Optimisation et simulation numérique.



Similar documents
3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

2.3 Convex Constrained Optimization Problems

Convex Optimization. Lieven Vandenberghe University of California, Los Angeles

Advances in Convex Optimization: Interior-point Methods, Cone Programming, and Applications

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.

Additional Exercises for Convex Optimization

Conic optimization: examples and software

Duality in General Programs. Ryan Tibshirani Convex Optimization /36-725

Convex analysis and profit/cost/support functions

Duality of linear conic problems

Nonlinear Optimization: Algorithms 3: Interior-point methods

10. Proximal point method

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION

Two-Stage Stochastic Linear Programs

3. Linear Programming and Polyhedral Combinatorics

Lecture 13 Linear quadratic Lyapunov theory

An Overview Of Software For Convex Optimization. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM

An Introduction on SemiDefinite Program

Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance

Interior Point Methods and Linear Programming

What is Linear Programming?

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR

Pattern Analysis. Logistic Regression. 12. Mai Joachim Hornegger. Chair of Pattern Recognition Erlangen University

1 Norms and Vector Spaces

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI. (B.Sc.(Hons.), BUAA)

24. The Branch and Bound Method

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Optimization Methods in Finance

Nonlinear Programming Methods.S2 Quadratic Programming

NOV /II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

Some representability and duality results for convex mixed-integer programs.

Lecture 5 Principal Minors and the Hessian

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the school year.

Proximal mapping via network optimization

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Lecture 7: Finding Lyapunov Functions 1

Linear Threshold Units

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Several Views of Support Vector Machines

Date: April 12, Contents

INTERIOR POINT POLYNOMIAL TIME METHODS IN CONVEX PROGRAMMING

Computing a Nearest Correlation Matrix with Factor Structure

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

Adaptive Online Gradient Descent

Mathematical finance and linear programming (optimization)

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

A FIRST COURSE IN OPTIMIZATION THEORY

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Linear Programming I

Notes on Symmetric Matrices

1 Solving LPs: The Simplex Algorithm of George Dantzig

Chapter Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Vector and Matrix Norms

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Inner Product Spaces

Can linear programs solve NP-hard problems?

Inner Product Spaces and Orthogonality

Mathematical Methods of Engineering Analysis

Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

An interval linear programming contractor

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method

Chapter 5. Banach Spaces

4.6 Linear Programming duality

Lecture 3: Linear methods for classification

Online Convex Optimization

LINEAR ALGEBRA W W L CHEN

Solving polynomial least squares problems via semidefinite programming relaxations

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Lecture 2: August 29. Linear Programming (part I)

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

Completely Positive Cone and its Dual

Big Data - Lecture 1 Optimization reminders

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

Some Research Problems in Uncertainty Theory

Chapter 6. Cuboids. and. vol(conv(p ))

INTRODUCTORY SET THEORY

1 VECTOR SPACES AND SUBSPACES

1 Linear Programming. 1.1 Introduction. Problem description: motivate by min-cost flow. bit of history. everything is LP. NP and conp. P breakthrough.

Metric Spaces. Chapter 1

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

Applied Algorithm Design Lecture 5

Statistical Machine Learning

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Lecture 11: 0-1 Quadratic Program and Lower Bounds

STA 4273H: Statistical Machine Learning

Transcription:

Optimisation et simulation numérique. Lecture 1 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 1/106

Today Convex optimization: introduction Course organization and other gory details... Convex sets, functions, basic definitions. A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 2/106

Convex Optimization A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 3/106

Convex Optimization How do we identify easy and hard problems? Convexity: why is it so important? Modeling: how do we recognize easy problems in real applications? Algorithms: how do we solve these problems in practice? A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 4/106

Least squares (LS) minimize Ax b 2 2 A R m n, b R m are parameters; x R n is variable Complete theory (existence & uniqueness, sensitivity analysis... ) Several algorithms compute (global) solution reliably We can solve dense problems with n = 1000 vbles, m = 10000 terms By exploiting structure (e.g., sparsity) can solve far larger problems... LS is a (widely used) technology A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 5/106

Linear program (LP) minimize c T x subject to a T i x b i, i = 1,..., m c, a i R n are parameters; x R n is variable Nearly complete theory (existence & uniqueness, sensitivity analysis... ) Several algorithms compute (global) solution reliably Can solve dense problems with n = 1000 vbles, m = 10000 constraints By exploiting structure (e.g., sparsity) can solve far larger problems... LP is a (widely used) technology A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 6/106

Quadratic program (QP) minimize F x g 2 2 subject to a T i x b i, i = 1,..., m Combination of LS & LP Same story... QP is a technology Reliability: Programmed on chips to solve real-time problems Classic application: portfolio optimization A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 7/106

The bad news LS, LP, and QP are exceptions Most optimization problems, even some very simple looking ones, are intractable The objective of this class is to show you how to recognize the nice ones... Many, many applications across all fields... A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 8/106

Polynomial minimization minimize p is polynomial of degree d; x R n is variable p(x) Except for special cases (e.g., d = 2) this is a very difficult problem Even sparse problems with size n = 20, d = 10 are essentially intractable All algorithms known to solve this problem require effort exponential in n A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 9/106

What makes a problem easy or hard? Classical view: linear is easy nonlinear is hard(er) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 10/106

What makes a problem easy or hard? Emerging (and correct) view:... the great watershed in optimization isn t between linearity and nonlinearity, but convexity and nonconvexity. R. Rockafellar, SIAM Review 1993 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 11/106

Convex optimization minimize f 0 (x) subject to f 1 (x) 0,..., f m (x) 0 x R n is optimization variable; f i : R n R are convex: f i (λx + (1 λ)y) λf i (x) + (1 λ)f i (y) for all x, y, 0 λ 1 includes LS, LP, QP, and many others like LS, LP, and QP, convex problems are fundamentally tractable A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 12/106

Convex Optimization A brief history... The field is about 50 years old. Starts with the work of Von Neumann, Kuhn and Tucker, etc Explodes in the 60 s with the advent of relatively cheap and efficient computers... Key to all this: fast linear algebra Some of the theory developed before computers even existed... A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 13/106

Convex optimization: history Convexity = low complexity:... In fact the great watershed in optimization isn t between linearity and nonlinearity, but convexity and nonconvexity. T. Rockafellar. True: Nemirovskii and Yudin [1979]. Very true: Karmarkar [1984]. Seriously true: convex programming, Nesterov and Nemirovskii [1994]. A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 14/106

Standard convex complexity analysis All convex minimization problems with: a first order oracle (returning f(x) and a subgradient) can be solved in polynomial time in size and number of precision digits. Proved using the ellipsoid method by Nemirovskii and Yudin [1979]. Very slow convergence in practice. A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 15/106

Linear Programming Simplex algorithm by Dantzig (1949): exponential worst-case complexity, very efficient in most cases. Khachiyan [1979] then used the ellipsoid method to show the polynomial complexity of LP. Karmarkar [1984] describes the first efficient polynomial time algorithm for LP, using interior point methods. A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 16/106

From LP to structured convex programs Nesterov and Nemirovskii [1994] show that the interior point methods used for LPs can be applied to a larger class of structured convex problems. The self-concordance analysis that they introduce extends the polynomial time complexity proof for LPs. Most operations that preserve convexity also preserve self-concordance. The complexity of a certain number of elementary problems can be directly extended to a much wider class. A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 17/106

Symmetric cone programs An important particular case: linear programming on symmetric cones minimize subject to c T x Ax b K These include the LP, second-order (Lorentz) and semidefinite cone: LP: {x R n : x 0} Second order: {(x, y) R n R : x y} Semidefinite: {X S n : X 0} Again, the class of problems that can be represented using these cones is extremely vast. A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 18/106

Course Organization A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 19/106

Course Plan Convex analysis & modeling Duality Algorithms: interior point methods, first order methods. Applications A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 20/106

Grading Course website with lecture notes, homework, etc. http://www.cmap.polytechnique.fr/~aspremon/mathsvm2.html A few homeworks, will be posted online. Final exam: TBD A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 21/106

Short blurb Contact info on http://www.cmap.polytechnique.fr/~aspremon Email: alexandre.daspremont@m4x.org Dual PhDs: Ecole Polytechnique & Stanford University Interests: Optimization, machine learning, statistics & finance. Recruiting PhD students starting next year. Full ERC funding for 3 years. A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 22/106

References All lecture notes will be posted online Textbook: Convex Optimization by Lieven Vandenberghe and Stephen Boyd, available online at: http://www.stanford.edu/~boyd/cvxbook/ See also Ben-Tal and Nemirovski [2001], Lectures On Modern Convex Optimization: Analysis, Algorithms, And Engineering Applications, SIAM. http://www2.isye.gatech.edu/~nemirovs/ Nesterov [2003], Introductory Lectures on Convex Optimization, Springer. Nesterov and Nemirovskii [1994], Interior Point Polynomial Algorithms in Convex Programming, SIAM. A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 23/106

Convex Sets A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 24/106

Convex Sets affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual cones and generalized inequalities A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 25/106

Affine set line through x 1, x 2 : all points x = θx 1 + (1 θ)x 2 (θ R) θ = 1.2 x 1 θ = 1 θ = 0.6 x 2 θ = 0 θ = 0.2 affine set: contains the line through any two distinct points in the set example: solution set of linear equations {x Ax = b} A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 26/106

Convex set line segment between x 1 and x 2 : all points with 0 θ 1 x = θx 1 + (1 θ)x 2 convex set: contains line segment between any two points in the set x 1, x 2 C, 0 θ 1 = θx 1 + (1 θ)x 2 C examples (one convex, two nonconvex sets) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 27/106

Convex combination and convex hull convex combination of x 1,..., x k : any point x of the form with θ 1 + + θ k = 1, θ i 0 x = θ 1 x 1 + θ 2 x 2 + + θ k x k convex hull CoS: set of all convex combinations of points in S A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 28/106

Convex cone conic (nonnegative) combination of x 1 and x 2 : any point of the form with θ 1 0, θ 2 0 x = θ 1 x 1 + θ 2 x 2 x 1 0 x 2 convex cone: set that contains all conic combinations of points in the set A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 29/106

Hyperplanes and halfspaces hyperplane: set of the form {x a T x = b} (a 0) a x 0 x a T x = b halfspace: set of the form {x a T x b} (a 0) a x 0 a T x b a T x b a is the normal vector hyperplanes are affine and convex; halfspaces are convex A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 30/106

Euclidean balls and ellipsoids (Euclidean) ball with center x c and radius r: B(x c, r) = {x x x c 2 r} = {x c + ru u 2 1} ellipsoid: set of the form {x (x x c ) T P 1 (x x c ) 1} with P S n ++ (i.e., P symmetric positive definite) x c other representation: {x c + Au u 2 1} with A square and nonsingular A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 31/106

Norm balls and norm cones norm: a function that satisfies x 0; x = 0 if and only if x = 0 tx = t x for t R x + y x + y notation: is general (unspecified) norm; symb is particular norm norm ball with center x c and radius r: {x x x c r} 1 norm cone: {(x, t) x t} t 0.5 Euclidean norm cone is called secondorder cone 1 0 0 x 2 1 1 x 1 0 1 norm balls and cones are convex A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 32/106

Polyhedra solution set of finitely many linear inequalities and equalities Ax b, Cx = d (A R m n, C R p n, is componentwise inequality) a 1 a2 a 5 P a 3 a 4 polyhedron is intersection of finite number of halfspaces and hyperplanes A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 33/106

Positive semidefinite cone notation: S n is set of symmetric n n matrices S n + = {X S n X 0}: positive semidefinite n n matrices X S n + z T Xz 0 for all z S n + is a convex cone S n ++ = {X S n X 0}: positive definite n n matrices 1 example: [ x y y z ] S 2 + z 0.5 0 1 0 y 1 0 x 0.5 1 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 34/106

Operations that preserve convexity practical methods for establishing convexity of a set C 1. apply definition x 1, x 2 C, 0 θ 1 = θx 1 + (1 θ)x 2 C 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls,... ) by operations that preserve convexity intersection affine functions perspective function linear-fractional functions A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 35/106

Intersection the intersection of (any number of) convex sets is convex example: S = {x R m p(t) 1 for t π/3} where p(t) = x 1 cos t + x 2 cos 2t + + x m cos mt for m = 2: 2 p(t) 1 0 1 x2 1 0 S 1 0 π/3 2π/3 π t 2 2 1 0 1 2 x 1 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 36/106

Affine function suppose f : R n R m is affine (f(x) = Ax + b with A R m n, b R m ) the image of a convex set under f is convex S R n convex = f(s) = {f(x) x S} convex the inverse image f 1 (C) of a convex set under f is convex C R m convex = f 1 (C) = {x R n f(x) C} convex examples scaling, translation, projection solution set of linear matrix inequality {x x 1 A 1 + + x m A m B} (with A i, B S p ) hyperbolic cone {x x T P x (c T x) 2, c T x 0} (with P S n +) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 37/106

Perspective and linear-fractional function perspective function P : R n+1 R n : P (x, t) = x/t, dom P = {(x, t) t > 0} images and inverse images of convex sets under perspective are convex linear-fractional function f : R n R m : f(x) = Ax + b c T x + d, dom f = {x ct x + d > 0} images and inverse images of convex sets under linear-fractional functions are convex A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 38/106

example of a linear-fractional function f(x) = 1 x 1 + x 2 + 1 x 1 1 x2 0 C x2 0 f(c) 1 1 0 1 x 1 1 1 0 1 x 1 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 39/106

Generalized inequalities a convex cone K R n is a proper cone if K is closed (contains its boundary) K is solid (has nonempty interior) K is pointed (contains no line) examples nonnegative orthant K = R n + = {x R n x i 0, i = 1,..., n} positive semidefinite cone K = S n + nonnegative polynomials on [0, 1]: K = {x R n x 1 + x 2 t + x 3 t 2 + + x n t n 1 0 for t [0, 1]} A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 40/106

generalized inequality defined by a proper cone K: x K y y x K, x K y y x int K examples componentwise inequality (K = R n +) x R n + y x i y i, i = 1,..., n matrix inequality (K = S n +) X S n + Y Y X positive semidefinite these two types are so common that we drop the subscript in K properties: many properties of K are similar to on R, e.g., x K y, u K v = x + u K y + v A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 41/106

Minimum and minimal elements K is not in general a linear ordering: we can have x K y and y K x x S is the minimum element of S with respect to K if y S = x K y x S is a minimal element of S with respect to K if y S, y K x = y = x example (K = R 2 +) x 1 is the minimum element of S 1 x 2 is a minimal element of S 2 x 1 S 2 S 1 x 2 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 42/106

Separating hyperplane theorem if C and D are disjoint convex sets, then there exists a 0, b such that a T x b for x C, a T x b for x D a T x b a T x b D C a the hyperplane {x a T x = b} separates C and D strict separation requires additional assumptions (e.g., C is closed, D is a singleton) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 43/106

Supporting hyperplane theorem supporting hyperplane to set C at boundary point x 0 : {x a T x = a T x 0 } where a 0 and a T x a T x 0 for all x C a C x 0 supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 44/106

Dual cones and generalized inequalities dual cone of a cone K: examples K = {y y T x 0 for all x K} K = R n +: K = R n + K = S n +: K = S n + K = {(x, t) x 2 t}: K = {(x, t) x 2 t} K = {(x, t) x 1 t}: K = {(x, t) x t} first three examples are self-dual cones dual cones of proper cones are proper, hence define generalized inequalities: y K 0 y T x 0 for all x K 0 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 45/106

Minimum and minimal elements via dual inequalities minimum element w.r.t. K x is minimum element of S iff for all λ K 0, x is the unique minimizer of λ T z over S x S minimal element w.r.t. K if x minimizes λ T z over S for some λ K 0, then x is minimal λ 1 x 1 S x 2 λ 2 if x is a minimal element of a convex set S, then there exists a nonzero λ K 0 such that x minimizes λ T z over S A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 46/106

Convex Functions A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 47/106

Outline basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions convexity with respect to generalized inequalities A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 48/106

Definition f : R n R is convex if dom f is a convex set and for all x, y dom f, 0 θ 1 f(θx + (1 θ)y) θf(x) + (1 θ)f(y) (x,f(x)) (y,f(y)) f is concave if f is convex f is strictly convex if dom f is convex and for x, y dom f, x y, 0 < θ < 1 f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 49/106

Examples on R convex: affine: ax + b on R, for any a, b R exponential: e ax, for any a R powers: x α on R ++, for α 1 or α 0 powers of absolute value: x p on R, for p 1 negative entropy: x log x on R ++ concave: affine: ax + b on R, for any a, b R powers: x α on R ++, for 0 α 1 logarithm: log x on R ++ A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 50/106

Examples on R n and R m n affine functions are convex and concave; all norms are convex examples on R n affine function f(x) = a T x + b norms: x p = ( n i=1 x i p ) 1/p for p 1; x = max k x k examples on R m n (m n matrices) affine function f(x) = Tr(A T X) + b = m i=1 n A ij X ij + b j=1 spectral (maximum singular value) norm f(x) = X 2 = σ max (X) = (λ max (X T X)) 1/2 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 51/106

Restriction of a convex function to a line f : R n R is convex if and only if the function g : R R, g(t) = f(x + tv), dom g = {t x + tv dom f} is convex (in t) for any x dom f, v R n can check convexity of f by checking convexity of functions of one variable example. f : S n R with f(x) = log det X, dom X = S n ++ g(t) = log det(x + tv ) = log det X + log det(i + tx 1/2 V X 1/2 ) = n log det X + log(1 + tλ i ) where λ i are the eigenvalues of X 1/2 V X 1/2 g is concave in t (for any choice of X 0, V ); hence f is concave i=1 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 52/106

Extended-value extension extended-value extension f of f is f(x) = f(x), x dom f, f(x) =, x dom f often simplifies notation; for example, the condition 0 θ 1 = f(θx + (1 θ)y) θ f(x) + (1 θ) f(y) (as an inequality in R { }), means the same as the two conditions dom f is convex for x, y dom f, 0 θ 1 = f(θx + (1 θ)y) θf(x) + (1 θ)f(y) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 53/106

First-order condition f is differentiable if dom f is open and the gradient exists at each x dom f f(x) = ( f(x) x 1, f(x),..., f(x) ) x 2 x n 1st-order condition: differentiable f with convex domain is convex iff f(y) f(x) + f(x) T (y x) for all x, y dom f f(y) f(x) + f(x) T (y x) (x,f(x)) first-order approximation of f is global underestimator A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 54/106

Second-order conditions f is twice differentiable if dom f is open and the Hessian 2 f(x) S n, exists at each x dom f 2 f(x) ij = 2 f(x) x i x j, i, j = 1,..., n, 2nd-order conditions: for twice differentiable f with convex domain f is convex if and only if 2 f(x) 0 for all x dom f if 2 f(x) 0 for all x dom f, then f is strictly convex A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 55/106

Examples quadratic function: f(x) = (1/2)x T P x + q T x + r (with P S n ) f(x) = P x + q, 2 f(x) = P convex if P 0 least-squares objective: f(x) = Ax b 2 2 f(x) = 2A T (Ax b), 2 f(x) = 2A T A convex (for any A) quadratic-over-linear: f(x, y) = x 2 /y 2 2 f(x, y) = 2 y 3 [ y x ] [ y x ] T 0 f(x,y) 1 0 2 2 1 0 convex for y > 0 y 0 2 x A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 56/106

log-sum-exp: f(x) = log n k=1 exp x k is convex 2 f(x) = 1 1 T z diag(z) 1 (1 T z) 2zzT (z k = exp x k ) to show 2 f(x) 0, we must verify that v T 2 f(x)v 0 for all v: v T 2 f(x)v = ( k z kv 2 k )( k z k) ( k v kz k ) 2 ( k z k) 2 0 since ( k v kz k ) 2 ( k z kv 2 k )( k z k) (from Cauchy-Schwarz inequality) geometric mean: f(x) = ( n k=1 x k) 1/n on R n ++ is concave (similar proof as for log-sum-exp) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 57/106

Epigraph and sublevel set α-sublevel set of f : R n R: C α = {x dom f f(x) α} sublevel sets of convex functions are convex (converse is false) epigraph of f : R n R: epi f = {(x, t) R n+1 x dom f, f(x) t} epif f f is convex if and only if epi f is a convex set A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 58/106

Jensen s inequality basic inequality: if f is convex, then for 0 θ 1, f(θx + (1 θ)y) θf(x) + (1 θ)f(y) extension: if f is convex, then for any random variable z f(e z) E f(z) basic inequality is special case with discrete distribution Prob(z = x) = θ, Prob(z = y) = 1 θ A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 59/106

Operations that preserve convexity practical methods for establishing convexity of a function 1. verify definition (often simplified by restricting to a line) 2. for twice differentiable functions, show 2 f(x) 0 3. show that f is obtained from simple convex functions by operations that preserve convexity nonnegative weighted sum composition with affine function pointwise maximum and supremum composition minimization perspective A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 60/106

Positive weighted sum & composition with affine function nonnegative multiple: αf is convex if f is convex, α 0 sum: f 1 + f 2 convex if f 1, f 2 convex (extends to infinite sums, integrals) composition with affine function: f(ax + b) is convex if f is convex examples log barrier for linear inequalities f(x) = m log(b i a T i x), dom f = {x a T i x < b i, i = 1,..., m} i=1 (any) norm of affine function: f(x) = Ax + b A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 61/106

Pointwise maximum if f 1,..., f m are convex, then f(x) = max{f 1 (x),..., f m (x)} is convex examples piecewise-linear function: f(x) = max i=1,...,m (a T i x + b i) is convex sum of r largest components of x R n : f(x) = x [1] + x [2] + + x [r] is convex (x [i] is ith largest component of x) proof: f(x) = max{x i1 + x i2 + + x ir 1 i 1 < i 2 < < i r n} A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 62/106

Pointwise supremum if f(x, y) is convex in x for each y A, then is convex examples g(x) = sup f(x, y) y A support function of a set C: S C (x) = sup y C y T x is convex distance to farthest point in a set C: f(x) = sup x y y C maximum eigenvalue of symmetric matrix: for X S n, λ max (X) = sup y T Xy y 2 =1 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 63/106

Composition with scalar functions composition of g : R n R and h : R R: f(x) = h(g(x)) f is convex if g convex, h convex, h nondecreasing g concave, h convex, h nonincreasing proof (for n = 1, differentiable g, h) f (x) = h (g(x))g (x) 2 + h (g(x))g (x) note: monotonicity must hold for extended-value extension h examples exp g(x) is convex if g is convex 1/g(x) is convex if g is concave and positive A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 64/106

Vector composition composition of g : R n R k and h : R k R: f(x) = h(g(x)) = h(g 1 (x), g 2 (x),..., g k (x)) f is convex if g i convex, h convex, h nondecreasing in each argument g i concave, h convex, h nonincreasing in each argument proof (for n = 1, differentiable g, h) f (x) = g (x) T 2 h(g(x))g (x) + h(g(x)) T g (x) examples m i=1 log g i(x) is concave if g i are concave and positive log m i=1 exp g i(x) is convex if g i are convex A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 65/106

Minimization if f(x, y) is convex in (x, y) and C is a convex set, then is convex examples g(x) = inf f(x, y) y C f(x, y) = x T Ax + 2x T By + y T Cy with [ A B B T C ] 0, C 0 minimizing over y gives g(x) = inf y f(x, y) = x T (A BC 1 B T )x g is convex, hence Schur complement A BC 1 B T 0 distance to a set: dist(x, S) = inf y S x y is convex if S is convex A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 66/106

The conjugate function the conjugate of a function f is f (y) = sup (y T x f(x)) x dom f f(x) xy x (0, f (y)) f is convex (even if f is not) Used in regularization, duality results,... A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 67/106

examples negative logarithm f(x) = log x f (y) = sup(xy + log x) = x>0 { 1 log( y) y < 0 otherwise strictly convex quadratic f(x) = (1/2)x T Qx with Q S n ++ f (y) = sup(y x (1/2)x T Qx) x = 1 2 yt Q 1 y A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 68/106

Quasiconvex functions f : R n R is quasiconvex if dom f is convex and the sublevel sets are convex for all α S α = {x dom f f(x) α} β α a b c f is quasiconcave if f is quasiconvex f is quasilinear if it is quasiconvex and quasiconcave A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 69/106

Examples x is quasiconvex on R ceil(x) = inf{z Z z x} is quasilinear log x is quasilinear on R ++ f(x 1, x 2 ) = x 1 x 2 is quasiconcave on R 2 ++ linear-fractional function f(x) = at x + b c T x + d, dom f = {x ct x + d > 0} is quasilinear distance ratio is quasiconvex f(x) = x a 2 x b 2, dom f = {x x a 2 x b 2 } A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 70/106

Properties modified Jensen inequality: for quasiconvex f 0 θ 1 = f(θx + (1 θ)y) max{f(x), f(y)} first-order condition: differentiable f with cvx domain is quasiconvex iff f(y) f(x) = f(x) T (y x) 0 x f(x) sums of quasiconvex functions are not necessarily quasiconvex A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 71/106

Log-concave and log-convex functions a positive function f is log-concave if log f is concave: f(θx + (1 θ)y) f(x) θ f(y) 1 θ for 0 θ 1 f is log-convex if log f is convex powers: x a on R ++ is log-convex for a 0, log-concave for a 0 many common probability densities are log-concave, e.g., normal: f(x) = 1 (2π)n det Σ e 1 2 (x x)t Σ 1 (x x) cumulative Gaussian distribution function Φ is log-concave Φ(x) = 1 2π x e u2 /2 du A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 72/106

Properties of log-concave functions twice differentiable f with convex domain is log-concave if and only if f(x) 2 f(x) f(x) f(x) T for all x dom f product of log-concave functions is log-concave sum of log-concave functions is not always log-concave integration: if f : R n R m R is log-concave, then g(x) = f(x, y) dy is log-concave (not easy to show) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 73/106

consequences of integration property convolution f g of log-concave functions f, g is log-concave (f g)(x) = f(x y)g(y)dy if C R n convex and y is a random variable with log-concave pdf then f(x) = Prob(x + y C) is log-concave proof: write f(x) as integral of product of log-concave functions f(x) = g(x + y)p(y) dy, g(u) = { 1 u C 0 u C, p is pdf of y A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 74/106

Convex Optimization Problems A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 75/106

Outline optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization geometric programming generalized inequality constraints semidefinite programming vector optimization A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 76/106

Optimization problem in standard form minimize f 0 (x) subject to f i (x) 0, i = 1,..., m h i (x) = 0, i = 1,..., p x R n is the optimization variable f 0 : R n R is the objective or cost function f i : R n R, i = 1,..., m, are the inequality constraint functions h i : R n R are the equality constraint functions optimal value: p = inf{f 0 (x) f i (x) 0, i = 1,..., m, h i (x) = 0, i = 1,..., p} p = if problem is infeasible (no x satisfies the constraints) p = if problem is unbounded below A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 77/106

Optimal and locally optimal points x is feasible if x dom f 0 and it satisfies the constraints a feasible x is optimal if f 0 (x) = p ; X opt is the set of optimal points x is locally optimal if there is an R > 0 such that x is optimal for minimize (over z) f 0 (z) subject to f i (z) 0, i = 1,..., m, h i (z) = 0, i = 1,..., p z x 2 R examples (with n = 1, m = p = 0) f 0 (x) = 1/x, dom f 0 = R ++ : p = 0, no optimal point f 0 (x) = log x, dom f 0 = R ++ : p = f 0 (x) = x log x, dom f 0 = R ++ : p = 1/e, x = 1/e is optimal f 0 (x) = x 3 3x, p =, local optimum at x = 1 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 78/106

Implicit constraints the standard form optimization problem has an implicit constraint x D = m i=0 dom f i p i=1 dom h i, we call D the domain of the problem the constraints f i (x) 0, h i (x) = 0 are the explicit constraints a problem is unconstrained if it has no explicit constraints (m = p = 0) example: minimize f 0 (x) = k i=1 log(b i a T i x) is an unconstrained problem with implicit constraints a T i x < b i A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 79/106

Feasibility problem find x subject to f i (x) 0, i = 1,..., m h i (x) = 0, i = 1,..., p can be considered a special case of the general problem with f 0 (x) = 0: minimize 0 subject to f i (x) 0, i = 1,..., m h i (x) = 0, i = 1,..., p p = 0 if constraints are feasible; any feasible x is optimal p = if constraints are infeasible A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 80/106

Convex optimization problem standard form convex optimization problem minimize f 0 (x) subject to f i (x) 0, i = 1,..., m a T i x = b i, i = 1,..., p f 0, f 1,..., f m are convex; equality constraints are affine problem is quasiconvex if f 0 is quasiconvex (and f 1,..., f m convex) often written as minimize f 0 (x) subject to f i (x) 0, i = 1,..., m Ax = b important property: feasible set of a convex optimization problem is convex A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 81/106

example minimize f 0 (x) = x 2 1 + x 2 2 subject to f 1 (x) = x 1 /(1 + x 2 2) 0 h 1 (x) = (x 1 + x 2 ) 2 = 0 f 0 is convex; feasible set {(x 1, x 2 ) x 1 = x 2 0} is convex not a convex problem (according to our definition): f 1 is not convex, h 1 is not affine equivalent (but not identical) to the convex problem minimize x 2 1 + x 2 2 subject to x 1 0 x 1 + x 2 = 0 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 82/106

Local and global optima any locally optimal point of a convex problem is (globally) optimal proof: suppose x is locally optimal and y is optimal with f 0 (y) < f 0 (x) x locally optimal means there is an R > 0 such that z feasible, z x 2 R = f 0 (z) f 0 (x) consider z = θy + (1 θ)x with θ = R/(2 y x 2 ) y x 2 > R, so 0 < θ < 1/2 z is a convex combination of two feasible points, hence also feasible z x 2 = R/2 and f 0 (z) θf 0 (x) + (1 θ)f 0 (y) < f 0 (x) which contradicts our assumption that x is locally optimal A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 83/106

Optimality criterion for differentiable f 0 x is optimal if and only if it is feasible and f 0 (x) T (y x) 0 for all feasible y X x f 0 (x) if nonzero, f 0 (x) defines a supporting hyperplane to feasible set X at x A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 84/106

unconstrained problem: x is optimal if and only if x dom f 0, f 0 (x) = 0 equality constrained problem minimize f 0 (x) subject to Ax = b x is optimal if and only if there exists a ν such that x dom f 0, Ax = b, f 0 (x) + A T ν = 0 minimization over nonnegative orthant x is optimal if and only if minimize f 0 (x) subject to x 0 x dom f 0, x 0, { f0 (x) i 0 x i = 0 f 0 (x) i = 0 x i > 0 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 85/106

Equivalent convex problems two problems are (informally) equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa some common transformations that preserve convexity: eliminating equality constraints minimize f 0 (x) subject to f i (x) 0, i = 1,..., m Ax = b is equivalent to minimize (over z) f 0 (F z + x 0 ) subject to f i (F z + x 0 ) 0, i = 1,..., m where F and x 0 are such that Ax = b x = F z + x 0 for some z A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 86/106

introducing equality constraints minimize f 0 (A 0 x + b 0 ) subject to f i (A i x + b i ) 0, i = 1,..., m is equivalent to minimize (over x, y i ) f 0 (y 0 ) subject to f i (y i ) 0, i = 1,..., m y i = A i x + b i, i = 0, 1,..., m introducing slack variables for linear inequalities minimize f 0 (x) subject to a T i x b i, i = 1,..., m is equivalent to minimize (over x, s) f 0 (x) subject to a T i x + s i = b i, i = 1,..., m s i 0, i = 1,... m A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 87/106

epigraph form: standard form convex problem is equivalent to minimize (over x, t) t subject to f 0 (x) t 0 f i (x) 0, i = 1,..., m Ax = b minimizing over some variables minimize f 0 (x 1, x 2 ) subject to f i (x 1 ) 0, i = 1,..., m is equivalent to minimize f0 (x 1 ) subject to f i (x 1 ) 0, i = 1,..., m where f 0 (x 1 ) = inf x2 f 0 (x 1, x 2 ) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 88/106

Quasiconvex optimization minimize f 0 (x) subject to f i (x) 0, i = 1,..., m Ax = b with f 0 : R n R quasiconvex, f 1,..., f m convex can have locally optimal points that are not (globally) optimal (x,f 0 (x)) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 89/106

quasiconvex optimization via convex feasibility problems f 0 (x) t, f i (x) 0, i = 1,..., m, Ax = b (1) for fixed t, a convex feasibility problem in x if feasible, we can conclude that t p ; if infeasible, t p Bisection method for quasiconvex optimization given l p, u p, tolerance ɛ > 0. repeat 1. t := (l + u)/2. 2. Solve the convex feasibility problem (1). 3. if (1) is feasible, u := t; else l := t. until u l ɛ. requires exactly log 2 ((u l)/ɛ) iterations (where u, l are initial values) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 90/106

Linear program (LP) minimize subject to c T x + d Gx h Ax = b convex problem with affine objective and constraint functions feasible set is a polyhedron c P x A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 91/106

Examples diet problem: choose quantities x 1,..., x n of n foods one unit of food j costs c j, contains amount a ij of nutrient i healthy diet requires nutrient i in quantity at least b i to find cheapest healthy diet, minimize c T x subject to Ax b, x 0 piecewise-linear minimization minimize max i=1,...,m (a T i x + b i) equivalent to an LP minimize t subject to a T i x + b i t, i = 1,..., m A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 92/106

Chebyshev center of a polyhedron Chebyshev center of P = {x a T i x b i, i = 1,..., m} is center of largest inscribed ball x cheb B = {x c + u u 2 r} a T i x b i for all x B if and only if sup{a T i (x c + u) u 2 r} = a T i x c + r a i 2 b i hence, x c, r can be determined by solving the LP maximize r subject to a T i x c + r a i 2 b i, i = 1,..., m A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 93/106

(Generalized) linear-fractional program minimize subject to f 0 (x) Gx h Ax = b linear-fractional program f 0 (x) = ct x + d e T x + f, dom f 0(x) = {x e T x + f > 0} a quasiconvex optimization problem; can be solved by bisection also equivalent to the LP (variables y, z) minimize subject to c T y + dz Gy hz Ay = bz e T y + fz = 1 z 0 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 94/106

Quadratic program (QP) minimize subject to (1/2)x T P x + q T x + r Gx h Ax = b P S n +, so objective is convex quadratic minimize a convex quadratic function over a polyhedron f 0 (x ) x P A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 95/106

Examples least-squares minimize Ax b 2 2 analytical solution x = A b (A is pseudo-inverse) can add linear constraints, e.g., l x u linear program with random cost minimize c T x + γx T Σx = E c T x + γ var(c T x) subject to Gx h, Ax = b c is random vector with mean c and covariance Σ hence, c T x is random variable with mean c T x and variance x T Σx γ > 0 is risk aversion parameter; controls the trade-off between expected cost and variance (risk) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 96/106

Quadratically constrained quadratic program (QCQP) minimize (1/2)x T P 0 x + q0 T x + r 0 subject to (1/2)x T P i x + qi T x + r i 0, i = 1,..., m Ax = b P i S n +; objective and constraints are convex quadratic if P 1,..., P m S n ++, feasible region is intersection of m ellipsoids and an affine set A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 97/106

Second-order cone programming (A i R n i n, F R p n ) minimize f T x subject to A i x + b i 2 c T i x + d i, i = 1,..., m F x = g inequalities are called second-order cone (SOC) constraints: (A i x + b i, c T i x + d i ) second-order cone in R n i+1 for n i = 0, reduces to an LP; if c i = 0, reduces to a QCQP more general than QCQP and LP A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 98/106

Robust linear programming the parameters in optimization problems are often uncertain, e.g., in an LP minimize c T x subject to a T i x b i, i = 1,..., m, there can be uncertainty in c, a i, b i two common approaches to handling uncertainty (in a i, for simplicity) deterministic model: constraints must hold for all a i E i minimize c T x subject to a T i x b i for all a i E i, i = 1,..., m, stochastic model: a i is random variable; constraints must hold with probability η minimize c T x subject to Prob(a T i x b i) η, i = 1,..., m A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 99/106

deterministic approach via SOCP choose an ellipsoid as E i : E i = {ā i + P i u u 2 1} (ā i R n, P i R n n ) center is ā i, semi-axes determined by singular values/vectors of P i robust LP minimize c T x subject to a T i x b i a i E i, i = 1,..., m is equivalent to the SOCP minimize c T x subject to ā T i x + P i T x 2 b i, i = 1,..., m (follows from sup u 2 1(ā i + P i u) T x = ā T i x + P i T x 2) A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 100/106

stochastic approach via SOCP assume a i is Gaussian with mean ā i, covariance Σ i (a i N (ā i, Σ i )) a T i x is Gaussian r.v. with mean āt i x, variance xt Σ i x; hence ( ) Prob(a T b i ā T i i x b i ) = Φ x Σ 1/2 i x 2 where Φ(x) = (1/ 2π) x e t2 /2 dt is CDF of N (0, 1) robust LP minimize c T x subject to Prob(a T i x b i) η, i = 1,..., m, with η 1/2, is equivalent to the SOCP minimize c T x subject to ā T i x + Φ 1 (η) Σ 1/2 i x 2 b i, i = 1,..., m A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 101/106

Generalized inequality constraints convex problem with generalized inequality constraints minimize f 0 (x) subject to f i (x) Ki 0, i = 1,..., m Ax = b f 0 : R n R convex; f i : R n R k i K i -convex w.r.t. proper cone K i same properties as standard convex problem (convex feasible set, local optimum is global, etc.) conic form problem: special case with affine objective and constraints minimize c T x subject to F x + g K 0 Ax = b extends linear programming (K = R m +) to nonpolyhedral cones A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 102/106

Semidefinite program (SDP) with F i, G S k minimize c T x subject to x 1 F 1 + x 2 F 2 + + x n F n + G 0 Ax = b inequality constraint is called linear matrix inequality (LMI) includes problems with multiple LMI constraints: for example, x 1 ˆF1 + + x n ˆFn + Ĝ 0, x 1 F 1 + + x n Fn + G 0 is equivalent to single LMI x 1 [ ˆF1 0 0 F1 ] + x 2 [ ˆF2 0 0 F2 ] + + x n [ ˆFn 0 0 Fn ] + [ Ĝ 0 0 G ] 0 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 103/106

LP and SOCP as SDP LP and equivalent SDP LP: minimize c T x subject to Ax b SDP: minimize c T x subject to diag(ax b) 0 (note different interpretation of generalized inequality ) SOCP and equivalent SDP SOCP: minimize f T x subject to A i x + b i 2 c T i x + d i, i = 1,..., m SDP: minimize f [ T x (c T subject to i x + d i )I A i x + b i (A i x + b i ) T c T i x + d i ] 0, i = 1,..., m A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 104/106

Eigenvalue minimization minimize λ max (A(x)) where A(x) = A 0 + x 1 A 1 + + x n A n (with given A i S k ) equivalent SDP minimize subject to t A(x) ti variables x R n, t R follows from λ max (A) t A ti A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 105/106

Matrix norm minimization minimize A(x) 2 = ( λ max (A(x) T A(x)) ) 1/2 where A(x) = A 0 + x 1 A 1 + + x n A n (with given A i S p q ) equivalent SDP minimize subject to t[ ti A(x) T A(x) ti ] 0 variables x R n, t R constraint follows from A 2 t A T A t 2 I, t 0 [ ] ti A A T 0 ti A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 106/106

* References A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization : analysis, algorithms, and engineering applications. MPS-SIAM series on optimization. Society for Industrial and Applied Mathematics : Mathematical Programming Society, Philadelphia, PA, 2001. N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373 395, 1984. L. G. Khachiyan. A polynomial algorithm in linear programming (in Russian). Doklady Akademiia Nauk SSSR, 224:1093 1096, 1979. A. Nemirovskii and D. Yudin. Problem complexity and method efficiency in optimization. Nauka (published in English by John Wiley, Chichester, 1983), 1979. Y. Nesterov. Introductory Lectures on Convex Optimization. Springer, 2003. Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics, Philadelphia, 1994. A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 107/106