Data Warehousing and Decision Support. Introduction. Three Complementary Trends. Chapter 23, Part A



Similar documents
Decision Support. Chapter 23. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 1

Overview. Data Warehousing and Decision Support. Introduction. Three Complementary Trends. Data Warehousing. An Example: The Store (e.g.

CS54100: Database Systems

OLAP and Data Warehousing! Introduction!

DATA CUBES E Jayant Haritsa Computer Science and Automation Indian Institute of Science. JAN 2014 Slide 1 DATA CUBES

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2007 Lecture 16 - Data Warehousing

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 15 - Data Warehousing: Cubes

Data Warehousing. Outline. From OLTP to the Data Warehouse. Overview of data warehousing Dimensional Modeling Online Analytical Processing

DATA WAREHOUSING AND OLAP TECHNOLOGY

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1

Week 3 lecture slides

LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES

Data Warehousing. Read chapter 13 of Riguzzi et al Sistemi Informativi. Slides derived from those by Hector Garcia-Molina

Outline. Data Warehousing. What is a Warehouse? What is a Warehouse?

Multi-dimensional index structures Part I: motivation

Week 13: Data Warehousing. Warehousing

DATA WAREHOUSING - OLAP

New Approach of Computing Data Cubes in Data Warehousing

1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing

Part 22. Data Warehousing

Overview of Data Warehousing and OLAP

Data W a Ware r house house and and OLAP II Week 6 1

OLAP Systems and Multidimensional Expressions I

Data Warehousing and OLAP

Review. Data Warehousing. Today. Star schema. Star join indexes. Dimension hierarchies

OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP

Database Applications. Advanced Querying. Transaction Processing. Transaction Processing. Data Warehouse. Decision Support. Transaction processing

OLAP. Business Intelligence OLAP definition & application Multidimensional data representation

Introduction to Data Warehousing. Ms Swapnil Shrivastava

Lecture Data Warehouse Systems

14. Data Warehousing & Data Mining

CS2032 Data warehousing and Data Mining Unit II Page 1

Mario Guarracino. Data warehousing

1960s 1970s 1980s 1990s. Slow access to

Main Memory & Near Main Memory OLAP Databases. Wo Shun Luk Professor of Computing Science Simon Fraser University

Data Warehousing: Data Models and OLAP operations. By Kishore Jaladi

When to consider OLAP?

Data Warehousing and OLAP Technology for Knowledge Discovery

OLAP & DATA MINING CS561-SPRING 2012 WPI, MOHAMED ELTABAKH

OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA

Basics of Dimensional Modeling

Data Warehousing & OLAP

BUILDING BLOCKS OF DATAWAREHOUSE. G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT

low-level storage structures e.g. partitions underpinning the warehouse logical table structures

Anwendersoftware Anwendungssoftwares a. Data-Warehouse-, Data-Mining- and OLAP-Technologies. Online Analytic Processing

Search and Data Mining Techniques. OLAP Anna Yarygina Boris Novikov

OLAP OLAP. Data Warehouse. OLAP Data Model: the Data Cube S e s s io n


2074 : Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000

To increase performaces SQL has been extended in order to have some new operations avaiable. They are:

Building Data Cubes and Mining Them. Jelena Jovanovic

(Week 10) A04. Information System for CRM. Electronic Commerce Marketing

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 28

Data Warehouse: Introduction

This tutorial will help computer science graduates to understand the basic-toadvanced concepts related to data warehousing.

Learning Objectives. Definition of OLAP Data cubes OLAP operations MDX OLAP servers

Data Warehouse design

European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project

On-Line Application Processing. Warehousing Data Cubes Data Mining

Lecture 2 Data warehousing

Chapter 3, Data Warehouse and OLAP Operations

Alejandro Vaisman Esteban Zimanyi. Data. Warehouse. Systems. Design and Implementation. ^ Springer

A Technical Review on On-Line Analytical Processing (OLAP)

DATA WAREHOUSE E KNOWLEDGE DISCOVERY

Data Warehousing Systems: Foundations and Architectures

Data warehousing in Oracle. SQL extensions for data warehouse analysis. Available OLAP functions. Physical aggregation example

Data Warehouse Snowflake Design and Performance Considerations in Business Analytics

Data Warehousing & OLAP

Data W a Ware r house house and and OLAP Week 5 1

Oracle9i Data Warehouse Review. Robert F. Edwards Dulcian, Inc.

Course DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

M Designing and Implementing OLAP Solutions Using Microsoft SQL Server Day Course

Business Intelligence, Analytics & Reporting: Glossary of Terms

Turkish Journal of Engineering, Science and Technology

Fluency With Information Technology CSE100/IMT100

Namrata 1, Dr. Saket Bihari Singh 2 Research scholar (PhD), Professor Computer Science, Magadh University, Gaya, Bihar

Data Warehousing. Overview, Terminology, and Research Issues. Joachim Hammer. Joachim Hammer

DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM

Business Intelligence, Data warehousing Concept and artifacts

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

<Insert Picture Here> Enhancing the Performance and Analytic Content of the Data Warehouse Using Oracle OLAP Option

University of Gaziantep, Department of Business Administration

IMPROVING DATA INTEGRATION FOR DATA WAREHOUSE: A DATA MINING APPROACH

OLAP Systems and Multidimensional Queries II

CASE PROJECTS IN DATA WAREHOUSING AND DATA MINING

Data warehousing. Han, J. and M. Kamber. Data Mining: Concepts and Techniques Morgan Kaufmann.

ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process

LEARNING SOLUTIONS website milner.com/learning phone

An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies

Module 1: Introduction to Data Warehousing and OLAP

INFO 321, Database Systems, Semester

Data Warehousing, OLAP, and Data Mining

The Art of Designing HOLAP Databases Mark Moorman, SAS Institute Inc., Cary NC

Lecture 2: Introduction to Business Intelligence. Introduction to Business Intelligence

CHAPTER 4 Data Warehouse Architecture

IST722 Data Warehousing

Monitoring Genebanks using Datamarts based in an Open Source Tool

Cognos 8 Best Practices

Why Business Intelligence

BUILDING OLAP TOOLS OVER LARGE DATABASES

Transcription:

Data Warehousing and Decision Support Chapter 23, Part A Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 1 Introduction Increasingly, organizations are analyzing current and historical data to identify useful patterns and support business strategies. Emphasis is on complex, interactive, exploratory analysis of very large datasets created by integrating data from across all parts of an enterprise; data is fairly static. Contrast such On-Line Analytic Processing (OLAP) with traditional On-line Transaction Processing (OLTP): mostly long queries, instead of short update Xacts. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 2 Three Complementary Trends Data Warehousing: Consolidate data from many sources in one large repository. Loading, periodic synchronization of replicas. Semantic integration. OLAP: Complex SQL queries and views. Queries based on spreadsheet-style operations and multidimensional view of data. Interactive and online queries. Data Mining: Exploratory search for interesting trends and anomalies. (Another lecture!) Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 3 1

Data Warehousing EXTERNAL DATA SOURCES Integrated data spanning long time periods, often augmented with summary information. Several gigabytes to terabytes common. Interactive response times expected for complex queries; ad-hoc updates uncommon. Metadata Repository EXTRACT TRANSFORM LOAD REFRESH SUPPORTS DATA WAREHOUSE DATA MINING OLAP Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 4 Warehousing Issues Semantic Integration: When getting data from multiple sources, must eliminate mismatches, e.g., different currencies, schemas. Heterogeneous Sources: Must access data from a variety of source formats and repositories. Replication capabilities can be exploited here. Load, Refresh, Purge: Must load data, periodically refresh it, and purge too-old data. Metadata Management: Must keep track of source, loading time, and other information for all data in the warehouse. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 5 Multidimensional Data Model Collection of numeric measures, which depend on a set of dimensions. E.g., measure Sales, dimensions Product (key: ), Location (locid), and Time (timeid). Slice locid=1 is shown: 11 12 13 8 10 10 30 20 50 25 8 15 1 2 3 timeid locid timeid locid sales 11 1 1 25 11 2 1 8 11 3 1 15 12 1 1 30 12 2 1 20 12 3 1 50 13 1 1 8 13 2 1 10 13 3 1 10 11 1 2 35 Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 6 2

MOLAP vs ROLAP Multidimensional data can be stored physically in a (disk-resident, persistent) array; called MOLAP systems. Alternatively, can store as a relation; called ROLAP systems. The main relation, which relates dimensions to a measure, is called the fact table. Each dimension can have additional attributes and an associated dimension table. E.g., Products(, pname, category, price) Fact tables are much larger than dimensional tables. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 7 Dimension Hierarchies For each dimension, the set of values can be organized in a hierarchy: PRODUCT TIME LOCATION year quarter country category week month state pname date city Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 8 OLAP Queries Influenced by SQL and by spreadsheets. A common operation is to aggregate a measure over one or more dimensions. Find total sales. Find total sales for each city, or for each state. Find top five products ranked by total sales. Roll-up: Aggregating at different levels of a dimension hierarchy. E.g., Given total sales by city, we can roll-up to get sales by state. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 9 3

OLAP Queries Drill-down: The inverse of roll-up. E.g., Given total sales by state, can drill-down to get total sales by city. E.g., Can also drill-down on different dimension to get total sales by product for each state. Pivoting: Aggregation on selected dimensions. E.g., Pivoting on Location and Time WI CA yields this cross-tabulation: 63 81 144 Slicing and Dicing: Equality and range selections on one or more dimensions. Total 1995 1996 38 107 145 1997 75 35 110 176 223 339 Total Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 10 Comparison with SQL Queries The cross-tabulation obtained by pivoting can also be computed using a collection of SQLqueries: SELECT SUM(S.sales) FROM Sales S, Times T, Locations L WHERE S.timeid=T.timeid AND S.timeid=L.timeid GROUP BY T.year, L.state SELECT SUM(S.sales) FROM Sales S, Times T WHERE S.timeid=T.timeid GROUP BY T.year SELECT SUM(S.sales) FROM Sales S, Location L WHERE S.timeid=L.timeid GROUP BY L.state Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 11 The CUBE Operator Generalizing the previous example, if there are k dimensions, we have 2^k possible SQL GROUP BY queries that can be generated through pivoting on a subset of dimensions. CUBE, locid, timeid BY SUM Sales Equivalent to rolling up Sales on all eight subsets of the set {, locid, timeid}; each roll-up corresponds to an SQL query of the form: SELECT SUM(S.sales) Lots of work on optimizing FROM Sales S the CUBE operator! GROUP BY grouping-list Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 12 4

Design Issues TIMES timeid date week month quarter year holiday_flag timeid locid sales SALES (Fact table) PRODUCTS pname category price locid city LOCATIONS state country Fact table in BCNF; dimension tables un-normalized. Dimension tables are small; updates/inserts/deletes are rare. So, anomalies less important than query performance. This kind of schema is very common in OLAP applications, and is called a star schema; computing the join of all these relations is called a star join. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 13 Implementation Issues New indexing techniques: Bitmap indexes, Join indexes, array representations, compression, precomputation of aggregations, etc. E.g., Bitmap index: Bit-vector: F M 1 bit for each possible value. Many queries can be answered using bit-vector ops! sex custid name sex rating rating 10 10 01 10 112 Joe M 3 115 Ram M 5 119 Sue F 5 112 Woo M 4 00100 00001 00001 00010 Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 14 Join Indexes Consider the join of Sales, Products, Times, and Locations, possibly with additional selection conditions (e.g., country= USA ). A join index can be constructed to speed up such joins. The index contains [s,p,t,l] if there are tuples (with sid) s in Sales, p in Products, t in Times and l in Locations that satisfy the join (and selection) conditions. Problem: Number of join indexes can grow raly. A variation addresses this problem: For each column with an additional selection (e.g., country), build an index with [c,s] in it if a dimension table tuple with value c in the selection column joins with a Sales tuple with sid s; if indexes are bitmaps, called bitmapped join index. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 15 5

PRODUCTS Bitmapped Join Index timei d pname dat e week mont h quarte r year holiday_fla g timeid locid sales SALES (Fact table) category price locid LOCATIONS state country Consider a query with conditions price=10 and country= USA. Suppose tuple (with sid) s in Sales joins with a tuple p with price=10 and a tuple l with country = USA. There are two join indexes; one containing [10,s] and the other [USA,s]. Intersecting these indexes tells us which tuples in Sales are in the join and satisfy the given selection. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 16 city TIMES Querying Sequences in SQL:1999 Trend analysis is difficult to do in SQL-92: Find the % change in monthly sales Find the top 5 product by total sales Find the trailing n-day moving average of sales The first two queries can be expressed with difficulty, but the third cannot even be expressed in SQL-92 if n is a parameter of the query. The WINDOW clause in SQL:1999 allows us to write such queries over a table viewed as a sequence (implicitly, based on user-specified sort keys) Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 17 The WINDOW Clause SELECT L.state, T.month, AVG(S.sales) OVER W AS movavg FROM Sales S, Times T, Locations L WHERE S.timeid=T.timeid AND S.locid=L.locid WINDOW W AS (PARTITION BY L.state ORDER BY T.month RANGE BETWEEN INTERVAL `1 MONTH PRECEDING AND INTERVAL `1 MONTH FOLLOWING) Let the result of the FROM and WHERE clauses be Temp. (Conceptually) Temp is partitioned according to the PARTITION BY clause. Similar to GROUP BY, but the answer has one row for each row in a partition, not one row per partition! Each partition is sorted according to the ORDER BY clause. For each row in a partition, the WINDOW clause creates a window of nearby (preceding or succeeding) tuples. Can be value-based, as in example, using RANGE Can be based on number of rows to include in the window, using ROWS clause The aggregate function is evaluated for each row in the partition using the corresponding window. New aggregate functions that are useful with windowing include RANK (position of a row within its partition) and its variants DENSE_RANK, PERCENT_RANK, CUME_DIST. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 18 6

Top N Queries If you want to find the 10 (or so) cheapest cars, it would be nice if the DB could avoid computing the costs of all cars before sorting to determine the 10 cheapest. Idea: Guess at a cost c such that the 10 cheapest all cost less than c, and that not too many more cost less. Then add the selection cost<c and evaluate the query. If the guess is right, great, we avoid computation for cars that cost more than c. If the guess is wrong, need to reset the selection and recompute the original query. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 19 Top N Queries SELECT P., P.pname, S.sales FROM Sales S, Products P WHERE S.=P. AND S.locid=1 AND S.timeid=3 ORDER BY S.sales DESC OPTIMIZE FOR 10 ROWS SELECT P., P.pname, S.sales FROM Sales S, Products P WHERE S.=P. AND S.locid=1 AND S.timeid=3 AND S.sales > c ORDER BY S.sales DESC OPTIMIZE FOR construct is not in SQL:1999! Cut-off value c is chosen by optimizer. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 20 Online Aggregation Consider an aggregate query, e.g., finding the average sales by state. Can we provide the user with some information before the exact average is computed for all states? Can show the current running average for each state as the computation proceeds. Even better, if we use statistical techniques and sample tuples to aggregate instead of simply scanning the aggregated table, we can provide bounds such as the average for Wisconsin is 2000±102 with 95% probability. Should also use nonblocking algorithms! Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 21 7

Summary Decision support is an emerging, raly growing subarea of databases. Involves the creation of large, consolidated data repositories called data warehouses. Warehouses exploited using sophisticated analysis techniques: complex SQL queries and OLAP multidimensional queries (influenced by both SQL and spreadsheets). New techniques for database design, indexing, view maintenance, and interactive querying need to be supported. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 22 8