenforevery a S, a o,thereexist elements b, c, d Ssuchthat bac o ada. Proof: Combine 2.4, 2.7 and 4.2. 4.4Lemma. Justoneofthefollowingtwocasestakesplace: (1) x+xsx=oforevery x S; (2)forevery a S, a o,thereexistsatleastone b Swith a+aba o. Proof: Use 2.5. 4.5Lemma. Justoneofthefollowingtwocasestakesplace: (1)2x=oforevery x S; (2)2a oforevery a S, a o. Proof: Use 2.6. 5. Congruence-simple semirings 5.1 Proposition. Every congruence-simple semiring is bi-ideal-simple. Proof:If Iisabi-ideal,thentherelation(I I) id S isacongruenceof S. 5.2Proposition. Let Sbeabi-ideal-simplesemiringwith o Sandlet a S, a o. If risacongruenceof Smaximalwithrespectto(a, o) / r,then S/ris a congruence-simple semiring. Proof: S/risnon-trivial. If sisacongruenceof Ssuchthat r sand r s, then(a, o) sand I= {x S;(x, o) s}isabi-idealof S. Since I 2,we have I= Sand s=s S. 5.3Corollary. Let Sbeabi-ideal-simplesemiringwith o S.Then Scanbe imbedded into the product of congruence-simple factors of S.

394 V.Flaška,T.Kepka,J.Šaroch 6. Bi-ideal-simple semirings of type 4.1(4) 6.1. If S is a bi-ideal-simple semiring of type 4.1(4), then the multiplicative semigroup of S is ideal-simple. 6.2. Let Sbeamultiplicativeideal-simplesemigroupwith S 3and o S. Setting S+ S= owegetabi-ideal-simplesemiringoftype4.1(4). 7. Bi-ideal-simple semirings of type 4.1(5) 7.1. If Sisabi-ideal-simplesemiringoftype4.1(5),then T(+)isan(abelian) subgroupof S(+),where T= S \ {o}. 7.2. Let T(+)beanabeliangroup, T 2, o / T and S= T {o}. Setting SS= S+ o=o+s= owegetabi-ideal-simplesemiringoftype4.1(5). 8. Additively zeropotent semirings In this section, let S be an additively zeropotent semiring(a zp-semiring for short). Thatis, o S and2s = o. Wedefinearelation on S by a b iff b (S+ a) {a}. Itiseasytocheckthat isarelationoforderwhichis compatiblewiththetwooperationsdefinedon S.Thatis, isanorderingofthe semiring S. Clearly, o is the greatest element of S. 8.1Lemma. If S 2,thenanelement a S, a o,ismaximalin S \ {o}if andonlyif S+ a=o. Proof: Obvious. Intherestofthissection,wewillassumethat S= S+ S. 8.2Lemma. If S 2,then Shasnominimalelements. Proof:If a S, a o,then a=b+c, b a.if b=a,then a=a+c=a+2c= a+o=o,acontradiction. 8.3Corollary. Either S =1or Sisinfinite. 8.4 Lemma. The only idempotent element of S is the bi-absorbing element o. Proof: Let b 2 = bforsome b S. Then b=c+dand b=b 3 = b(c+d)b= bcb+bdb.ofcourse, c b, d b,andhence cd bd, cd cb, o=2cd bd+cb and bd+cb=o.finally, o=bob=bdb+bcb=b. 8.5Corollary. If Scontainsaleft(orright)unit,then S =1. 8.6Lemma. If a k = a l forsome a Sand1 k < l,then a k = o. Proof: Therearepositiveintegers m, nsuchthat m(l k)=k+ n. Now,if b=a k+n,then b=a k a n = a l a n = a k a l k a n = a l a l k a n = a k a l k a l k a n = =a k a m(l k) a n = a 2k+2n = b 2.By8.4, b=o,andhence a k = a l = a k a l k = a k a l k a l k = =a k a m(l k) = a k a k+n = a k b=o.

Bi-ideal-simple semirings 395 8.7Lemma. Let a, b Sand k, l 1besuchthat a k = a l + b.then a 2k = o. Moreover,if 2k l,then a k = o. Proof:Wehave a 2l + a l b=a l (a l + b)=a k+l =(a l + b)a l = a 2l + ba l. Consequently, a 2k =(a l +b) 2 = a 2l +a l b+ba l +b 2 = a 2l +ba l +ba l +b 2 = o.if2k l, then a 2k = oimplies a l = oandhence a k = a l + b=o. 8.8Lemma. If a Sisanon-nilpotentelement,thenthepowers a 1, a 2, a 3,... are pair-wise incomparable. Proof: Combine 8.6 and 8.7. 8.9Lemma. If a, b Saresuchthat aba a,then a=o. Proof: If aba=a,then(ab) 2 = ab, ab=oby8.4and a=aba=oa=o. If aba+c=a,then ab=abab+cb=(ab) 2 + cb, ab=oby8.7and a=o,too. 8.10Lemma. If a, b Saresuchthat ab=a o(ab=b o,resp.),then a b(b a,resp.). Proof: Firstly, a bby8.4. Now,if a b,then b=a+c, ac bc, c b, ac ab=a, o=2ac a+bcand a+bc=o. Thus o=a(a+bc)=a 2 + abc= a 2 + ac=a(a+c)=ab=a,acontradiction.similarlythesecondcase. 8.11Proposition. Let Sbeazp-semiringwith S+ S= Sand S 2.Then: (i) Sisinfinite; (ii) theorderedset(s, )hasnominimalelements; (iii) the bi-absorbing element o is the only idempotent element of S; (iv) Scontainsneitheraleftnorarightunit; (v)if a Sisnotnilpotent,thentheelements a i, i 1,arepair-wiseincomparablein(S, ); (vi)if a o,then aba aforevery b S; (vii) if o a b,then ab a; (viii) if o b a,then ab b. Proof:See8.2,8.3,8.4,8.5,8.8,8.9and8.10. 9. Bi-ideal-simple zp-semirings 9.1 Proposition. Let S be a zp-semiring with S 3. Then S is bi-ideal-simple ifandonlyifatleastone(andthenjustone)ofthefollowingtwocasestakes place: (1) S+ S= oand SaS= Sforevery a S, a o; (2) S= S+ SaSforevery a S, a o. Proof: The result follows easily from 4.1. Intherestofthissection,let Sbeabi-ideal-simplesemiringsuchthat S+S o. Then S+ S= Sand Sisinfinite(see8.11).Moreover,by4.2, Sisnotnil.

396 V.Flaška,T.Kepka,J.Šaroch 9.2Lemma. Let V beafinitesubsetof S \ {o}.thenthereexistsatleastone element a Ssuchthat a oand a vforevery v V. Proof:Firstly,by9.1,wehave S= S+SbSforevery b S, b o.inparticular, SbS o, SS oand,by4.3,forevery w V thereisatleastone a w Swith wa w w o. Then a w oand wa w w wby8.9. Now,asequence v 1,...,v k, k 2,ofelementsfrom V willbecalledadmissibleinthesequeliftheseelements arepair-wisedistinctand v i a i v i v i+1 forsome a i S,1 i k 1. Ifthereisnoadmissiblesequence,then wa w w oand wa w w v forall w, v V. Theresultisprovedinthiscase, andhencewecanassumethat v 1,...,v k, k 2,isanadmissiblesequencewithmaximallength k. Let mbemaximalwithrespectto1 m kand v k bv k v m foratleastone b S.Then m < kby8.9and v m a m v m v m+1 implies v k bv k a m v k bv k v m+1, acontradictionwiththemaximalityof m. Wehavethusshownthat v k cv k v i forall1 i kand c S.Inparticular, o v k a k v k v i forsome a k Sand all i,1 i k.finally,itfollowsfromthemaximalityof kthat v k a k v k vfor every v V. 9.3Corollary. Denoteby Athesetofmaximalelementsof (S \ {o}, )(see 8.1)andassumethateveryelementfrom S \ {o}issmallerorequaltoanelement from A.Thentheset Aisinfinite. 9.4 Proposition. Just one of the following two cases takes place: (1) x+xsx=oand x m + x n = oforevery x Sandallpositiveintegers m, n; (2)forevery a S, a o,thereexistsatleastone b Ssuchthat a+aba o. Proof: Takingintoaccount4.4,wemayassumethat x+xsx=oforevery x S. Then x+x 3 = oandweput I= {a S; a+a 2 = o}. Clearly, Iisan idealof S(+). Moreover,if a Iand b S,then ab+abab=(a+aba)b=o. Thus ab I,similarly ba Iandweseethat Iisabi-idealof S. If I= {o},then a+a 2 oforevery a S, a o.but a 2 + a 4 = a(a+a 3 )= ao=oand a 2 I. Itfollowsthat a 2 = oforevery a S,acontradictionwith 4.2. Thus I {o}andweget I= Sand x+x 2 = oforevery x S. Further, x+x=obythezp-propertyand x+x n = oforevery n 3,since x+xsx=o. If2 n m,then x n + x m = x n 1 (x+x m n+1 )=x n 1 o=o. 9.5Proposition. Denoteby Athesetofmaximalelementsoftheorderedset (S \ {o}, ).If Aisnon-empty,then x+xsx=oforevery x S(i.e.,thecase 9.4(1) takes place). Proof: Combine 8.1 and 9.4. 10. An open problem 10.1. Noexampleofanon-trivialzp-semiring Swith S+ S= S(see8.11)is known(atleasttotheauthorsofthepresentbriefnote).

Bi-ideal-simple semirings 397 References [1] Eilhauer R., Zur Theorie der Halbkörper, I, Acta Math. Acad. Sci. Hungar. 19(1968), 23 45. [2] El Bashir R., Hurt J., Jančařík A., Kepka T., Simple commutative semirings, J. Algebra 236(2001), 277 306. [3] Golan J., The Theory of Semirings with Application in Math. and Theoretical Computer Science, Pitman Monographs and Surveys in Pure and Applied Mathematics 54, Longman, Harlow, 1992. [4] Hebisch U., Weinert H.J., Halbringe. Algebraische Theorie und Anwendungen in der Informatik, Teubner, Stuttgart, 1993. [5] Hutehins H.C., Weinert H.J., Homomorphisms and kernels of semifields, Period. Math. Hungar. 21(1990), 113 152. [6] Koch H., Über Halbkörper, die in algebraischen Zahlkörpern enhalten sind, Acta Math. Acad. Sci. Hungar. 15(1964), 439 444. [7] Mitchell S.S., Fenoglio P.B., Congruence-free commutative semirings, Semigroup Forum 37(1988), 79 91. [8] Monico C., On finite congruence-simple semirings, J. Algebra 271(2004), 846 854. Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic (Received October 12, 2004, revised March 9, 2005)