(51) Int Cl.: H04B 1/38 (2015.01) H04W 52/28 (2009.01) (56) References cited:



Similar documents
TEPZZ_768 7_B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION. (51) Int Cl.: H04M 19/04 ( )

TEPZZ 87_546A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G05B 19/05 ( )

(51) Int Cl.: B29C 41/20 ( ) F21S 4/00 ( ) H05K 3/28 ( )

(51) Int Cl.: H04L 29/06 ( ) G06F 9/445 ( ) G06F 13/00 ( )

*EP B1* EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

(51) Int Cl.: G05F 3/26 ( ) G05F 3/24 ( )

(51) Int Cl.: G06F 13/38 ( ) G06F 1/16 ( )

(51) Int Cl.: G06F 21/00 ( ) H04L 29/06 ( )

(51) Int Cl.: G10L 15/26 ( )

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/21

(51) Int Cl.: G06F 9/455 ( ) G06F 9/50 ( )

(51) Int Cl.: H04W 4/14 ( )

(51) Int Cl.: H04L 29/06 ( ) H04M 15/00 ( )

EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/35

TEPZZ 68575_A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

(51) Int Cl.: H04L 12/58 ( )

TEPZZ 6_Z76 A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.:

(51) Int Cl.: H04M 3/42 ( ) H04Q 3/00 ( )

TEPZZ 9 Z5A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

(51) Int Cl.: C08K 5/523 ( ) C08K 5/521 ( ) C08K 5/52 ( ) C08G 64/00 ( )

The Advantialer and Its Advantages

(51) Int Cl.: H04L 12/26 ( )

(51) Int Cl.: H04L 9/32 ( ) G09C 1/00 ( ) G06F 21/33 ( ) H04L 29/06 ( )

(51) Int Cl.: H04N 7/16 ( )

(51) Int Cl.: H04L 29/06 ( )

(51) Int Cl.: H04L 12/56 ( )

TEPZZ A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06F 21/64 ( )

(51) Int Cl.: H04L 29/06 ( )

(51) Int Cl.: H04L 29/06 ( ) H04M 3/56 ( ) H04M 3/44 ( ) H04L 12/18 ( )

(51) Int Cl.: H04L 12/10 ( ) H04L 12/40 ( )

(51) Int Cl.: H04L 12/24 ( )

(51) Int Cl.: G08B 21/02 ( ) H04M 11/04 ( )

(51) Int Cl.: G01C 21/36 ( )

(51) Int Cl.: H04M 3/50 ( )

TEPZZ 65Z79 A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

Title (fr) SOURCE IONIQUE INTERNE DOUBLE POUR PRODUCTION DE FAISCEAU DE PARTICULES AVEC UN CYCLOTRON

TEPZZ 5Z _9_B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

(51) Int Cl.: H04L 9/24 ( ) G06Q 10/00 ( )

TEPZZ 69 49A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06F 17/30 ( )

(51) Int Cl.: G06F 1/00 ( )

EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

TEPZZ 87657ZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

(51) Int Cl.: G06Q 10/00 ( )

(51) Int Cl.: G06F 13/42 ( )

(51) Int Cl.: G06F 11/20 ( )

(51) Int Cl.: H04L 29/02 ( ) H04L 12/801 ( )

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2011/37

TEPZZ _ 6594B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

(51) Int Cl.: H04L 12/24 ( )

(51) Int Cl.: G08G 1/14 ( ) G07B 15/02 ( ) G10L 15/28 ( )

(51) Int Cl.: H05K 1/02 ( )

(56) References cited:

(51) Int Cl.: H04L 12/56 ( ) H04L 12/28 ( ) H04M 7/00 ( )

(51) Int Cl. 7 : G03G 15/00

(51) Int Cl.: H04L 12/00 ( )

TEPZZ 94Z968A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H04L 29/08 ( )

(51) Int Cl.: H04N 5/225 ( )

(51) Int Cl.: G06F 11/14 ( ) G06F 12/08 ( )

(51) Int Cl.: H04L 12/66 ( )

(51) Int Cl.: G06F 1/00 ( )

(51) Int Cl. 7 : H04B 7/185, H04B 1/40. (56) References cited: WO-A-00/03494

TEPZZ A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06Q 40/04 ( )

TEPZZ_57 7_9B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

(51) Int Cl.: H04B 3/23 ( )

(51) Int Cl.: H04L 29/08 ( ) H04L 29/06 ( )

(51) Int Cl.: H04L 29/06 ( ) H04L 12/22 ( )

(51) Int Cl.: H04N 1/19 ( ) H04N 3/15 ( ) H04N 9/04 ( )

(51) Int Cl.: H04W 8/16 ( ) H04L 29/12 ( ) H04W 8/18 ( )

(51) Int Cl.: H04L 12/24 ( ) G06F 9/445 ( )

(51) Int Cl.: G06F 17/00 ( ) G06F 11/20 ( )

*EP A1* EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2005/14

(51) Int Cl.: H02H 7/26 ( ) H02H 7/30 ( )

(51) Int Cl.: B61K 9/12 ( )

(51) Int Cl.: G10L 19/00 ( ) H04L 1/20 ( )

(51) Int Cl.: H04N 7/52 ( )

(51) Int Cl.: G05B 19/05 ( )

TEPZZ_98 47ZB_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

(51) Int Cl.: G06F 3/12 ( )

(51) Int Cl.: H04L 29/06 ( ) H04L 29/12 ( )

(51) Int Cl.: G06F 17/30 ( )

(51) Int Cl.: H04L 12/56 ( ) H04L 12/24 ( ) H04L 29/06 ( ) H04L 29/08 ( )

(51) Int Cl.: H04Q 11/04 ( ) H04L 12/64 ( )

TEPZZ_965577B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION. (51) Int Cl.: H04M 3/523 ( )

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2006/26

(51) Int Cl.: H04L 29/12 ( ) H04L 29/06 ( ) H04M 7/00 ( )

TEPZZ 96 A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

(51) Int Cl.: H04L 12/46 ( ) H04L 29/14 ( ) H04L 29/12 ( )

(51) Int Cl.: G06F 11/14 ( )

Our patent and trade mark attorneys are here to help you protect and profit from your ideas, making sure they re working every bit as hard as you do.

(51) Int Cl.: G06F 21/24 ( )

Europaisches Patentamt European Patent Office Office europeen des brevets (11) EP B2

(51) Int Cl.: H04L 12/58 ( ) H04L 29/06 ( )

(51) Int Cl.: H04L 9/32 ( )

(51) Int Cl.: H04L 29/06 ( ) H04Q 7/24 ( ) H04L 12/66 ( )

(51) Int Cl.: G06F 9/46 ( ) H04L 12/56 ( )

(51) Int Cl.: G06F 11/14 ( ) G06F 17/30 ( )

EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. (51) Int. Cl.: H04L 12/24 ( )

(51) Int Cl.: H04L 29/06 ( ) (56) References cited:

(51) Int Cl.: G11C 5/14 ( ) G11C 7/10 ( )

TEPZZ 4_888 B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION. (51) Int Cl.: H04W 12/00 ( )

Transcription:

(19) TEPZZ 8768_B_T (11) EP 2 87 681 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 08.07.201 Bulletin 201/28 (1) Int Cl.: H04B 1/38 (201.01) H04W 2/28 (2009.01) (21) Application number: 1312416.7 (22) Date of filing: 0.11.20 (4) Setting SAR exposure limit of mobile devices Einstellung einer SAR-Expositionsgrenze für mobile Vorrichtungen Réglage de limite d exposition SAR de dispositifs mobiles (84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (30) Priority: 24.11.2009 US 62446 (43) Date of publication of application: 01.0.2013 Bulletin 2013/18 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 781761.1 / 2 04 928 (72) Inventors: Calvarese, Russell Stony Brook, NY New York 11790 (US) Sandler, Robert Melville, NY New York 11747 (US) Wulff, Thomas E. North Patchogue, NY New York 11772 (US) (74) Representative: Maiwald Patentanwalts GmbH Engineering Elisenhof Elisenstrasse 3 8033 München (DE) (73) Proprietor: Symbol Technologies, Inc. Holtsville, NY 11742 (US) (6) References cited: EP-A1-1 89 714 US-A1-2002 167 930 WO-A2-2009/02348 EP 2 87 681 B1 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed by Jouve, 7001 PARIS (FR)

1 EP 2 87 681 B1 2 Description Field of the Invention [0001] The present invention relates to a portable communications device and more particularly to a means of limiting radio frequency energy exposure to users of such a device. Background art [0002] Specific absorption rate (SAR) is a measure of the rate at which radio frequency (RF) energy is absorbed by a body when exposed to a radiofrequency electromagnetic field. SAR testing insures RF emitting products don t exceed government set limits. Wide spread use of cell phones and 802.11 devices have made the public aware of SAR and concerns regarding radiation absorption. Devices that emit RF energy that are intended to be worn for long periods of time can cause additional concern to the public. This concern might reduce the public acceptance of an otherwise successful product. [0003] During SAR regulatory testing, a manufacturer must specify to the government the usage cases for the product. As an example, a mobile 802.11 device will emit much more radiation when the device is at the fringe of the access point coverage area. This is due to an increase in transmission retry count and increase in peak power output of the mobile device. The net increase for this case can be on the order of 0 times. Another concern occurs when other RF traffic in the area degrades the RF link due to collisions. A manufacturer must specify these worst cases when the AR testing takes place. Additional testing can be performed with typical cases but the results quickly become less conclusive and accepted by the public. [0004] US2002/167930 reports a duty cycle management system and method for use in a wireless device having a transmitter which transmits packets in the form of individual packets and/or packet bursts comprising a predetermined maximum number of contiguous packets. A controller in combination with an instruction set limits the number of packets transmitted during each time period defined by one time window or adjacent time windows, on a sliding basis, so as to limit the duty cycle of transmissions during successive adjacent time windows to the predetermined duty cycle limit. 1 20 2 30 3 40 4 performance in the fringe and/or high traffic cases. The SAR limit may be set by the manufacturer, 3 rd party developer, business owner or even the end user. The device monitors and optionally displays its own emission rate over time to verify it is under the regulatory or set limit. [0006] One use of the disclosed method and system is for use as a control to avoid a potential issue with a head worn device using the 802.11 protocol, but the concepts and performance could also apply to WWAN, RFID, Bluetooth, other RF technologies, fixed, handheld or worn devices. [0007] The exemplary embodiment includes a programmable controller and software that monitors the periods an RF transmitter is active and a output power level during those periods of activity. These two values are multiplied together and accumulated over time to provide a value for the RF emissions for some period. A limit is set for the RF emissions for any period and if the RF emissions exceeds (or is expected to exceed given the current rate) the set limit, the system limits the subsequent emissions rate to not exceed the set limit. This reduction in emissions rate come at the cost of a small performance reduction. [0008] These and other features are described in conjunction with the accompanying drawings. Brief Description of the Drawings [0009] Figure 1 is a schematic depiction of a portable communications device that includes a controller for implementing an exemplary system; Figure 2 is a flow chart of an exemplary system for limiting SAR exposure; Figure 3 shows normalized RF power and needed number of retries as a function of distance from an 802.11 access point without use of the disclosed system; The system is permitted to stay at the maximum peak power indefinitely and is also permitted a maximum retry count indefinitely; Figure 4 shows retry count as a function of RF traffic for a system that is permitted a maximum number of retries; Summary [000] The invention is according to appended claims. In one embodiment, there is disclosed a method and apparatus that allow a portable communications device that might otherwise fail the SAR limits to pass by limiting a worst case absorption rate with little decrease in performance. An exemplary device can set its own SAR limit which may be less than the regulatory limit thus reducing a user s SAR concerns. This comes at a small cost in 0 Figure shows a cumulative RF exposure that a user would be subjected to if a communications device remains in a fringe of access point coverage area or if there is heavy RF traffic in the area and is a worst case scenario which must be considered during the SAR evaluation; and Figure 6 graphically depicts beneficial effects through use of the disclosed system. 2

3 EP 2 87 681 B1 4 Detailed Description of Exemplary system [00] It will be appreciated that embodiments of the invention described may include one or more conventional processors and unique stored program instructions that control the one or more processors to implement, in conjunction with certain non-processor circuits, the SAR monitoring and control functions. [0011] FIGURE 1 depicts a representative portable communications device and includes a radio frequency (rf) receiver 12, a radio frequency transmitter 14, a signal strength driver 16, a signal decoder 18 and a signal encoder 20 that interface with a controller or processor 22. Other non controller circuits include clock circuits, power source circuits, and user input devices or interfaces 24 for commanding operation of the device. [0012] Some SAR functions described with respect to an exemplary method (Figure 2) can be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. One of ordinary skill guided by the concepts and principles disclosed herein will also be readily capable of generating software instructions and programs for use with the exemplary hardware. [0013] The system is used and has applicability to different wireless networks having one of more mobile nodes or devices communicating with one or more access points that are typically stationary but need not necessarily be so. One suitable wireless network conforms to IEEE standard 802.11x and is referred to generally as wi-fi. [0014] One protocol for communications networks is a carrier sense multiple access with collision detection mechanism, know by the abbreviation CSMA/CD. A node on the network senses the medium and if the medium is busy due to another node transmitting, the sensing node defers its transmission to a later time when the medium is free. This protocol is effective when the medium is not heavily used. There is a chance however, that two nodes will sense an available medium and simultaneously transmit leading to a collision. A common way to address these collisions is for both nodes to back off a random amount (statistically likely to be different) and then retransmit. [001] While collision detection works well on a wired network, it is less useful on a wireless network. Implementing collision detection requires each node to both send and receive data packets at the same time. Also, in a wireless environment sensing of the medium may not be as reliable. The absence of packets at one location does not mean other nodes are not communicating with an access point. The sensing node just cannot sense the presence of these other packets on the medium. For such networks collision avoidance rather than collision detection is also used. [0016] A node needing to transmit senses the media 1 20 2 30 3 40 4 0 (if it has that capability) and if it is busy it defers. If the media is free (as sensed by the node) for a specified time then the node transmits. A receiving station (access point) checks the CRC portion (error check sum) of an incoming packet and sends an acknowledgement packet back to the sending node. If no acknowledgement is received by the sending node, that node retransmits until it gets an acknowledgment or transmission fails a specified number of times. This protocol gives the sending node leeway in how often it retransmits, referred to herein as the retry rate. [0017] Figure 3 shows normalized RF power and needed number of retries as a function of distance from an access point for a mobile device using the 802.11 communications protocol. A curve 40 indicates performance as a function of distance and drops off as the distance increases. The curve 42 is an indication of power output and the curve 44 is a depiction of the number of retries. The scale to the left is not in units of power or iterations but instead is relative to a maximum power output and number or retries. At a distance of about 8 meters the number of retries and the power output needed rises to achieve even a lowered performance. [0018] Figure 4 shows a performance curve 0 (normalized) as a function of the percentage of time other traffic on the network leads to retries. If the number of retries denoted by the curve 2 is linearly related to the percentage of time retries are needed, performance begins to noticeably decline at about 70 %. [0019] Figure shows a graph 60 of a cumulative RF exposure a user would be subjected to if the device stays at a fringe of access point coverage area or if there is very heavy traffic in the area of the access point. Exposure increases linearly with time to achieve a performance curve 62 that is unchanged. This is a worst case scenario and exposes a subject to maximum radiation absorption and must be considered during a SAR evaluation. [0020] In accordance with the disclosed system, RF power and a retry limit are permitted to increase until such time that the SAR calculated over time exceeds a predetermined limit or setting. The peak power and maximum retry limit is set to prevent excessive SAR and as one example the retry limit is set as high as ten retries but can be limited to less than this number. This reduces the performance only slightly due to the fact that performance drops quickly as operation moves towards the fringe area or high traffic areas. i.e. little performance is gained by greatly increasing the peak power and maximum retry limit. [0021] Note: Implementation of the exemplary system does not decrease performance when either the device is not at a fringe area and not in high RF traffic area or cumulative RF exposure is not near the limit. [0022] Figure 2 is a flowchart 0 of the exemplary SAR control of a portable communications device. At a first step 1, a safety limit (or target absorption value) corresponding to rf absorption based on usage and pow- 3

EP 2 87 681 B1 6 er output of the communications device is initialized. In the exemplary system, the limit value is stored in controller memory and may be pre-stored during assembly of the device or may be entered via the user interface 24. At the step 1 the controller also establishes an initial or nominal retry and power rate for use during an initial time interval. [0023] The controller 22 monitors rf power level and usage duration during a first monitoring time period. As one example, these variables can be updated each minute. After this monitoring period, the controller updates 112 a running measure of rf absorption (RF_TOTAL in the flowchart) based on a product of rf power times the usage time during the first monitoring time period and increments 113 a timer. The controller next determines 11 if the running measure of rf absorption is on schedule to exceed or be less than the safety limit. The result of this comparison causes the controller to adjust 116, 117 power and/ or retry limit of the device during a subsequent time interval. [0024] Greater insight is provided by description of a specific implementation. As depicted in the flowchart, one exemplary initialization step 1 sets a safety limit of 0 Watt Minutes, and initializes the running total of absorption to 0 Watt Minutes. A USE_TIMER value is initialized to 0 minutes and TIME_PERIOD variable to 600 minutes. During an initial period of say one minute the controller updates RF_TOTAL by adding the previous running rf absorption total to a quantity of the product of the power output level in watts times the time the transmitter was actually emitting rf signals at that power level during the immediately previous one minute time interval. [002] The controller next updates 113 the USE_TIMER value and compares 11 a ratio of USE_TIMER to TIME_PERIOD with the ratio of RF_TOTAL to the RF_LIMIT. The controller adjusts power and/or retry limits during a next interval based on this comparison. A goal of the system is to maximize performance while assuring the absorption limits are not exceeded. This is done by extrapolating past results over the TIME_PERIOD of 600 minutes. A ratio is established between the present time period in minutes with the TIME_PERIOD of 600 minutes and this ratio is compared with the ratio of running absorption divided by the limit value of 0 Watt minutes. [0026] If the first ratio is less than the absorption ratio, the power and/or retry limit is increased and if the ratio is greater than or equal to the absorption ratio, the power and /or retry limit is decreased. [0027] In accordance with an exemplary system, if the controller determines the rate of absorption needs to be diminished, one or both of power or retry limit are reduced. In the exemplary system both are scaled back by predetermined amount. This will result in a lower rate of absorption without unacceptable performance degradation. In a similar way, if the controller determines an ongoing absorption rate is too low (resulting in lower performance), both power and retry limits are increased. 1 20 2 30 3 40 4 0 [0028] After the power/retry rate adjustment, a determination 120 is made to see if the total absorption limit RF_LIMIT has been reached. If so the device is powered down 130 after a warning message is conveyed to the user via the user interface 24. [0029] Figure 6 is a graphical depiction of performance 72 and SAR emissions 70 achieved through use of the invention. The performance remains relatively constant at an acceptable level and the SAR also remains relatively constant within accepted limits either programmed into the device by the user or installed during fabrication. [0030] The disclosed exemplary system has been described with a degree of particularity. It is the intent, however, that the invention include all modifications and alterations from the disclosed design falling within the scope of the appended claims. Claims 1. A method (0) for controlling radio frequency (rf) energy emitted by a portable communications device (), characterized by: initiating communications with the portable communications device () by sending and receiving communications packets between the portable communications device () and a network access point at a first output power level and a first retry limit, wherein the first retry limit indicates a number of retries of packet transmission in the event of packet collisions; updating (112) an ongoing measure of emitted energy based on the first output power level and rf transmission times, adjusting the first retry limit based on the ongoing measure of emitted energy and a predetermined emissions limit; and continuing to periodically update said ongoing measure of emitted energy during operation of said communications device () as the first retry limit is adjusted. 2. The method (0) of claim 1 wherein the first output power level increases or decreases to achieve operation of the communications device () at or near the predetermined emissions limit during a subsequent period of device operation. 3. The method (0) of claim 1 wherein the predetermined emissions limit is determined by a user of the portable communications device (). 4. The method (0) of claim 1 wherein the adjusting further includes adjusting the first output power level.. The method (0) of claim 1 wherein the adjusting further includes adjusting the usage time of the communications device () during a subsequent trans- 4

7 EP 2 87 681 B1 8 mission period. 6. The method (0) of claim 1 wherein the predetermined emissions limit is periodically reset. 7. A portable communications device (), characterized by: an rf transmitter (14) and an antenna coupled to the rf transmitter (14) for coupling the communications device () to an access point; and a controller (22) coupled to the rf transmitter (14) to control a power and duration of message transmission by initializing a emissions limit corresponding to acceptable rf emission; tabulating rf power and usage during a first monitoring time period; updating (112) a running measure of rf emission based on a product of the rf power and the usage time during the first monitoring time period; and using the running measure of rf emission and the emissions limit to adjust a transmission retry limit of the device () during a subsequent time interval, wherein the transmission retry limit indicates a number of retries for the message transmission in an event of message collisions. 8. The portable communications device () of claim 7 wherein the controller (22) includes a memory for storing the emissions limit. 9. The portable communications device () of claim 8 additionally comprising a user interface (24) and wherein the emissions limit is adjustable by entering different values via the user interface (24).. The portable communications device () of claim 7 wherein the controller (22) adjusts the transmission retry limit used in an event of one or more failures of a transmission. 1 20 2 30 3 40 Einleiten von Kommunikation mit dem tragbaren Kommunikationsgerät () durch Senden und Empfangen von Kommunikationspaketen zwischen dem tragbaren Kommunikationsgerät () und einem Netzzugangspunkt auf einer ersten Ausgangsleistungsstufe und einem ersten Wiederholungsversuchsgrenzwert, wobei der erste Wiederholungsversuchsgrenzwert eine Zahl von Wiederholungsversuchen für die Paketübertragung im Fall von Paketkollisionen angibt; Aktualisieren (112) eines andauernden Werts für ausgestrahlte Energie auf der Grundlage von einer ersten Ausgangsleistungsstufe und von HF-Übertragungsdauern, Einstellen des ersten Wiederholungsversuchsgrenzwerts auf der Grundlage des andauernden Werts für ausgestrahlte Energie und eines vorgegebenen Emissionsgrenzwerts; und Fortfahren, den andauernden Wert für ausgestrahlte Energie beim Betrieb des Kommunikationsgeräts () periodisch zu aktualisieren, während der erste Wiederholungsversuchsgrenzwert eingestellt wird. 2. Verfahren (0) nach Anspruch 1, wobei die erste Ausgangsleistungsstufe steigt oder sinkt, um den Betrieb des Kommunikationsgeräts () während eines folgenden Zeitraums des Gerätebetriebs an dem oder in der Nähe des vorgegebenen Emissionsgrenzwerts zu erreichen. 3. Verfahren (0) nach Anspruch 1, wobei der vorgegebene Emissionsgrenzwert durch einen Benutzer des tragbaren Kommunikationsgeräts () bestimmt wird. 4. Verfahren (0) nach Anspruch 1, wobei das Einstellen ferner das Einstellen der ersten Leistungsausgangsstufe umfasst. 11. The portable communications device () of claim 8 wherein the controller compares a ratio of operation time divided by a fixed time value with a ratio of the running measure of rf emission divided by the emissions limit. 12. The portable communications device () of claim 7 wherein the controller (22) further adjusts the output power of the device. Patentansprüche 1. Verfahren (0) zum Steuern einer Hochfrequenzenergie (HF), ausgestrahlt von einem tragbaren Kommunikationsgerät (), gekennzeichnet durch: 4 0. Verfahren (0) nach Anspruch 1, wobei das Einstellen ferner das Einstellen der Einsatzdauer des Kommunikationsgeräts () in einem folgenden Übertragungszeitraum umfasst. 6. Verfahren (0) nach Anspruch 1, wobei der vorgegebene Emissionsgrenzwert periodisch zurückgesetzt wird. 7. Tragbares Kommunikationsgerät (), gekennzeichnet durch: einen HF-Sender (14) und eine mit dem HF- Sender (14) gekoppelte Antenne zum Koppeln des Kommunikationsgeräts () mit einem Zugangspunkt; und eine Steuerung (22), gekoppelt mit dem HF-

9 EP 2 87 681 B1 Sender (14), um eine Leistung und eine Dauer der Nachrichtenübertragung zu steuern, indem ein einer entsprechenden HF-Emission entsprechender Emissionsgrenzwert initialisiert wird; Tabellarisieren von HF-Leistung und Einsatz in einem ersten Überwachungszeitraum; Aktualisieren (112) eines laufenden HF-Emissionsmesswerts auf der Grundlage eines Produkts der HF-Leistung und der Einsatzdauer im ersten Überwachungszeitraum; und Anwenden des laufenden HF-Emissionsmesswerts und des Emissionsgrenzwerts, um einen Übertragungs-Wiederholungsversuchsgrenzwert des Geräts () in einem folgenden Zeitintervall einzustellen, wobei der Übertragungs-Wiederholungsversuchsgrenzwert die Zahl der Wiederholungsversuche für die Nachrichtenübertragung im Falle von Nachrichtenkollisionen angibt. 8. Tragbares Kommunikationsgerät () nach Anspruch 7, wobei die Steuerung (22) einen Speicher zum Speichern des Emissionsgrenzwerts aufweist. 1 20 niveau de puissance de sortie et une première limite de réessai, où la première limite de réessai indique un nombre de réessais de transmission de paquet en cas de collisions de paquets ; la mise à jour (112) d une mesure en cours d énergie émise sur la base du premier niveau de puissance de sortie et de temps de transmission rf, l ajustement de la première limite de réessai sur la base de la mesure en cours d énergie émise et d une limite d émissions prédéterminée ; et le fait de continuer à mettre à jour périodiquement ladite mesure en cours d énergie émise pendant le fonctionnement dudit dispositif de communications () lorsque la première limite de réessai est ajustée. 2. Procédé (0) selon la revendication 1, dans lequel le premier niveau de puissance de sortie augmente ou diminue pour parvenir au fonctionnement du dispositif de communications () au niveau ou près de la limite d émissions prédéterminée pendant une période subséquente de fonctionnement de dispositif. 9. Tragbares Kommunikationsgerät () nach Anspruch 8, ferner umfassend eine Benutzerschnittstelle (24) und wobei der Emissionsgrenzwert einstellbar ist, indem verschiedene Werte über die Benutzerschnittstelle (24) eingegeben werden.. Tragbares Kommunikationsgerät () nach Anspruch 7, wobei die Steuerung (22) den Übertragungs-Wiederholungsversuchsgrenzwert im Falle einer oder mehrerer fehlgeschlagener Übertragungen einstellt. 11. Tragbares Übertragungsgerät () nach Anspruch 8, wobei die Steuerung ein Verhältnis von Betriebsdauer geteilt durch einen festen Zeitwert mit einem Verhältnis des laufenden HF-Emissionsmesswerts geteilt durch den Emissionsgrenzwert vergleicht. 2 30 3 40 3. Procédé (0) selon la revendication 1, dans lequel la limite d émissions prédéterminée est déterminée par un utilisateur du dispositif de communications portable (). 4. Procédé (0) selon la revendication 1, dans lequel l ajustement inclut en outre l ajustement du premier niveau de puissance de sortie.. Procédé (0) selon la revendication 1, dans lequel l ajustement inclut en outre l ajustement du temps d utilisation du dispositif de communications () pendant une période de transmission subséquente. 6. Procédé (0) selon la revendication 1, dans lequel la limite d émissions prédéterminée est réinitialisée périodiquement. 12. Tragbares Kommunikationsgerät () nach Anspruch 7, wobei die Steuerung (22) ferner die Ausgangsleistung des Geräts einstellt. Revendications 1. Procédé (0) pour commander l énergie radiofréquence (rf) émise par un dispositif de communications portable (), caractérisé par : l initiation de communications avec le dispositif de communications portable () en envoyant et en recevant des paquets de communications entre le dispositif de communications portable () et un point d accès au réseau à un premier 4 0 7. Dispositif de communications portable (), caractérisé par : un émetteur rf (14) et une antenne couplée à l émetteur rf (14) pour coupler le dispositif de communications () à un point d accès ; et un contrôleur (22) couplé à l émetteur rf (14) pour commander une puissance et une durée de transmission de message en initialisant une limite d émissions correspondant à une émission rf acceptable ; tabulant la puissance rf et l utilisation pendant une première période de temps de surveillance ; mettant à jour (112) une mesure en cours d exécution d émission rf sur la base d un produit de la puissance rf et du temps d utilisation pendant la première période 6

11 EP 2 87 681 B1 12 de temps de surveillance ; et utilisant la mesure en cours d exécution d émission rf et la limite d émissions pour ajuster une limite de réessai de transmission du dispositif () pendant un intervalle de temps subséquent, où la limite de réessai de transmission indique un nombre de réessais pour la transmission de message en cas de collisions de messages. 8. Dispositif de communications portable () selon la revendication 7, dans lequel le contrôleur (22) inclut une mémoire pour stocker la limite d émissions. 9. Dispositif de communications portable () selon la revendication 8, comprenant en outre une interface utilisateur (24) et dans lequel la limite d émissions est ajustable en entrant des valeurs différentes via l interface utilisateur (24). 1. Dispositif de communications portable () selon la revendication 7, dans lequel le contrôleur (22) ajuste la limite de réessai de transmission utilisée en cas d une ou plusieurs défaillances d une transmission. 20 11. Dispositif de communications portable () selon la revendication 8, dans lequel le contrôleur compare un rapport de temps de fonctionnement divisé par une valeur de temps fixe avec un rapport de la mesure en cours d exécution d émission rf divisée par la limite d émissions. 2 30 12. Dispositif de communications portable () selon la revendication 7, dans lequel le contrôleur (22) ajuste en outre la puissance de sortie du dispositif. 3 40 4 0 7

EP 2 87 681 B1 8

EP 2 87 681 B1 9

EP 2 87 681 B1

EP 2 87 681 B1 11

EP 2 87 681 B1 REFERENCES CITED IN THE DESCRIPTION This list of references cited by the applicant is for the reader s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard. Patent documents cited in the description US 2002167930 A [0004] 12