1 166-122. Inada Katsuta, Ibaraki (JP) Inventor: Kawakami, Kanji ( ) References cited: 18-5, Inada DE-B-2 617 731 US - A - 3 397 278



Similar documents
(51) Int Cl.: G05F 3/26 ( ) G05F 3/24 ( )

(51) Int Cl.: B29C 41/20 ( ) F21S 4/00 ( ) H05K 3/28 ( )

*EP B1* EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

(51) Int Cl.: H04M 3/50 ( )

(51) Int Cl.: H04N 5/225 ( )

(51) Int Cl.: H05K 1/02 ( )

(51) Int Cl.: C08K 5/523 ( ) C08K 5/521 ( ) C08K 5/52 ( ) C08G 64/00 ( )

EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

Invention of a Dental Appraisal

TEPZZ_768 7_B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION. (51) Int Cl.: H04M 19/04 ( )

(51) Int Cl. 7 : G03G 15/00

(51) Int Cl.: B62M 7/12 ( ) B62M 23/02 ( )

(51) Int Cl.: H05K 1/02 ( )

TEPZZ_9 6Z46B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION. (51) Int Cl.:

(51) Int Cl.: H04B 3/23 ( )

(51) Int Cl.: H04L 9/24 ( ) G06Q 10/00 ( )

(51) Int Cl.: G06F 11/20 ( )

(51) Int Cl.: G10L 19/00 ( ) H04L 1/20 ( )

Europaisches Patentamt European Patent Office Office europeen des brevets (11) EP B2

(51) Int Cl.: H04L 12/24 ( )

(51) Int Cl.: H04L 29/06 ( ) G06F 9/445 ( ) G06F 13/00 ( )

How to measure absolute pressure using piezoresistive sensing elements

(51) Int Cl.: G01S 7/52 ( )

(51) Int Cl.: H04N 1/19 ( ) H04N 3/15 ( ) H04N 9/04 ( )

(51) Int Cl.: H04N 7/16 ( )

(51) Int Cl.: G06F 13/38 ( ) G06F 1/16 ( )

(51) Int Cl.: G06F 1/00 ( )

(51) Int Cl.: H04L 29/12 ( )

The MOSFET Transistor

AN900 APPLICATION NOTE

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

(51) Int Cl.: B29C 44/06 ( )

(51) Int Cl.: G06F 21/00 ( ) H04L 29/06 ( )

(51) Int Cl. 7 : F16L 11/12, F16L 35/00

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

(51) Int Cl.: G06F 17/00 ( ) G06F 11/20 ( )

(51) Int Cl.: H04L 29/06 ( ) H04L 29/12 ( )

Office europeen des brevets Publication number: B1 EUROPEAN PATENT SPECIFICATION

The Advantialer and Its Advantages

(51) Int Cl.: H04L 12/00 ( )

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

(51) Int Cl.: H04L 12/26 ( ) H04L 12/24 ( )

@ Proprietor: Télétype Corporation 5555 Touhy Avenue Skokie III (US)

(51) Int Cl. 7 : F16K 11/044, F16K 11/04

(56) References cited:

Germany Allemagne Deutschland. Report Q189. in the name of the German Group by Jochen EHLERS, Thorsten BAUSCH and Martin KÖHLER

(51) Int Cl.: G06F 13/42 ( )

Electromouillage réversible sur nanofils de silicium superhydrophobes

(51) Int Cl.: B65H 9/16 ( ) B65H 5/02 ( )

(51) Int Cl.: G08G 1/14 ( ) G07B 15/02 ( ) G10L 15/28 ( )

(51) Int Cl.: H04L 12/56 ( )

Personnalisez votre intérieur avec les revêtements imprimés ALYOS design

Advanced VLSI Design CMOS Processing Technology

(51) Int Cl.: H04L 12/24 ( ) G06F 9/445 ( )

EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

(51) Int Cl.: H04L 29/06 ( )

(51) Int Cl.: G01S 15/89 ( ) G01S 7/521 ( ) G01S 7/52 ( )

TEPZZ 46699B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

Silicon-On-Glass MEMS. Design. Handbook

*EP B1* EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

design guide nightlife flair

(51) Int Cl.: G04B 19/08 ( )

EUROPEAN PATENT SPECIFICATION. (51) intci.e: H04L9/06, H04L9/08. (56) References cited: DE-A US-A

Coating Technology: Evaporation Vs Sputtering

(51) Int Cl. 7 : G06F 11/22

Sheet Resistance = R (L/W) = R N L

(51) Int Cl.: H04L 12/10 ( ) H04L 12/40 ( )

(51) Int Cl.: G06F 1/00 ( )

(51) Int Cl.: H04L 29/06 ( )

Solar Photovoltaic (PV) Cells

(51) Int Cl.: H04M 3/51 ( )

(51) Int Cl. 7 : H04B 7/185, H04B 1/40. (56) References cited: WO-A-00/03494

(56) References cited:

(51) Int Cl.: H04L 12/24 ( )

(51) Int Cl.: H04L 9/32 ( ) H04B 7/00 ( ) A61N 1/37 ( )

(51) Int Cl.: G06F 21/24 ( )

~ llll III II II III IMI II I II I II European Patent Office Office europeen des brevets (11) EP B1 EUROPEAN PATENT SPECIFICATION

(51) Int Cl.: H04M 3/42 ( ) H04Q 3/00 ( )

(51) Int Cl.: H04L 29/06 ( )

Fabrication and Manufacturing (Basics) Batch processes

(51) Int Cl.: G06F 11/34 ( )

QUICK START BALANCE AUDIO INTERFACE QUICK START DÉMARRAGE RAPIDE KURZANLEITUNG

(51) Int Cl.: H04W 8/16 ( ) H04L 29/12 ( ) H04W 8/18 ( )

Publication number: Office europeen des brevets PATENT SPECIFICATION

(51) Int Cl.: H04L 29/06 ( ) H04Q 7/24 ( ) H04L 12/66 ( )

EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. (51) Int. Cl.: H04L 12/24 ( )

(51) Int Cl.: H04L 12/58 ( )

(51) Int Cl.: H04W 4/14 ( )

THE STRAIN GAGE PRESSURE TRANSDUCER

(51) Int Cl.: B61K 9/12 ( )

TEPZZ 858 ZB_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

(ÏÏ) Publication number: Proprietor: IMPERIAL CHEMICAL INDUSTRIES PLC Impérial Chemical House Millbank London SW1P3JF(GB)

(51) Int Cl.: G08B 21/02 ( ) H04M 11/04 ( )

(51) Int Cl.: H01L 33/32 ( )

Switching Power Supply XP POWER INC. SUITE 150, 1241 E DYER RD SANTA ANA CA 92705, USA XP POWER INC SUITE 150, 1241 E DYER RD SANTA ANA CA 92705, USA

TEPZZ 5Z _9_B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

Molded. By July. A chip scale. and Omega. Guidelines. layer on the silicon chip. of mold. aluminum or. Bottom view. Rev. 1.

Biaxial tripod MEMS mirror and omnidirectional lens for a low cost wide angle laser range sensor

(51) Int Cl.: H04L 29/06 ( ) H04L 12/22 ( )

Transcription:

1 Europaisches Patentamt European Patent Office Office européen des brevets (îj) Publication number: 0 010 2 0 4 Bl Oj) EUROPEAN PATENT SPECIFICATION (45) Date of publication of patent spécification: 13.07.83 @ Int. Cl.3: G 01 L 9/06, H 01 L 29/84 @ Application number: 79103666.8 @ Date offiling: 27.09.79 (54) Semiconductor absoiute pressure transducer assembly. o Cl o o o a. ( ) Priority: 27.09.78 JP 119016/78 @ Proprietor: Hitachi, Ltd. 5-1. Marunouchi 1-chome Chiyoda-ku Tokyo 100 (JP) (43) Date of publication of application: 30.04.80 Bulletin 80/9 @ Inventor: Yamada, Kazuji 1-36-3-205, Nishinarusawa (45) Publication of the grant of the patent: Hitachi, Ibaraki (JP) 1 3.07.83 Bulletin 83/28' Inventor: Suzuki. Seiko 1599-3, Kanai Hitachiohta, Ibaraki (JP) (84) Designated Contracting States: Inventor: Nishihara. Motohisa DEFRGBIT 1 166-122. Inada Katsuta, Ibaraki (JP) Inventor: Kawakami, Kanji ( ) References cited: 18-5, Inada DE-B-2 617 731 Katsuta, Ibaraki (JP) US - A - 3 397 278 Inventor: Sato, Hideo US- A- 3 595 719 1 61, Ishinazaka US - A - 3 820 401 Hitachi, Ibaraki (JP) US - A - 3 91 8 01 9 US - A - 4 079 508 Inventor: Kobori, Shigeyuki 220-26. Ishinazaka Hitachi. Ibaraki (JP) Inventor: Kanzawa, Ryosaku 394-12, Kuji Hitachi, Ibaraki (JP) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1 ) European patent convention). Courier Press, Leamington Spa, England

Background of the Invention The present invention relates to a semiconductor absolute pressure transducer assembly having a covering member mounted on a silicon diaphragm assembly on which semiconductor pressure sensitive elements are constructed, therefore, a vacuum chamber being provided therebetween. More particularly, the present invention relates to a semiconductor absolute pressure transducer with ideally hermetic seal between the silicon diaphragm assembly and the covering member. In a conventional semiconductor absolute pressure transducer assembly, semiconductor pressure sensitive elements such as piezoresistive bridge circuits are constructed on a silicon diaphragm assembly, each element of which varies its resistance value depending on pressure-induced strains, and a glass substrate is mounted on the surface of the silicon diaphragm assembly, thereby a vacuum chamber being formed therebetween. An electric signal, therefore, relative to pressure applied to the silicon diaphragm, is obtained as an output. In manufacturing such pressure transducer assembly, it is considerably important to obtain perfectly hermetic seal between the silicon assembly and the glass covering member, and simultaneously to fabricate a silicon diaphragm in which the pressure-induced strains appear uniformly on the whole surface in response to the pressure applied thereto. In U.S. Patent 3,918,019 or 4,079,508, there is shown a semiconductor pressure transducer assembly having a glass substrate and a thin silicon diaphragm upon which is diffused a piezoresistive bridge circuit. Bridge circuit components are properly oriented on the surface of the silicon diaphragm and connected to bonding pads and conducting paths, both of which are formed on the silicon diaphragm. The glass substrate has a circular well formed therein having a diameter at least as large as the diameter of the diaphragm. Conducting leads are disposed on the glass substrate in a pattern matching that of the bonding pads on the silicon. The silicon is bonded onto the glass substrate with the silicon diaphragm overlaying the well in the glass and bonding pads overlaying the conducting leads deposited on the glass using Anodic Bonding method. The bond performed by that method provides a hermetic seal between the silicon diaphragm and the glass substrate. Generally, a layer of insulating material such as silicon dioxide (Si02) is provided on the surface of the silicon diaphragm for the purpose of protecting the piezoresistive bridge circuit and the conducting paths formed thereon. In such construction, however, it is very difficult to bond the insulating material such as glass substrate on the surface of the silicon diaphragm assembly under perfectly hermetic condition using a method such as Anodic Bonding. In U.S. Patent 3,595,719, a method for bonding an insulator member to a passivating layer covering a surface of a semiconductor is described. In this method, etching of passivating layer is performed to a thickness of at least about 1,00 nm with an etchant prior to bonding. In the case that such method is adapted for manufacturing of the transducer assembly mentioned above, the characteristic of the piezoresistive bridge circuit is harmfully affected because of high voltage applied across the p-n junction thereof. Namely, the silicon diaphragm assembly is n-type and pressure sensitive resistors of the piezoresistive bridge circuit which are diffused thereon are p-type. When the high voltage is applied between the silicon diaphragm and the glass substrate, with the positive voltage to the silicon diaphragm and the negative one to the glass substrate, then leak current flows through the p-n junction, thereby the insulating characteristic of the p-n junction of the piezoresistive bridge circuit becoming inferior. Further, the conducting paths are formed by p + diffusion which yields a low resistivity of the n-type silicon. However, this diffusion also causes grooves along the constructed conducting paths, though they are very shallow in the depth. And the grooves have influence upon the hermetic seal between the silicon diaphragm and the glass substrate. Another prior art is as follows: (1) U.S. Patent 3,397,278, "ANODIC BONDING"; This relates to Anodic Bonding technique. (2) U.S. Patent 3,968,466, "PRESSURE TRANSDUCER": This shows the construction of ventional pressure transducer. a con- Summary of the Invention An object of the present invention, accordingly, is to provide a semiconductor absolute pressure transducer assembly in which an insulator covering member is hermetically bonded on a silicon diaphragm assembly on which piezoresistive bridge circuit and conducting paths are constructed, and therefore, an absolute pressure signal relative to pressure applied to the silicon diaphragm is provided with accuracy. Another object of the present invention is to provide a semiconductor absolute pressure transducer assembly, in which is provided a silicon diaphragm assembly on which uniform pressure-induced strains appear, therefore, a pressure signal being produced in accuracy.

Further, another object of the present invention is to provide a semiconductor absolute pressure transducer assembly being suitable for mass production. The objects mentioned above, in accordance with the present invention, are achieved by a semiconductor pressure transducer assembly comprising a silicon diaphragm assembly having a thin pressure sensitive diaphragm portion and a thick supporting portion surrounding the pressure sensitive diaphragm portion; piezoresistive elements constructed on the pressure sensitive diaphragm portion of said silicon diaphragm assembly, the resistance values of the piezoresistive elements varying depending on the strain appearing in the diaphragm portion in response to pressure applied thereto; conducting paths constructed on said silicon diaphragm assembly for electrically connecting of said piezoresistive elements, a passivating layer of insulating materal covering a surface of said silicon diaphragm assembly on which said piezoresistive elements and said conducting paths are constructed; a layer of conductive material formed on a surface of said passivating layer; and a covering member of insulating material mounted and bonded onto said silicon diaphragm assembly in contact with said conductive material layer on said passivating layer using Anodic Bonding method, characterized in that the flat surface of the silicon diaphragm, on which are constructed piezoresistive elements and conducting paths, is achieved by using Ion Implantation method. The objects mentioned above, in accordance with the present invention, are also achieved by such a semiconductor pressure transducer assembly, characterized in that said passivating layer of insulating materal is reformed on the surface of said silicon diaphragm assembly on which said piezoresistive elements and said conducting paths are constructed, after removing an insulating material layer used as mask means in diffusion method for constructing said piezoresistive elements and said conducting paths. The objects mentioned above, in accordance with the present invention, are also achieved by such a semiconductor pressure transducer assembly, characterized in that said conductive material layer is formed on the surface of said passivating layer on the thick supporting portion of said silicon diaphragm assembly. The objects mentioned above, in accordance with a preferred embodiment of the present invention, are further achieved by such a semiconductor pressure transducer assembly, further characterized in that in said passivating layer are formed a contacting window, and said layer of conductive material covers said contacting window, therefore, said silicon diaphragm assembly and said conductive material layer electrically connecting to each other. Further advantages of the present invention will become apparent from the following detailed description of preferred embodiment given by reference to the accompanying drawings. Brief Description of Drawings FIGURES 1 a and 1 b are a bottom plane view of a glass covering member and a top plane view of a silicon diaphragm assembly of an embodiment of a semiconductor absolute pressure transducer assembly constructed in accordance with the present invention; FIGURE 2 is a sectional view of the semiconductor absolute pressure transducer assembly shown in FIGURES 1 (a) and 1 (b) along the two dotted chain line 2-2; FIGURES 3(a) to 3(i) show one method for fabricating a silicon diaphragm assembly on which piezoresistive elements and conducting paths are constructed using method of Ion Implantation; and FIGURE 4 is a top plane view of the silicon diaphragm which is fabricated according to the method shown in FIGURES 3(a) to 3(i). Detailed Description of Preferred Embodiment Referring now to Figs. 1 (a), 1(b) and 2, a semiconductor absolute pressure transducer assembly having a covering member 10 of insulating material in which a circular well 11 is formed on the bottom surface thereof. The covering member 10 is composed of insulating material which has a thermal expansion coefficient substantially equal to that of silicon, for the purpose of elimination of thermal distortion due to the difference between the thermal expansion coefficients thereof. In this embodiment, such material as mentioned above is borosilicate glass which is available from Corning Glass work under the trademark "Pyrex", more preferably "Pyrex No. 7740". This borosilicate glass also shows good stickability to silicon, when it is bonded using Anodic Bonding. On an upper surface of a silicon diaphragm assembly 20 of single silicon crystal, four strain gauge elements 21, 22, 23 and 24 are properly oriented with respected to the crystal axises thereof, and conducting paths 25, 26, 27, 28 and 29 are constructed, using Ion Implantation or diffusion. These strain gauge elements 21, 22, 23 and 24 which construct a piezoresistive bridge circuit are positioned on a thin silicon diaphragm portion 30 of the silicon diaphragm assembly 20, which is designated by broke line in the top plane view of Fig. 1 (b), and these conducting paths 25, 26, 27, 28 and 29 are also provided thereon for electrical connection of these strain gauge elements 21, 22, 23 and 24. A passivating layer 31 of insulating material, such as silicon dioxide (Si02) is formed on the whole surface of the processed silicon diaphragm assembly 20. This is clearly shown in the sectional view of Fig. 2. A square con-

tacting window 32 is provided on the passivating layer in the area corresponding to a thick supporting portion 33 of the silicon diaphragm assembly 20. Further on a surface of the passivating layer 31 laminated on the silicon diaphragm assembly 20, a layer 34 of conductive material such as polysilicon is also formed on the thick supporting portion 33, more particularly on the area corresponding to contacting surface between the silicon diaphragm assembly 20 and the glass covering member 10. Through the square contacting window 32, the silicon diaphragm assembly 20 electrically connects to the polysilicon layer 34, both of which are electrically insulated to each other with the laminated insulator passivating layer 31 mentioned above. At the end portions of the conducting paths 25, 26, 27, 28 and 29, five metal electrodes 50, 51, 52, 53 and 54 are constructed, respectively. In the same manner as mentioned above, circular contacting windows 60, 61, 62, 63 and 64 are first provided on the surface of the insulator passivating layer, and then, metal such as aluminum (AI) is selectively evaporated thereon. Therefore, these metal electrodes 50, 51, 52, 53 and 54 electrically connect through these windows 60, 61, 62, 63 and 64 and these conducting paths 25, 26, 27, 28 and 29 to the strain gauge elements 21, 22, 23 and 24 of the piezoresistive bridge circuit. On the bottom surface of the silicon diaphragm assembly 20, a circular groove 70 is formed at a uniform depth using etching. Thereby, the thin diaphragm portion 30, which is defined by the surrounding thick supporting portion 33, is formed in the silicon diaphragm assembly 20. The diameter of the circular well 11 formed in the glass covering member 10 is designed at equal to or greater than that of circular diaphragm portion 30 of the silicon diaphragm assembly 20. Thereby, a vacuum chamber is defined by the circular well 11 and the diaphragm portion 30, when the glass covering member 10 is mounted and bonded on the silicon diaphragm assembly 20. The bonding between the glass covering member 10 and the silicon diaphragm assembly 20 is performed using Anodic Bonding. This bonding method is for bonding semiconductor or conductor such as silicon to insulator such as borosilicate glass without necessity of bonding pads, and the detail thereof are described, for example, in U.S. Patent 3,397,278. In this embodiment, as shown in Fig. 2, the processed silicon diaphragm assembly 20 and the glass covering member 10 are piled up, and a positive pole and a negative pole are provided, with the former to the silicon diaphragm assembly 20 and the latter to the glass covering member 10. Then, the piled silicon diaphragm assembly 20 and the glass covering member 10 are placed in vacuum condition and heated about to 300 C. Between these poles, voltage of about 700 volt is applied for about 10 minutes. Because the silicon diaphragm assembly 20 is electrically connected through the contacting window 32 to the polysilicon layer 34, the high voltage is applied between the glass covering member 10 and the silicon diaphragm assembly 20. Thereby, the glass covering member 10 is firmly bonded onto the surface of the polysilicon layer 34 of the silicon diaphragm assembly 20. The semiconductor absolute pressure transducer assembly having such construction as mentioned above, because it is enough to contact the positive pole of the high voltage not to the polysilicon layer 34 but to the body of the silicon diaphragm assembly 20, has no difficulty in the bonding process, therefore, being suitable for mass production. The conductive layer 34 of polysilicon, in this embodiment, as previously explained, is provided only on the area corresponding to a thick supporting portion 33 of the silicon diaphragm assembly 20. In other words, the polysilicon layer 34 is not provided on the surface of the diaphragm portion 30 of the silicon diaphragm assembly 20. Generally speaking, the surface of the polysilicon layer formed using sputtering, vapor growth or evaporation is not so smooth. In the case that such polysilicon layer 34 is laminated on the surface of the diaphragm portion 30, there is a possibility that the polysilicon layer 34 can be easily cracked by the straining force caused due to application of pressure. This cracking has various inferior influences upon the characteristics of the diaphragm portion 30 of the silicon diaphragm assembly 20, for example decreasing the intensity of the diaphragm and so on. Further, if there is inuniformity in the thickness of the polysilicon layer 34 formed on the diaphragm portion 30, the characteristics of the silicon diaphragm assembly 20 are inferiorily affected because of variety of strains appearing in the diaphragm portion 30 thereof. Referring now to Figs. 3(a) to 3(i), there is shown a process for fabricating a silicon diaphragm assembly using Ion Implantation. First of all, referring to Fig. 3(a), a starting material is a silicon substrate 200 of n-type. In Fig. 3(b), on the both surfaces of the silicon substrate 200 are formed silicon dioxide (SiO,) layers 201 and 202, and in Fig. 3(C), a photoresist layer 203 is selectively etched using photoetching, after being coated on the surface of the silicon dioxide layer 201 on the silicon substrate 200. In Fig. 3(d), piezoresistors 204 of a piezoresistive bridge circuit and diffused layers 205 of conducting paths are constructed on the silicon substrate 200 using the Ion Implantation. In this method, the reminded photoresist layer 203 is used as mark for ion implantation and the piezoresistors 204 of p-type and the diffused layer 205 of p+-type are constructed thereby. The photoresist layer 203 is removed afterward. In Fig. 3(e), part of the silicon dioxide layer 201 is etched and a con-

tacting window 206 is provided thereby. A layer of polysilicon is first coated on the whole surface of the silicon dioxide passivating layer 201 with the contacting window 206, and then is removed by etching, remaining a portion 207 on which is later mounted a glass covering member. Apparently shown in the figure, the polysilicon layer 207, which is reminded on the silicon dioxide layer 201, electrically connects to the silicon substrate 200. In Fig. 3(f), further contacting windows 208, 209, 210 and 211 are etched on the surface of the silicon dioxide layer 201. Electrode material such as aluminum (Al) is coated on the whole surface of the silicon substrate 200, and afterward is selectively removed by etching, thereby, electrodes 212, 213 and 214 being formed thereon, as shown in Figs. 3(g) and 3(h). And in Fig. 3(i), a circular groove 215 is formed using alkaline etching in which the silicon dioxide layer 202 of the bottom side of the silicon substrate 200 is used as mask member, and a thin silicon diaphragm portion 216 is defined by a thick silicon supporting portion 217 surrounding thereof. Then, the remained silicon dioxide layer 202 is removed, and a silicon diaphragm assembly is fabricated. A top plane view of the silicon diaphragm assembly 300 is shown in Fig. 4, in which reference numerals 301, 302, 303, 304 and 305 designate five metal layers of aluminum(al). Through these aluminum layers 301, 302, 303, 304 and 305, the strain gauge elements 21, 22, 23 and 24 are electrically connected to the conducting paths 25, 26, 27, 28 and 29, respectively. And reference numeral 32 designates the contacting window through which the polysilicon layer 207 is electrically connected to the silicon substrate, and reference numerals 50, 51, 52, 53 and 54 designate the five electrodes which are respectively connected to the conducting paths 25,26,27,28 and 29. The diffusion layers, such as conducting paths of p+-type, which are constructed using the above mentioned Ion Implantation, have no grooves because the Ion Implantation can be performed from upward of the silicon dioxide layer coated on the silicon substrate. This is clearly shown in Fig. 3(d). The silicon diaphragm assembly, therefore, has the diaphragm portion of uniform thickness, and has very flat and smooth surface thereof. Because of this flatness of the surface, the polysilicon layer can be formed in uniform thickness on the silicon diaphragm assembly. Therefore, the stickability of the glass covering member onto the polysilicon layer is good, and ideal hermetic seals therebetween can be obtained by using the Anodic Bonding. Another method for fabricating such silicon diaphragm assembly as mentioned above will be explained hereinafter. Namely, after the process for diffusion of impurity such as wellknown thermal diffusion, the silicon dioxide layer masked on the silicon substrate is re- moved by etching. Newly, a layer of silicon dioxide is re-formed on the whole surface of the processed silicon at certain constant thickness. And further thereon, the polysilicon layer is selectively formed on the area corresponding to contacting surface between the silicon diaphragm assembly and the glass covering member. 1. A semiconductor pressure transducer assembly comprising: a silicon diaphragm assembly (20) having a thin pressure sensitive diaphragm portion (30) and a thick supporting portion (33) surrounding the pressure sensitive diaphragm portion (30); piezoresistive elements (21-24) constructed on the pressure sensitive diaphragm portion (30) of said silicon diaphragm assembly (20), the resistance values of the piezoresistive elements (21-24) varying depending on the strain appearing in the diaphragm portion (30) in response to pressure applied thereto; conducting paths (25-29) constructed on said silicon diaphragm assembly (30) for electrically connecting of said piezoresistive elements (21-24); a passivating layer (31) of insulating material covering a surface of said silicon diaphragm assembly (20) on which said piezoresistive elements (21-24) and said conducting paths (25-29) are constructed; a layer (34) of conductive material formed on a surface of said passivating layer (31); and a covering member (10) of insulating material mounted and bonded onto said silicon diaphragm assembly (20) in contact with said conductive material layer (34) on said passivating layer (31) using Anodic Bonding method, characterized in that said piezoresistive elements (21-24) and said conducting paths (25-29) are constructed on said silicon diaphragm assembly (20) using Ion Implantation method. 2. A semiconductor pressure transducer assembly as claimed in Claim 1, characterized in that a photoresist (203) formed on the surface of said silicon diaphragm assembly (20) is used as mask means in the Ion Implantation method. 3. A semiconductor pressure transducer assembly comprising: a silicon diaphragm assembly (20) and having a thin pressure sensitive diaphragm portion (30) and a thick supporting portion (33) surrounding the pressure sensitive diaphragm portion (30); piezoresistive elements (21-24) constructed on the pressure sensitive diaphragm portion (30) of said silicon diaphragm assembly (20), the resistance values of the piezoresistive elements (21-24) varying depending on the strain appearing in the diaphragm portion (30) in response to pressure applied thereto; conducting paths (25-29) constructed on said silicon diaphragm assembly (20) for electrically connecting of said piezoresistive elements (21-24); a passivating layer (31) of insulating

material covering a surface of said silicon diaphragm assembly (20) on which said piezoresistive elements (21-24) and said conducting paths (25-29) are constructed; a layer (34) of conductive material formed on a surface of said passivating layer (31); and a covering member (10) of insulating material mounted and bonded onto said silicon diaphragm assembly (20) in contact with said conductive material layer (34) on said passivating layer (31) using Anodic Bonding method, characterized in that said passivating layer (31) of insulating material is reformed on the surface of said silicon diaphragm assembly (20), on which said piezoresistive elements (21-24) and said conducting paths (25-29) are constructed, after removing an insulating material layer (201) used as mask means in diffusion method for constructing said piezoresistive elements (21-24) and said conducting paths (25-29). 4. A semiconductor pressure transducer assembly comprising: a silicon diaphragm assembly (20) having a thin pressure sensitive diaphragm portion (30) and a thick supporting portion (33) surrounding the pressure sensitive diaphragm portion (30); piezoresistive elements (21-24) constructed on the pressure sensitive diaphragm portion (30) of said silicon diaphragm assembly (20), the resistance values of the piezoresistive elements (21-24) varying depending on the strain appearing in the diaphragm portion (30) in response to pressure applied thereto; conducting paths (25-29) constructed on said silicon diaphragm assembly (20) for electrically connecting of said piezoresistive elements (21-24); a passivating layer (31) of insulating material covering a surface of said silicon diaphragm assembly (20) on which said piezoresistive elements (21-24) and said conducting paths (25-29) are constructed; a layer (34) of conductive material formed on a surface of said passivating layer (31); and a covering member (10) of insulating material mounted and bonded onto said silicon diaphragm assembly (20) in contact with said conductive material layer (34) on said passivating layer (31) using Anodic Bonding method, characterized in that said conductive material layer (34) is formed on the surface of said passivating layer (31) on the thick supporting portion (33) of said silicon diaphragm assembly (20). 5. A semiconductor pressure transducer assembly as claimed in Claim 4, characterized in that said conductive material (34) is formed on the area of the surface of said passivating layer (31) corresponding to the contacting surface of the said covering member (10). 6. A semiconductor pressure transducer assembly as claimed in Claim 1, 3 or 4, characterized in that in said passivating layer are formed a contacting window, (32) and said layer (34) of conductive material covers said contacting window (32), therefore, said silicon diaphragm assembly (20) and said conductive material layer (34) electrically connecting to each other. 7. A semiconductor pressure transducer assembly as claimed in Claim 1, 3 or 4, characterized in that said silicon diaphragm assembly (20) has a circular diaphragm portion (30) and said covering member (10) has a circular well (11 8. A semiconductor pressure transducer assembly as claimed in Claim 1, 3 or 4, characterized in that said covering member (10) is made of borosilicate glass. 9. A semiconductor pressure transducer assembly as claimed in Claim 1, 3 or 4, characterized in that said conductive material of said conductive layer (34) is polysilicon. 10. A semiconductor pressure transducer assembly as claimed in Claim 1, 3 or 4, characterized in that said piezoresistive elements (21-24) construct a piezoresistive bridge circuit. 1. Ensemble transducteur de pression à semiconducteurs, comportant un diaphragme en silicium (20) possédant une partie mince (30) sensible à la pression et une partie de support épaisse (33) entourant la partie (30) sensible à la pression, des éléments piézoélectriques (21-24) réalisés sur la partie (30) sensible à la pression du diaphragme en silicium (20), les valeurs des résistances des éléments piézo-résistifs (21-24) variant en fonction de la contrainte apparaissant dans la partie (30) du diaphragme en réponse à une pression qui lui est appliquée, des voies conductrices (25-29) réalisées sur le diaphragme en silicium (20) de manière à relier électriquement lesdits éléments piézo-résistifs (21-24), une couche de passivation (31) constituée en un matériau isolant et recouvrant une surface du diaphragme en silicium (20), sur laquelle lesdits éléments piézo-résistifs (21-24) et lesdites voies conductrices (25-29) sont réalisées, une couche (34) en matériau conducteur formée sur une surface le ladite couche de passivation (31), et un élément de recouvrement (10) en matériau isolant monté et fixé audit diaphragme en silicium (20) en étant en contact avec ladite couche de matériau conducteur (34) sur ladite couche de passivation (30), en utilisant le procédé de liaison anodique, caractérisé en ce que lesdits éléments piézo-résistifs (21-24) et lesdites voies conductrices (25-29) sont réalisées sur le diaphragme en silicium (20) en utilisant un procédé d'implantation ionique. 2. Ensemble transducteur de pression à semiconducteurs selon la revendication 1, caractérisé en ce qu'une résine photosensible (203) déposée à la surface du diaphragme en silicium (20) est utilisée en tant que masque lors de la mise en oeuvre du procédé d'implantation ionique. 3. Ensemble transducteur de pression à

semiconducteurs comportant un diaphragme en silicium (20) possédant une partie mince (30) sensible à la pression et une partie de support épaisse (33) entourant la partie (30) sensible à la pression, des éléments piézo-électriques (21-24) réalisés sur la partie (30) sensible à la pression du diaphragme en silicium (20), les valeurs des résistances des éléments piézorésistifs (21-24) variant en fonction de la contrainte apparaissant dans la partie (30) du diaphragme en réponse à une pression qui lui est appliquée, des voies conductrices (25-29) réalisées sur le diaphragme en silicium (20) de manière à relier électriquement lesdits éléments piézo-résistifs (21-24), une couche de passivation (31) constituée en un matériau isolant et recouvrant une surface de diaphragme en silicium (20), sur laquelle lesdits éléments piézo-résistifs (21-24) et lesdites voies conductrices (25-29) sont réalisées, une couche (34) en matériau conducteur formée sur une surface de ladite couche de passivation (31), et un élément de recouvrement (10) en matériau isolant monté et fixé audit diaphragme en silicium (20) en étant en contact avec ladite couche de matériau conducteur (34) sur ladite couche de passivation (30), en utilisant le procédé de liaison anodique, caractérisé en ce ladite couche de passivation (31) en matériau isolant est formée à nouveau à la surface dudit diaphragme en silicium (20) sur laquelle lesdits éléments piézo-résistifs (21-24) et lesdits voies conductrices (25-29) sont réalisés, après élimination d'une couche de matériau isolant (200) utilisée en tant que masque lors du procédé de diffusion utilisé pour réaliser lesdits éléments piézo-résistifs (21-24) et lesdites voies conductrices (25-29). 4. Ensemble transducteur de pression à semiconducteurs, comportant un diaphragme en silicium (20) possédant une partie mince (30) sensible à la pression et une partie de support épaisse (33) entourant la partie (30) sensible à la pression, des éléments piézorésistifs (21-24) réalisés sur la partie (30) sensible à la pression du diaphragme en silicium (20), les valeurs des résistances des éléments piézo-résistifs (21-24) variant en fonction de la contrainte apparaissant dans la partie (30) du diaphragme en réponse à une pression qui lui est appliquée, des voies conductrices (25-29) réalisées sur la diaphragme en silicium (20) de manière à relier électriquement lesdits éléments piézo-résistifs (21-24), une couche de passivation (31) constituée en un matériau isolant et recouvrant une surface du diaphragme en silicium (20), sur laquelle lesdits éléments piézo-électriques (21-24) et lesdites voies conductrices (25-29) sont réalisées, une couche (34) en matériau conducteur formée sur une surface de ladite couche de passivation (31), et un élément de recouvrement (10) en matériau isolant monté en fixé audit diaphragme en silicium (20) en étant en contact avec ladite couche de matériau conducteur (34) sur ladite couche de passivation (30), en utilisant le procédé de liaison anodique, caractérisé en ce que ladite couche en matériau conducteur (34) est formée à la surface de ladite couche de passivation (31) sur la partie de support épaisse (33) du diaphragme en silicium (20). 5. Ensemble transducteur de pression à semiconducteurs selon la revendication 4, caractérisé en ce que ladite couche de matériau conducteur (34) est formée dans la zone de la surface de ladite couche de passivation (31) correspondant à la surface de contact dudit élément de recouvrement (10). 6. Ensemble transducteur de pression à semiconducteurs selon l'une quelconque des revendications 1, 3 et 4, caractérisé en ce qu'une fenêtre de contact (34) est formée dans ladite couche de passivation et que ladite couche (34) en matériau conducteur recouvre ladite fenêtre de contact (32), de telle sorte que le diaphragme en silicium (20) et la couche de matériau conducteur (34) sont reliée électriquement l'un à l'autre. 7. Ensemble transducteur de pression à semiconducteurs selon l'une quelconque des revendications 1, 3 et 4, caractérisé en ce que le diaphragme en silicium (20) possède une partie circulaire (30) et que l'élément de recouvrement (10) possède un renfoncement circulaire (11). 8. Ensemble transducteur de pression à semiconducteurs selon l'une quelconque des revendications 1, 3 et 4, caractérisé en ce que l'élément de recouvrement (10) est constitué par du verre aux borosilicates. 9. Ensemble transducteurs de pression à semiconducteurs selon l'une quelconque des revendications 1, 3 et 4, caractérisé en ce que ladite couche de passivation (31) est du bioxyde de silicium et que ledit matériau conducteur de ladite couche conductrice (34) est du polysilicium. 10. Ensemble transducteur de pression à semiconducteurs selon l'une quelconque des revendications 1, 3 et 4, caractérisé en ce que les éléments piézo-résistifs (21-24) constituent un circuit en pont piézo-résistif. 1. Halbleiter-Druckwandleranordnung mit einer Siliziummembrananordnung (20) mit einem dünnen druckempfindlichen Membranteil (30) und einem dicken Trägerteil (33), der den druckempfindlichen Membranteil (30) umgibt; auf dem druckempfindlichen Membranteil (30) der Siliziummembrananordnung (20) angebrachten piezoresistiven Elementen (21-24), deren Widerstandswerte in Abhängigkeit von der Beanspruchung variieren, die im Membranteil (30) im Ansprechen auf daran angelegten Druck auftritt; auf der Siliziummembrananordnung (20) angebrachten Leiterbahnen (25-29) zur elektrischen Verbindung der

piezoresistiven Elemente (21-24); einer Passivierschicht (31) aus Isoliermaterial, die eine Oberfläche der Siliziummembrananordnung (20) bedeckt, auf der die piezoresistiven Elemente (21-24) und die Leiterbahnen (25-29) angebracht sind; einer auf einer Oberfläche des Passivierschicht (31) gebildeten Schicht (34) aus leitendem Material; und einem Abdeckbauteil (10) aus Isoliermaterial, das auf der Siliziummembrananordnung (20) im Kontakt mit der leitenden Materialschicht (34) auf der Passivierschicht (31) montiert und damit unter Anwendung eines anodischen Verbindungsverfahrens verbunden ist, dadurch gekennzeichnet, daß die piezoresistiven Elemente (21-24) und die Leiterbahnen (25-29) auf der Siliziummembrananordnung (20) unter Anwendung eines lonenimplantierungsverfahrens angebracht sind. 2. Halbleiter-Druckwandleranordnung nach Anspruch 1, dadurch gekennzeichnet, daß ein auf der Oberfläche der Siliziummembrananordnung (20) gebildetes Photoresist (203) als Maskenmittel beim lonenplantierungsverfahren verwendet wird. 3. Halbleiter-Druckwandleranordnung mit einer Siliziummembrananordnung (20) mit einem dünnen druckempfindlichen Membranteil (30) und einem dicken Trägerteil (33), der den druckempfindlichen Membranteil (30) umgibt; auf dem druckempfindlichen Membranteil (30) der Siliziummenbrananordnung (20) angebrachten piezoresistiven Elementen (21--24), deren Widerstandswerte in Abhängigkeit von der Beanspruchung variieren, die im Membranteil (30) im Ansprechen auf daran angelegten Druck auftritt; auf der Siliziummembrananordnung (20) angebrachten Leiterbahnen (25-29) zur elektrischen Verbindung der piezoresistiven Elemente (21-24); einer Passivierschicht (31) aus Isoliermaterial, die eine Oberfläche der Siliziummembrananordnung (20) bedeckt, auf der die piezoresistiven Elemente (21-24) und die Leiterbahnen (25-29) angebracht sind; einer auf einer Oberfläche der Passivierschicht (31) gebildeten Schicht (34) aus leitendem Material; und einem Abdeckbauteil (10) aus Isoliermaterial, das auf der Siliziummembrananordnung (20) im Kontakt mit der leitenden Materialschicht (34) auf der Passivierschicht (31) montiert und damit unter Anwendung eines anodischen Verbindungsverfahrens verbunden ist, dadurch gekennzeichnet, daß die Passivierschicht (31) aus Isoliermaterial auf der Oberfläche der Siliziummembrananordnung (20), auf der die piezoresistiven Elemente (21-24) und die Leiterbahnen (25-29) angebracht sind, nach Entfernen einer als Maskenmittel beim Diffusionsverfahren zum Anbringen der piezoresistiven Elemente (21-24) und der Leiterbahnen (25-29) verwendeten Isoliermaterialschicht (201) neugebildet wird. 4. Halbleiter-Druckwandleranordnung mit einer Siliziummembrananordnung (20) mit einem dünnen druckempfindlichen Membranteil (30) une einem dicken Trägerteil (33), der den druckempfindlichen Membranteil (30) umgibt; auf dem druckempfindlichen Membranteil (30) der Siliziummembrananordnung (20) angebrachten piezoresistiven Elementen (21-24), deren Widerstandswerte in Abhängigkeit von der Beanspruchung variieren, die im Membrantil (30) im Ansprechen auf daran angelegten Druck auftritt; auf der Siliziummembrananordnung (20) angebrachten Leiterbahnen (25-29) zur elektrischen Verbindung der piezoresisten Elemente (21-24); einer Passivierschicht (31) aus Isoliermaterial, die einer Oberfläche der Passivierschicht (31) gebildeten Schicht (34) aus leitendem Material; und resistiven Elemente (21-24) und die Leiterbahnen (25-29) angebracht sind; einer auf einer Oberfläache der Passivierschicht (31) geb ildeten Schicht (34) aus leitendem Material; und einem Abdeckbauteil (10) aus Isoliermaterial, das auf der Siliziummembrananordnung (20) im Kontakt mit der leitenden Materialschicht (34) auf der Passivierschicht (31) montiert und damit unter Anwendung eines anodischen Verbindungsverfahren verbunden ist, dadurch gekennzeichnet, daß die leitende Materialschicht (34) auf der Oberfläche der Passivierschicht (31) auf dem dicken Trägerteil (33) der Siliziummembrananordnung (20) gebildet ist. 5. Halbleiter-Druckwandleranordnung nach Anspruch 4, dadurch gekennzeichnet, daß das leitende Material (34) auf der Fläche der Oberfläche der Passivierschicht (31) gebildet ist, die der Kontaktoberfläche des Abdeckbauteils (10) entspricht. 6. Halbleiter-Druckwandleranordnung nach Anspruch 1, 3 oder 4, dadurch gekennzeichnet, daß in der Passivierschicht ein Kontaktierfenster (32) gebildet ist und die Schicht (34) aus leitendem Material das Kontaktierfenster (32) abdeckt, so daß die Siliziummembrananordnung (20) und die leitende Materialschicht (34) elektrisch miteinander verbunden sind. 7. Halbleiter-Druckwandleranordnung nach Anspruch 1, 3 oder 4, dadurch gekennzeichnet, daß die Siliziummembrananordnung (20) einen kreisförmigen Membranteil (30) hat und das Abdeckbauteil (10) einen kreisförmigen Schacht (11) hat. 8. Halbleiter-Druckwandleranordnung nach Anspruch 1, 3 oder 4, dadurch gekennzeichnet, daß das Abdeckbauteil (10) aus Borsilikatglas gemacht ist. 9. Halbleiter-Druckwandleranordnung nach Anspruch 1, 3 oder 4, dadurch gekennzeichnet, daß die Passivierschicht (31) Siliziumdioxid ist und das leitende Material der leitenden Schicht (34) Polysilizium ist. 10. Halbleiter-Druckwandleranordnung nach Anspruch 1, 3 oder 4, dadurch gekennzeichnet, daß die piezoresistiven Elemente (21-24) eine piezoresistive Brückenschaltung bilden.