8 Room and Auditorium Acoustics



Similar documents
Building Technology and Architectural Design. Program 4th lecture Case studies Room Acoustics Case studies Room Acoustics

Lab #6 Room Acoustics

Acoustic design according to room shape

THE ACOUSTICS OF ROOMS

Acoustical Design for Concert Hall in the Science and Art Centre of Xiamen University

Acoustic Terms, Definitions and General Information

I n spite of many attempts to surpass

Acoustic design according to room type

Welcome Contents Back 1

JdB Sound Acoustics Presents

Acoustical Design of a Multi-Purpose Hall for Natural and Amplified Sound

Acoustic design with wall acoustic solutions

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Acoustic analysis by computer simulation for building restoration

THE ACOUSTIC DESIGN OF THE NEW DRAMA HOUSE FOR THE ROYAL THEATRE IN COPENHAGEN

Affordable Sports Halls

The Acoustics of Indoor Aquatic Facilities: How Improving Sound Levels Impacts Both our Physiological and Psychological Well Being Jeffrey Madison

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Acoustics & Building Services An back to basics overview

Cheat Sheet for Local Church Audio Training Sound Essentials. Kick:

Improving the Acoustics in a Historic Building Using Axiomatic Design and TRIZ

DAAD: A New Software for Architectural Acoustic Design

Waves - Transverse and Longitudinal Waves

Dynamic sound source for simulating the Lombard effect in room acoustic modeling software

On a new, on/off broadband absorber system for music schools and other multipurpose facilities

Acoustical requirements of Dewan Filharmonik Petronas, Malaysia

Guidelines for video conferencing room acoustics. D September 2010

CARMEN R in the Norwich Theatre Royal, UK

ROOM ACOUSTICS DESIGN. Room Acoustics Design Intent: Appropriate Articulation

Workshop Listening Test: Results

VIRTUAL SPACE 4D PROJECT: THE ROOM ACOUSTICAL TOOL. J. Keränen, P. Larm, V. Hongisto

Optiffuser. High-performance, high bandwidth lightweight 1D diffuser.

The Simulation of Acoustics by ODEON in the Acoustic Design. of Assembly Hall

DQGDQDXGLWRULXP

MUSC 1327 Audio Engineering I Syllabus Addendum McLennan Community College, Waco, TX

ELECTRONIC SOUND ENHANCEMENT SYSTEM IN THE MULTIFUNCTIONAL HALL TÓNBERG IN AKRANES, ICELAND

Acoustical Design of Rooms for Speech

Mathematical Harmonies Mark Petersen

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

SPEECH INTELLIGIBILITY and Fire Alarm Voice Communication Systems

Fundamentals of Acoustics & Practical HVAC Design Considerations. Demir Doken Acoustic Engineer

Geometric and statistical room acoustics

THE ACOUSTICS DESIGN OF THE EUSKALDUNA PALACE

Audio Analysis & Creating Reverberation Plug-ins In Digital Audio Engineering

AURA - Analysis Utility for Room Acoustics Merging EASE for sound reinforcement systems and CAESAR for room acoustics

Relationship between Sound Pressure and Sound Power Levels

Doppler Effect Plug-in in Music Production and Engineering

Sound Power Measurement

Basic Concepts of Sound. Contents: Definitions db Conversion Sound Fields db ± db

Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras. Module No - 12 Lecture No - 25

AS COMPETITION PAPER 2008

Acoustics and Sound Systems in Architectural Design

Waves Sound and Light

ACOUSTIC DESIGN - ROOMS FOR SPEECH

Introduction to acoustic imaging

A wave lab inside a coaxial cable

Energy - Heat, Light, and Sound

ACOUSTIC DESIGN CHALLENGE IN TOTALLY FLEXIBLE CONFIGURATION OF THEATRE HALL CASE STUDY

Software Audio Processor. Users Guide

How does Architecture Affect the Acoustics of a Space

ROOM ACOUSTIC PREDICTION MODELLING

Direct and Reflected: Understanding the Truth with Y-S 3

Pyramid Tracing vs. Ray Tracing for the simulation of sound propagation in large rooms. Abstract 1. Introduction to the two algorithms

THE SIMULATION OF MOVING SOUND SOURCES. John M. Chowning

Solution Derivations for Capa #13

Auditorium Acoustics and Architectural Design

ACOUSTICS: The Sounds of Sustainable Design

Waves and Sound. AP Physics B

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

Figure 1 : Typical Computer Simulation of a Bass Reflex Speaker

The Use of Computer Modeling in Room Acoustics

ARCHITECTURAL ACOUSTICS

Control Room Conceptual Design: Optimizing Acoustics for Stereo Reproduction. Prepared for: K. McNally Music 406 University of Victoria

CEPro. Advantage Series. Diagrammatic Guide to In-Ceiling Speaker Placement for Home Theater, Multiroom Audio

a), b) Martin Vondrasek Plzenska 66, Praha 5, Czech Republic

What Audio Engineers Should Know About Human Sound Perception. Part 2. Binaural Effects and Spatial Hearing

ITRAINONLINE MMTK BASIC RADIO PHYSICS HANDOUT

Omni Antenna vs. Directional Antenna

8. ACOUSTICS OF ROOMS AND ENCLOSURES

Understanding Sound System Design and Feedback Using (Ugh!) Math by Rick Frank

SYSTEM DESIGN AND THE IMPORTANCE OF ACOUSTICS

Tennessee State University

The Physics of Guitar Strings

Physics 25 Exam 3 November 3, 2009

Development and optimization of a hybrid passive/active liner for flow duct applications

Noise. CIH Review PDC March 2012

THE MARIA REGINA DELLA PACE CHURCH IN PERUGIA: ACOUSTIC MEASUREMENTS AND CORRECTION DESIGN

Casa da Musica, a new concert hall for Porto, Portugal

The waveguide adapter consists of a rectangular part smoothly transcending into an elliptical part as seen in Figure 1.

COMPUTER ASSISTED METHODS AND ACOUSTIC QUALITY: RECENT RESTORATION CASE HISTORIES

Acoustics for Musicians

Study Kit No 9. Aura Lee (Love Me Tender)

The Sonometer The Resonant String and Timbre Change after plucking

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors

Sample Questions for the AP Physics 1 Exam

The Tuning CD Using Drones to Improve Intonation By Tom Ball

Canalis. CANALIS Principles and Techniques of Speaker Placement

Tonal Analysis of Different Materials for Trumpet Mouthpieces

Transcription:

8 Room and Auditorium Acoustics Acoustical properties of rooms and concert halls are mainly determined by the echo that depends on the reflection and absorption of sound by the walls. Diffraction of sound also plays a significant role in the room acoustics. In contrast to the sound in a free space, intensity of which decreases according to the inverse square law, I 1/r, the sound in a room consists of a direct sound and the reflected sound, so that the full sound intensity does not decrease so fast with the distance from the source. This is why the acoustics in well-build halls is much better than in the free space (like in open-air concerts). In good concert halls one can hear the music well at any place, even in the back. In principle, acoustics of any room can be calculated but it is difficult to do for a room of a complicated shape with a lot of architectural details. Also the audience plays a significant role in the absorption of sound and its effect is difficult to take into account theoretically. So in many cases experimenting with acoustics is very useful. The problem simplifies much for simple shapes such as rectangular and spherical. There are programs simulating the acoustics of rectangular rooms that can be used to improve sounding of music recordings. On the other hand, general principles of building good concert halls without a full acoustical calculation are well known. Still, architects continue to make mistakes in the acoustical design, so that hall architecture can be considered as an art, not only a science.

General principles of constructing concert halls Avoid round walls (like in the halls of circular or elliptic shape) because such walls concentrate the reflected sound (like spherical mirrors) in particular areas that leads to a non-uniform sound intensity in the audience area. This is well known but some architects push for beauty and originality at the expense of acoustics an example is the new concerts hall of the Stuttgart Conservatory of Music, built around 000, that has a beautiful round shape and a horrible acoustics. Avoid strictly parallel plain walls (like those in halls of a strictly rectangular shape) because (resonance) standing waves with a highly non-uniform sound intensity (nodes and antinodes) can be formed between such walls. This is somewhat less important for the audience part of the hall since the sound is coming there from the stage and it is reflected from the walls obliquely, preventing formation of standing waves. Also resonances in big halls are less important because of the diffraction. But the effect is very important for the stage, where standing waves (that is, resonances) between parallel stage walls can lead to the effect that musicians do not hear each other well. So the side walls of the stage should not be parallel.

Absorption and reflection coefficients Reflection coefficient r is defined as the ratio of the intensity of the reflected wave I r to the intensity of the incident wave I i : I r = ri i Incident wave, I i Reflected wave, I r Since only a fraction of the sound (or light) is reflecting, the reflection coefficient satisfies 0 r 1 Everything that is not reflected is absorbed. The intensity of the absorbed sound I a plus the one of the reflected sound I r is exactly the intensity of the incident sound I i I + I = One can define the absorption coefficient a by r a I a = ai i The absorption and reflection coefficients satisfy I i a + r = 1, 0 a 1, 0 r 1 3

Resonances (standing waves) in a rectangular room The sound propagating between two parallel walls in the direction perpendicular to the walls is forming standing waves because of the boundary conditions at the walls (node-node for the air displacement and antinode-antinode for the excessive pressure). The fundamental (maximal) wave length is λ 1 = L, the fundamental (minimal) frequency is f 1 = v/ λ 1 = v/(l), and the whole overtone series is given by f n v = nf1 = n, n = 1,,3,... L The situation in a room of a box shape with the sides L x, L y, L z, is more complicated since there are, in general, three different fundamental frequencies and thus three different sets of harmonics. Moreover, there are standing waves that are directed obliquely to the walls. The complete expression for the resonance frequencies in the room has the form f n x n, n y z v n n x y nz = + +,=, nx, ny, nz 0,1,,3,... L L L x y z One can see that there are a lot of different resonances (standing waves) in the room! In this formula, at least one of the numbers n x, n y, n z should be nonzero. One can sing very loud even with a small lousy voice in a bathroom, if one hits one of the resonance frequencies. In concert halls, one should generally avoid resonances. Nonresonant sound does not form standing waves and its intensity is more or less uniform throughout the hall. 4

Reverberation time Reverberation time (RT) shows how long the sound can be heard in the hall after the sound sourse stops to produce the sound. The definition of the reverberation time depends on what we define as the end of the sound we hear. Since our ears are very sensitive to quiet sounds, it was postulated that the sound ends when its intensity I becomes 10 6 of its initial intensity I 0. This corresponds to the decrease of the SIL by 60 db. Physically, reverberation is due to many echoes that reach our ears from different directions. In well-built halls, there are very many small echoes that merge into an echo continuum with smoothly decreasing intensity. In this case one speaks of a good texture. (Texture is defined as the echo intensity versus time). To the contrary, if there is one or several strong echoes separated by time intervals, the texture of the reflected sound consists of spikes and the sound becomes unpleasant. RT depends on frequency f and it becomes longer at low frequencies because of smaller sound absorption. Halls designed for slow music like singing (for instance churches) should have a long reverberation time, so that the echo supports the singers. To the contrary, theaters require a short reverberation time so that the echo does not make the speech indistinguishable. Instrumental music requires a trade-off in the reverberation time, so that different halls can be better suited for slow and fast music, like classical and romantic music (transparent Mozart requires a shorter RT while massive Brahms requires a longer RT). 5

Calculation of the reverberation time The semi-empirical formula for the RT reads T R k V = A v A, A = a1 A1 + a + where k is a big numerical factor related to the attenuation of the sound by 10 6 in the definition of the RT, v is the speed of sound, V is the volume of the hall and A is the total absorption defined by the areas of all surfaces, A 1, A, etc., and their absorption coefficients, a 1, a, etc. RT thus scales with the linear size of the hall. Highly reflecting walls with small absorption coefficients can make RT very long that makes speech non-distinct. Choosing materials with different absorption coefficients (also depending on the frequency!), the architect can control the RT and finer details of the acoustics.... 6

How the sound travels from the source (S) to the listener (L) in a room I Direct sound Reflected sound Reflected sound Echo in a room (good texture) Definition of the reverberation time 7

Good texture: Many small echoes Typical reverberation times Bad texture: A single strong echo present Frequency dependence of the reverberation time: a) Warm acoustics; b) Normal acoustics; c) Brilliant acoustics 8

Acoustical characteristics beyond the reverberation time Fullness vs Clarity: These characteristics refer to the amount of the reflected sound relative to that of the direct sound. Fullness is achieved when there is a lot of reflected sound. Clarity is acieved when the direct sound is dominating Warmth vs Brilliance: Warmth is achieved if the RT at low frequency significantly exceeds that at high frequencies. If the RT does not increase so much at low frequencies, the acoustics is brilliant. Intimacy: If the time delay between the direct sound and the first reflected sound reaching the ears is short, as it is the case in small rooms, we have a feeling of intimacy. In large halls this delay becomes big and the feeling of intimacy gets lost. To correct it, a reflecting screen close to the source of sound can be used. Then the time delay becomes small and the feeling of intimacy gets restored. This is an example of how our feelings can be tricked. Texture: As said above, texture is the dynamic pattern of sound reflections. Good texture is a smoothly decreasing function of time due to many small echoes. Bad texture contains spikes from strong single echoes. 9