Traffic Estimation and Least Congested Alternate Route Finding Using GPS and Non GPS Vehicles through Real Time Data on Indian Roads



Similar documents
Smart Onboard Public Information System using GPS & GSM Integration for Public Transport

Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information

VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS

AUTOMATIC ACCIDENT DETECTION AND AMBULANCE RESCUE WITH INTELLIGENT TRAFFIC LIGHT SYSTEM

Real Time Bus Monitoring System by Sharing the Location Using Google Cloud Server Messaging

A Dynamic Approach to Extract Texts and Captions from Videos

CURRENTLY, taxi companies often deploy GPS-based

Method for Traffic Flow Estimation using Ondashboard

CELL PHONE TRACKING. Index. Purpose. Description. Relevance for Large Scale Events. Options. Technologies. Impacts. Integration potential

Mobile Phone Tracking & Positioning Techniques

Tracking Anomalies in Vehicle Movements using Mobile GIS

VEHICLE TRACKING SYSTEM USING GPS. 1 Student, ME (IT) Pursuing, SCOE, Vadgaon, Pune. 2 Asst. Professor, SCOE, Vadgaon, Pune

FCD in the real world system capabilities and applications

URBAN MOBILITY IN CLEAN, GREEN CITIES

International Journal of Advanced Research in Computer Science and Software Engineering

Study on Differential Protection of Transmission Line Using Wireless Communication

Detecting Multiple Selfish Attack Nodes Using Replica Allocation in Cognitive Radio Ad-Hoc Networks

2. SYSTEM ARCHITECTURE AND HARDWARE DESIGN

Mobile Phone Location Tracking by the Combination of GPS, Wi-Fi and Cell Location Technology

THE SCENARIO COORDINATION MODULE FOR THE MUNICIPALITY OF AMSTERDAM AND TRAFFIC MANAGEMENT CENTER OF NORTH-HOLLAND

A Reliability Point and Kalman Filter-based Vehicle Tracking Technique

Presented by: Dr. Senanu Ashiabor, Intermodal Logistics Consulting Inc. at 2015 North Carolina MPO Conference April 30, 2015

An Android Application for Tracking College Bus Using Google Map

A method of generating free-route walk-through animation using vehicle-borne video image

Collaborative Filteration for user behavior Prediction using Big Data Hadoop

A Novel Approach for Load Balancing In Heterogeneous Cellular Network

A Cross-Simulation Method for Large-Scale Traffic Evacuation with Big Data

Location Identification and Vehicle Tracking using VANET(VETRAC)

Neural Network based Vehicle Classification for Intelligent Traffic Control

Design of 'Dr. on Click' Android Application

GIS DRIVEN URBAN TRAFFIC ANALYSIS BASED ON ONTOLOGY

ESTIMATION OF ROAD ROUGHNESS CONDITION BY USING SENSORS IN SMARTPHONES

Traffic Monitoring Systems. Technology and sensors

Smart Cities. How Can Data Mining and Optimization Shape Future Cities? Francesco Calabrese

Intelligent boundary alert system using GPS

Cloud Computing for Agent-based Traffic Management Systems

Adaptive Cruise Control

Real-Time Traffic Video Analysis Using Intel Viewmont Coprocessor

Traffic Management for a Smarter City:Istanbul Istanbul Metropolitan Municipality

Ming-Hsing Chiu. Home: (985) Chapel Loop Office: (985) EDUCATION

A Survey on Content Delivery of Web-Pages

User Manual GPS Travelling System (Produced By: Bonrix Software System)

Research Article ISSN Copyright by the authors - Licensee IJACIT- Under Creative Commons license 3.0

ITS Devices Used to Collect Truck Data for Performance Benchmarks

A Low Cost Vehicle Monitoring System for Fixed Routes Using Global Positioning System (GPS)

Original Research Articles

Performance and Limitations of Cellular-Based Traffic Monitoring Systems. Cellint Traffic Solutions

Short Papers. Performance of Multiagent Taxi Dispatch on Extended-Runtime Taxi Availability: A Simulation Study

Navigation Aid And Label Reading With Voice Communication For Visually Impaired People

A Graph-based Approach to Vehicle Tracking in Traffic Camera Video Streams

Detection and Recognition of Mixed Traffic for Driver Assistance System

Boston Traffic Management Center Activity Report for FY 2013 Real-time Traffic Signal Adjustments

Real time vehicle detection and tracking on multiple lanes

A Multimodal Trip Planning System Incorporating the Park-and-Ride Mode and Real-time Traffic/Transit Information

Optimization of PID parameters with an improved simplex PSO

MAXIMIZING RESTORABLE THROUGHPUT IN MPLS NETWORKS

Global Positioning System (GPS) Automated Vehicle Location (AVL) Geographic Information System (GIS) and Routing/Scheduling System

Efficient Parallel Distributed Load Balancing in Content Delivery Networks

Firewall Policy Anomaly Management with Optimizing Rule Order

A mobile monitoring and alert SMS system with remote configuration A case study for android and the fused location provider

Measuring real-time traffic data quality based on Floating Car Data

Public Transportation BigData Clustering

ANDRO TOUR -A VEHICLE TRACKING SYSTEM WITH ADVERTISEMENT

RF Coverage Validation and Prediction with GPS Technology

An Energy-Based Vehicle Tracking System using Principal Component Analysis and Unsupervised ART Network

Vehicle and Object Tracking Based on GPS and GSM

DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives,

Density Based Traffic Signal System

Using Data Mining for Mobile Communication Clustering and Characterization

Fleet management system as actuator for public transport priority

Functional Requirements Document -Use Cases-

INTERNET FOR VANET NETWORK COMMUNICATIONS -FLEETNET-

Review on Accident Alert and Vehicle Tracking System

REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING

Open-Source-based Visualization of Flight Waypoint Tracking Using Flight Manipulation System

Discovery of User Groups within Mobile Data

Automatic Labeling of Lane Markings for Autonomous Vehicles

Comparative Study of GPS Positioning For Vehicles with Algorithms in Global and Local Position

A Novel Load Balancing Optimization Algorithm Based on Peer-to-Peer

ACL Based Dynamic Network Reachability in Cross Domain

G.Vijaya kumar et al, Int. J. Comp. Tech. Appl., Vol 2 (5),

Monitoring Free Flow Traffic using Vehicular Networks

Split Lane Traffic Reporting at Junctions

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies

Efficient Data Recovery scheme in PTS-Based OFDM systems with MATRIX Formulation

An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources

REVIEW ON IMPROVED VEHICLE MONITORING SYSTEM WITH ARRIVAL TIME PREDICITION

Developing Safety Management Systems for Track Workers Using Smart Phone GPS

Self-Compressive Approach for Distributed System Monitoring

Automatic Annotation Wrapper Generation and Mining Web Database Search Result

ANDROID BASED SMART PARKING SYSTEM USING SLOT ALLOCATION & RESERVATIONS

Communication Reduction for Floating Car Data-based Traffic Information Systems

PULLING OUT OPINION TARGETS AND OPINION WORDS FROM REVIEWS BASED ON THE WORD ALIGNMENT MODEL AND USING TOPICAL WORD TRIGGER MODEL

Accessing Private Network via Firewall Based On Preset Threshold Value

GPS Based Low Cost Intelligent Vehicle Tracking System (IVTS)

The TomTom Manifesto Reducing Congestion for All Big traffic data for smart mobility, traffic planning and traffic management

Route Optimisation / Traffic Signals Efficiency

Big Data in Automotive Applications: Cloud Computing Based Velocity Profile Generation for Minimum Fuel Consumption

MiX Telematics Why use Telematics

Transcription:

Traffic Estimation and Least Congested Alternate Route Finding Using GPS and Non GPS Vehicles through Real Time Data on Indian Roads Prof. D. N. Rewadkar, Pavitra Mangesh Ratnaparkhi Head of Dept. Information Technology, Government Polytechnic, Awasari, Pune, India Department of Computer Engineering, RMD Sinhgad School of Engineering, Pune, India ABSTRACT: Traffic becomes major problem on Indian urban roads as well as on highways. Traffic state estimation is a fundamental work in intelligent transportation systems (ITS). So, we need to find out a systematic solution to efficiently estimate the traffic state of large-scale urban road networks. We can predict the traffic state of road by using GPS devices mounted on vehicles. Through GPS we can analyze number of vehicles and their spatiotemporal location through real time traffic data set which updates continuously. After the prediction of traffic state through GPS, system suggests the alternate route to the user by using various algorithms. Alternate route must be least congested, shortest distance, minimal delay path. It is a possibility that some vehicles on Indian road may not have GPS mounted on it. So, we can count those vehicles on total traffic through here.com web service or through network. So we will be able to provide alternate route which contain less traffic as well as shortest distance and less time delay. All operations are going to perform on real time traffic dataset through GPS application. KEYWORDS: GPS, Traffic signal, ITS. I.INTRODUCTION Real traffic state information is obtained by analyzing data from various traffic detectors or from GPS probed devices. Advanced Traffic Management Systems (ATMS) and Advanced Traveler Information Systems (ATIS)depends significantly on the capability to perform accurate prediction of the current traffic. Traffic data collection techniques such as Automated Vehicle Identification systems, video cameras, inductive loops, radar based sensors, floating cars using GPS receiver and GSM/GPRS transmitter, act as moving sensors traveling in a traffic stream. In this paper, we propose an algorithm for efficient route estimation according to real traffic state on roads. This algorithm provides leastcongested, shortest, minimum delay route from source to destination to the driver before or after he leaves from the source. The concept presented is based on the servers which receive precise coordinates of the GPS vehicles through GPS simulator which might be utilized in personal computers for computation. Each server receives coordinates of every GPS vehicle. With every route we are attaching a server and a database which will be updated continuously by real time route segments through GPS application and internet. Traffic of non GPS Vehicles can be measured through internet. The algorithm used for measuring non GPS Probe vehicles is multiscale correlation-averaging algorithm which is novel approach to measure gross Traffic on Indian Roads. Many Indian vehicles are Less configured. In Survey, It has been seen that only 40 percent vehicles on Indian road are highly configured. We must consider those less configured vehicles in gross traffic. Copyright to IJIRCCE DOI: 10.15680/ijircce.2015. 0307143 6686

II. LITERATURE SURVEY AND RELATED WORK Various techniques has been proposed and research is done in the area of Advanced Traffic Management System (ATMS). Also many advanced methods have been introduced for real time traffic state estimation. Some research work in the area of ATMS is illustrated below: Pueboobpaphan and Nakatsuji et al. [10] applied the unscented Kalman filter to make the real-time traffic state estimation; Jia et al. [11] implemented the urban traffic state prediction by considering resident travel characteristics and road network capacity. Using the city of Stockholm, Sweden, as a case study, Rahmani et al. [9] made a preliminary investigation on the requirement and potential of GPS-probe-vehicle data for traffic management, particularly on the aspect of data coverage. Qing-Jie Kong et al. [1] introduced the network traffic flow model and the approaches employed to traffic state prediction. Q.-J. Kong, Z. Li, Y. Chen, and Y. Liu et al. [2] introduced an information-fusion-based way for the prediction of urban traffic states. The approach obtains traffic data from dissident loop detectors and global positioning system (GPS)- equipped vehicles. In this approach, three parts of the algorithms are developed for fusion computing and the data processing of loop detectors and GPS probe vehicles. First, a fusion algorithm, which integrates the merged Kalman filter and evidence theory (ET). M. P. Hunter, S. K. Wu, H. K. Kim, and W. Suh et al. [3] introduced a probe-vehicle-based evaluation of adaptive traffic signal control. Travel time data were gathered using Global-Positioning-System (GPS)-equipped test vehicles. Shi et al. [7] built a GPS and GIS-integrated system for urban traffic flow analysis, and in this system, they proposed a curvefitting method to analyze GPS data for the mean-speed estimation in the urban road network. H.Y. Cheng and S.H. Hsu et al. [4] introduced self-diagnosing intelligent highway surveillance system and design effective resolutions for both daytime and nighttime traffic observation. For daytime observation, vehicles are detected via background modeling. For nighttime videos, headlights of vehicles need to be located and paired for vehicle detection. III. PROBLEM STATEMENT Estimation of traffic using real time data and find out most convenient alternate path from source to Destination for normal as well as Time critical User through GPS probe devices and non GPS devices. Alternate route must be least congested, Shortest distance path and Minimal time delay. IV. PROPOSED SYSTEM The proposed method provide a shortest least-congested, minimum delay path to the driver when he starts from the source. The inputs are source location (from where he leaves) and the destination location entered into GPS receiver. We provide source location and destinition location in form of addresses or land mark,but this form is not acceptable for processing. So,We convert this landmark addresses into latitude and longitude through Google Geocoding. Based on these inputs, the system estimates the traffic on the route and suggests alternate route to the user which is shortest, least congested and minimum delay path. This combined approach improves the performance of proposed system in terms of efficiency and robustness. The solution includes three parts: 1) Shortest distance path. Copyright to IJIRCCE DOI: 10.15680/ijircce.2015. 0307143 6687

2) Finding least congested route. 3) Minimum delay path. Here, we will use GPS device to track vehicles location in form of latitude and longitude. This approach will make system dynamic as well as accurate. System is easy to install and less costly. Figure1: System Architecture. IV. ALGORITHM FOR TRAFFIC STATE PREDICTION 1) Input I=traffic dataset through GPS servers I2=Real time route segments in between source location and destinition 2) Forming dynamic route Dm = Y,R,G,O a) Yellow path Y = Less crowded area b) Red path R = Blocked road c) Green path G = Free road d) Orange path O = Crowded road 3) Find out optimal tracking path from source to destination through A* heuristic search algorithm. F (N) = G (N)+H (N) (1) 4) Shortest distance calculation through euclideans distance. G (N) = D (N) +. C (N) (2) Copyright to IJIRCCE DOI: 10.15680/ijircce.2015. 0307143 6688

4)Traffic Calculation a)record last 5 locations of vehicle in form of latitude and longitude with their respective times through GPS. R ={(l1, t1,v1); (l2,t2,v2).. (l5, t5,v5)} b) Apply haversine formula to calculate speed of vehicle. c) Vehicles that don t have GPS mounted on it, their data can obtain through here.com web service or network. d) Calculate average velocity V of road link k (k = 1,2,3..m) by: 5) Total Traffic=GPS vehicles+ non GPS vehicles 6) Suggest proficient alternate route. I. Location Based Distance Calculation VIII. IMPLEMENTATION STRATEGY This uses the haversine formula to calculate the circle distance between two points that is, the shortest distance over the earth s surface. Where, is latitude, is longitude, R is earth s radius (mean radius = 6,371km) II. Vehicle Tracking Method: The vehicle tracking method is another popular way of predicting traffic states. In this section, the proposed tracking based method consists of the following several algorithms. First, we employ the A* Heuristic search algorithm to determine the optimal tracking route and then calculate the average velocities along these tracks. Then, the average velocity of each road section is obtained by combining the velocities of the tracks that pass through the road section, depending on their corresponding credibility factors. Because GPS equipped probe vehicles discontinuously send sampling data (usually once every tens of seconds), we have to determine the driving path according to the locations of the vehicle at two adjacent moments. In general, the vehicle location at the current moment is not far away from the location at the previous moment, because the interval is very short. Copyright to IJIRCCE DOI: 10.15680/ijircce.2015. 0307143 6689

III. A* Heuristic Search Algorithm: The A* heuristic search algorithm is optimal upon the searcning time and can balance multiple optimum criteria by adjusting the factors of its evaluation function. Therefore, in this method, the A* algorithm is selected to judge the optimal tracking path. The evaluation function for track k is defined by F (N) = G (N)+H (N) where G (N) is the cost of the path from the start location to crossroad N, and H (N) is the heuristic function that estimates the cost of the shortest path, which is the Euclidean distance from crossroad N to the end location. G (N) = D (N) +. C (N) where D (N) is the total journey from the start location to crossroad N, C (N) is the number of the crossings through which the path has already passed, and is the scale factor between them. After ascertaining the tracking path, we can calculate the spatiotemporal average velocity of every road section in the path. Taking road section r as an example, we first obtain the total distance of each vehicle track by summing up its driving distances in every road section. In addition, the travel time can be obtained from the GPS data. Therefore, the average velocity along track k (k = 1, 2,.,m). V can be obtained by where is the driving distance in road section r, and are the time stamps, m represents the total number of the tracks, and n represents the total number of the road sections through which track k passes. And for measuring traffic of non GPS Vehicles, here.com traffic provision service is used. IX. EXPERIMENTAL RESULTS Proposed methodology of traffic state estimation is combination of various approaches.the System Provides efficient solution to user without disregarding the performance. Time required for estimating traffic state and suggesting alternate route is less as compare to existing system. As we are fetching real time traffic data through GPS simulator, the suggested alternate route will be more accurate. Suggested route is draw on map with different colors which will be helpful to user. 2: General Route. Figure 3: First Alternate Route. Figure Copyright to IJIRCCE DOI: 10.15680/ijircce.2015. 0307143 6690

Figure 4: Second Alternate Route. Figure 5: Third Alternate Route X. CONCLUSION System presents an effective and efficient solution to estimate the real time traffic states of large-scale urban road networks with a large number of GPS probe vehicles as well as non GPS vehicles. This solution includes a canvas google map for the traffic state monitoring system and various traffic state estimation algorithms. We propose an algorithm which is combination and modification of various approaches. The following methods are used for traffic state estimation: 1) the vehicle-tracking-based method. 2) Location Based Distance method. These methods improve performance while using in combination. Non GPS vehicles can be tracked via internet service. It is combined approach for traffic state Estimation which will improve performance and generate more accurate results. REFERENCES [1] Qing-Jie Kong, Member, IEEE, Qiankun Zhao, Chao Wei, and Yuncai Liu, Efficient Traffic State Estimation for Large Scale Urban Road Networks, IEEE Transactions On Intelligent Transportation Systems, Vol. 14, No. 1, March 2013 [2] Q.-J. Kong, Z. Li, Y. Chen, and Y. Liu, An approach to urban traffic state estimation by fusing multisource information, IEEE Trans. Intell. Transp. Syst., vol. 10, no. 3, pp. 499 511, Sep. 2009. [3] M. P. Hunter, S. K. Wu, H. K. Kim, and W. Suh, A probe vehicle based evaluation of adaptive traffic signal control, IEEE Trans. Intell. Transp. Syst., vol. 13, no. 2, pp. 704 713, Jun. 2012. [4] H.-Y. Cheng and S.-H. Hsu, Intelligent highway traffic surveillance with self diagnosis abilities, IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1462 1472, Dec. 2011. [5] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti, Real time urban monitoring using cell phones: A case study in Rome, IEEE Trans. Intell.Transp. Syst., vol. 12, no. 1, pp. 141 151, Mar. 2011. [6] M. Ndoye, A. M. Barker, J. V. Krogmeier, and D. M. Bullock, A recursive multiscale correlation averaging algorithm for an automated distributed road condition monitoring system, IEEE Trans. Intel. Transp. Syst., vol. 12, no. 3, pp. 795 808, Sep. 2011. [7] W. Shi, Q.-J. Kong, and Y. Liu, A GPS/GIS integrated system for urban traffic flow analysis, in Proc. IEEE Intell. Transp. Syst. Conf., Beijing,China, 2008, pp. 844 849. [8] Q. Zhao, Q.-J. Kong, Y. Xia, and Y. Liu, An improved method for estimating urban traffic state via probe vehicle tracking, in Proc. 30th Chin. Control Conf., Yantai, China, 2011, pp. 5586 5590. [9] M. Rahmani, H. N. Koutsopoulos, and A. Ranganathan, Requirements and potential of GPS-based floating car data for traffic management Stockholm case study, in Proc. 13th Int. IEEE Annu. Conf. Intell. Transp. Syst., Madeira Island, Portugal, 2010, pp. 730 735. [10] R. Pueboobpaphan and T. Nakatsuji, Real-time traffic state estimation on urban road network: The application of unscented Kalman filter, in Proc. 9th Int. Conf. Appl. Adv. Tech. Transp., Chicago, IL, 2006, pp. 542 547. [11] S. Jia, H. Peng, and S. Liu, Urban traffic state estimation considering resident travel characteristics and road network capacity, J. Transp. Syst. Eng. Inf. Tech., vol. 11, no. 5, pp. 81 85, Oct. 2011. Copyright to IJIRCCE DOI: 10.15680/ijircce.2015. 0307143 6691