Functional Architecture of RNA Polymerase I



Similar documents
Interaktionen von RNAs und Proteinen

Steffen Lindert, René Staritzbichler, Nils Wötzel, Mert Karakaş, Phoebe L. Stewart, and Jens Meiler

Lecture 19: Proteins, Primary Struture

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are

Refinement of a pdb-structure and Convert

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins.

Structure Determination

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?

Analysis of structural dynamics by H/D-exchange coupled to mass spectrometry HDX-MS

Supplementary Figures S1 - S11

3D structure visualization and high quality imaging. Chimera

RNA polymerase I structure and transcription regulation

Helices From Readily in Biological Structures

Peptide Bonds: Structure

Structure Tools and Visualization

Bioinformatics for Biologists. Protein Structure

Secondary Structure Prediction. Michael Tress CNIO

Electron density is complex!

Guide for Bioinformatics Project Module 3

Section I Using Jmol as a Computer Visualization Tool

Name: Date: Period: DNA Unit: DNA Webquest

CSC 2427: Algorithms for Molecular Biology Spring Lecture 16 March 10

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK

Built from 20 kinds of amino acids

BIOC351: Proteins. PyMOL Laboratory #1. Installing and Using

Phase determination methods in macromolecular X- ray Crystallography

Myoglobin and Hemoglobin

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

Consensus alignment server for reliable comparative modeling with distant templates

18.2 Protein Structure and Function: An Overview

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?

Hydrogen Bonds The electrostatic nature of hydrogen bonds

Problem Set 1 KEY

NO CALCULATORS OR CELL PHONES ALLOWED

What is the difference between basal and activated transcription?

NIH Public Access Author Manuscript Nat Struct Mol Biol. Author manuscript; available in PMC 2011 August 1.

The peptide bond is rigid and planar

Replication Study Guide

Lab # 12: DNA and RNA

NOVEL GENOME-SCALE CORRELATION BETWEEN DNA REPLICATION AND RNA TRANSCRIPTION DURING THE CELL CYCLE IN YEAST IS PREDICTED BY DATA-DRIVEN MODELS

Quaternary structure

INTRODUCTION TO PROTEIN STRUCTURE

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons

Disulfide Bonds at the Hair Salon

Lecture Conformation of proteins Conformation of a protein three-dimensional structure native state. native condition

Nafith Abu Tarboush DDS, MSc, PhD

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)

Name: Hour: Elements & Macromolecules in Organisms

Some terms: An antigen is a molecule or pathogen capable of eliciting an immune response

AP Biology 2013 Free-Response Questions

Structure of proteins

Sickle cell anemia: Altered beta chain Single AA change (#6 Glu to Val) Consequence: Protein polymerizes Change in RBC shape ---> phenotypes

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+

FTIR Analysis of Protein Structure

Basic Concepts of DNA, Proteins, Genes and Genomes

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Introduction to Proteins and Enzymes

Structural Bioinformatics (C3210) Experimental Methods for Macromolecular Structure Determination

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

SASREF: Global Rigid Body Modelling

Protein Studies Using CAChe

Bioinformatics Resources at a Glance

Introduction to the Protein Folding Problem

The Steps. 1. Transcription. 2. Transferal. 3. Translation

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains

4. DNA replication Pages: Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true?

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

research papers From electron microscopy to X-ray crystallography: molecular-replacement case studies

Molecular Genetics. RNA, Transcription, & Protein Synthesis

RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison

REMOTE CONTROL by DNA as a Bio-sensor -antenna.

Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein.

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

Structure Check. Authors: Eduard Schreiner Leonardo G. Trabuco. February 7, 2012

Elements & Macromolecules in Organisms

The Molecules of Cells

TRANSCRIPTION a) Transcription in prokaryotes b) Transcription in eukaryotes

PHYSIOLOGY AND MAINTENANCE Vol. II - On The Determination of Enzyme Structure, Function, and Mechanism - Glumoff T.

LESSON 5. Learning to Use Cn3D: A Bioinformatics Tool. Introduction. Learning Objectives. Key Concepts

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5

How To Understand The Chemistry Of Organic Molecules

The Organic Chemistry of Amino Acids, Peptides, and Proteins

Protein 3D-structure analysis. why and how

Proteins and Nucleic Acids

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are

Weather Help - NEXRAD Radar Maps. Base Reflectivity

Chapter 6 DNA Replication

Protein annotation and modelling servers at University College London

Lecture 4. Polypeptide Synthesis Overview

EMBL-EBI. EM map display & Visualization

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure enzymes control cell chemistry ( metabolism )

DATA VALIDATION and CONDITIONAL FORMATTING

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1

Human-Mouse Synteny in Functional Genomics Experiment

Transcription in the nucleus and mrna decay in the cytoplasm are coupled processes

Biochemistry 462a Hemoglobin Structure and Function Reading - Chapter 7 Practice problems - Chapter 7: 1-6; Proteins extra problems

Transcription:

Cell, Volume 131 Supplemental Data Functional Architecture of RNA Polymerase I Claus-D. Kuhn, Sebastian R. Geiger, Sonja Baumli, Marco Gartmann, Jochen Gerber, Stefan Jennebach, Thorsten Mielke, Herbert Tschochner, Roland Beckmann, and Patrick Cramer Table S1 Figures S1-S6 Supplemental References

Functional architecture of RNA polymerase I Page 2 Table S1. A14/43 X-ray diffraction data and refinement statistics Crystal A14/43 SeMet Data collection a Space group P2 1 2 1 2 Wavelength (Å) 0.97848 Unit cell axis (Å) 229.9 63.9 65.4 Resolution (Å) 30-3.1 (3.25-3.1) b Completeness (%) 99.6 (99.6) Unique reflections 33,670 (4,457) Redundancy 5.5 (5.4) R sym (%) 7.7 (39.9) <I/σI> 16.1 (5.0) Refinement Amino acid residues 702 RMSD bonds (Å) 0.009 RMSD angles ( ) 1.9 R cryst (%) 25.3 R free (%) 28.5 a Diffraction data were collected at beamline X06SA at the Swiss Light Source, Villigen, Switzerland. b Numbers in parenthesis refer to the highest resolution shell.

Functional architecture of RNA polymerase I Page 3 Figure S1. Sequence alignments of subunits in Pol I with their homologs in Pol II. The alignments were generated with CLUSTAL W (Thompson et al., 1994) and were then edited based on the structural modeling. Regions of conserved fold are underlined. Additional regions of conserved fold likely exists but cannot be predicted with certainty. A190-Rpb1 edited by hand according to 3D structure, EM density and secondary structure prediction A190 ---MDISKPVGSEITSVDFGILTAKEIRNLSAKQITNPTVLDNLG-HPVSGGLYDLALGA 56 Rpb1 MVGQQYSSAPLRTVKEVQFGLFSPEEVRAISVAKIRFPETMDETQTRAKIGGLNDPRLGS 60 * * ** * * * * * * *** * ** A190 FLRNL-CSTCGLDEKFCPGHQGHIELPVPCYNPLFFNQLYIYLRASCLFCHHFRLKSVE- 114 Rpb1 IDRNLKCQTCQEGMNECPGHFGHIDLAKPVFHVGFIAKIKKVCECVCMHCGKLLLDEHNE 120 *** * ** **** *** * * * * * * A190 VHRYACKLRLLQYGLIDESYKLDEITLGSLNSSMYTDDEAIEDNEDEMDGEGSKQSKDISS 175 Rpb1 LMRQALAIKDSKKRFAAIWTLCKTKMVCETDVPSEDDP----------------------- 158 * * * * A190 TLLNELKSKRSEYVDMAIAKALSDGRTTERGSFTATVNDERKKLVHEFHKKLLSRGKCDN 235 Rpb1 ------------------------------------------------------------ A190 CGMFSPKFRKDGFTKIFETALNEKQITNNRVKGFIRQDMIKKQKQAKKLDGSNEASANDE 295 Rpb1 --------------------------------------------TQLVSRGGCGNTQPTI 174 * A190 ESFDVGRNPTTRPKTGSTYILSTEVKNILDTVFRKEQCVLQYVFHSRPNLSRKLVKADSF 355 Rpb1 RKDGLKLVGSWKKDRATGDADEPELRVLSTEEILNIFKHISVKDFTSLGFNEVFSRPEWM 234 * A190 FMDVLVVPPTRFRLPSKLGEEVHENSQNQLLSKVLTTSLLIRDLNDDLSKLQKDKVSLED 415 Rpb1 ILTCLPVPPPPVRPSISFNESQRG---EDDLTFKLADILKANISLETLEHNGAP------ 285 * *** * * * * * * A190 RRVIFSRLMNAFVTIQNDVNAFIDSTKAQG-RTSGKVPIPGVKQALEKKEGLFRKHMMGKR 475 Rpb1 --HHAIEEAESLLQFHVATYMDNDIAGQPQALQKSGRPVKSIRARLKGKEGRIRGNLMGKR 344 * * * *** * **** A190 VNYAARSVISPDPNIETNEIGVPPVFAVKLTYPEPVTAYNIAELRQAVINGPDKWPGATQ 535 Rpb1 VDFSARTVISGDPNLELDQVGVPKSIAKTLTYPEVVTPYNIDRLTQLVRNGPNEHPGAKY 404 * ** *** *** * *** * ***** ** *** * * * *** *** A190 IQNEDGSLVSLIGMSVEQRKALANQLLTPSSNVSTHTLNKKVYRHIKNRDVVLMNRQPTL 595 Rpb1 VIRDSGDRIDLR--------------YSKRAGDIQLQYGWKVERHIMDNDPVLFNRQPSL 450 * * ** *** * ** **** * A190 HKASMMGHKVRVLPNEKTLRLHYANTGAYNADFDGDEMNMHFPQNENARAEALNLANTDS 655 Rpb1 HKMSMMAHRVKVIPYS-TFRLNLSVTSPYNADFDGDEMNLHVPQSEETRAELSQLCAVPL 509 ** *** * * * * * ** * *********** * ** * *** * A190 QYLTPTSGSPVRGLIQDHISAGVWLTSKDSFFTREQYQQYIYGCIRPEDGHTTRSKIVTL 715 Rpb1 QIVSPQSNKPCMGIVQDTLCGIRKLTLRDTFIELDQVLNMLYWVPDWDG--------VIP 561 * * * * * ** ** * * * * * A190 PPTIFKPYPLWTGKQIITTVLLNVTPPDMPGINLISKNKIKNEYWGKGSLENEVLFKDGA 775 Rpb1 TPAIIKPKPLWSGKQILSVAIP----------NGIHLQRFDEGTTLLSPKDNGMLIIDGQ 611 * * ** *** **** * * * * ** A190 LLCGILDKSQYGASKYGIVHSLHEVYGPEVAAKVLSVLGRLFTNYITATAFTCGMDDLRL 835 Rpb1 IIFGVVEKKTVGSSNGGLIHVVTREKGPQVCAKLFGNIQKVVNFWLLHNGFSTGIGDT-- 669 * * * * * * ** * ** * * * A190 TAEGNKWRTDILKTSVDTGREAAAEVTNLDKDTPADDPELLKRLQEILRDNNKSGILDAV 895 Rpb1 -----IADGPTMREITETIAEAKKKVLDVTKEAQAN-----------LLTAKHGMTLRES 713 * ** * * * * *

Functional architecture of RNA polymerase I Page 4 A190 TSSKVNAITSQVVSKCVPDGTMKKFPCNSMQAMALSGAKGSNVNVSQIMCLLGQQALEGR 955 Rpb1 FEDNVVRFLNEARDKAGRLAEVNLKDLNNVKQMVMAGSKGSFINIAQMSACVGQQSVEGK 773 * * * * * *** * * *** ** A190 RVPVMVSGKTLPSFKPYETDAMAGGYVKGRFYSGIKPQEYYFHCMAGREGLIDTAVKTSR 1015 Rpb1 RIAFGFVDRTLPHFSKDDYSPESKGFVENSYLRGLTPQEFFFHAMGGREGLIDTAVKTAE 833 * *** * * * * *** ** * ************ A190 SGYLQRCLTKQLEGVHVSYDNSIRDADGTLVQFMYGGDAIDITKESHMTQFEFCLDNYYA 1075 Rpb1 TGYIQRRLVKALEDIMVHYDNTTRNSLGNVIQFIYGEDGMDAAHIEKQ-SLDTIGGSDAA 892 ** ** * * ** * *** * * ** ** * * * A190 LLKKY------------------------------------------------------- 1080 Rpb1 FEKRYRVDLLNTDHTLDPSLLESGSEILGDLKLQVLLDEEYKQLVKDRKFLREVFVDGEA 952 * * * * * * * * * A190 -------NPSALIEHLDVESALKYSKKTLKYRKKHSKEPHYKQSVKYDPVLAKYNPAKYL 1133 Rpb1 NWPLPVNIRRIIQNAQQTFHIDHTKPSDLTIKDIVLGVKDLQENLLVLRGKNEIIQNAQR 1012 A190 GSVSENFQDKLESFLDKNSKLFKSSDGVNEKKFRALMQLKYMRSLINPGEAVGIIASQSV 1193 Rpb1 DAVTLFCCLLRSRLATRRVLQEYRLTKQAFDWVLSNIEAQFLRSVVHPGEMVGVLAAQSI 1072 * ** *** ** * ** A190 GEPSTQMTLNTFHFAGHGAANVTLGIPRLREIVMTASAAIKTPQMTLPIWN--DVSDEQA 1251 Rpb1 GEPATQMTLNTFHFAGVASKKVTSGVPRLKEILN-VAKNMKTPSLTVYLEPGHAADQEQA 1131 *** ************ ** * *** ** *** * *** A190 DTFCKSISKVLLSEVIDKVIVTETTGTSNTAGGNAARSYVIHMRFFDNNEYSEEYDVSKE 1311 Rpb1 KLIRSAIEHTTLKSVTIASEIYYDPDPRSTVIPEDEEIIQLHFSLLDEEAEQSFDQQSPW 1191 * * * * * * * A190 ELQNVISNQFIHLLEAAIVKEIKKQKRTTGPDIGVAVPRLQTDVANSSSNSKRLEEDNDE 1371 Rpb1 LLRLELDRAAMNDKDLTMGQVGERIKQTFKNDLFVIWSEDNDEKLIIRCRVVRPKSLDAE 1251 * * * * * * * A190 EQSHKKTKQAVSYDEPDEDEIETMREAEKSSDEEGIDSDKESDSDSEDEDVDMNEQINKS 1422 Rpb1 TEAEEDHMLKKIENTMLENITLR------------------------------------- 1274 * A190 IVEANNNMNKVQRDRQSAIISHHRFITKYNFDDESGKWCEFKLELAADTEKLLMVNIVEE 1491 Rpb1 --------------------------------------------------------GVEN 1278 ** A190 ICRKSIIRQIPHIDRCVHPEPENGKRVLVTEGVNFQAMWDQEAFIDVDGITSNDVAAVLK 1551 Rpb1 IERVVMMKYDRKVPSPTGEYVKEPEWVLETDGVNLSEVMTVPG-IDPTRIYTNSFIDIME 1337 * * ** * *** ** * * A190 TYGVEAARNTIVNEINNVFSRYAISVSFRHLDLIADMMTRQGTYLAFNRQGMETS-TSSF 1610 Rpb1 VLGIEAGRAALYKEVYNVIASDGSYVNYRHMALLVDVMTTQGGLTSVTRHGFNRSNTGAL 1398 * ** * * ** * ** * * ** ** * * * * A190 MKMSYETTCQFLTKAVLDNEREQLDSPSARIVVGKLNNVGTGSFDVLAKVPNAA-- 1664 Rpb1 MRCSFEETVEILFEAGASAELDDCRGVSENVILGQMAPIGTGAFDVMIDEESLVKY 1453 ->CTD * * * * * * * * * *** ***

Functional architecture of RNA polymerase I Page 5 A135-Rpb2 edited by hand according to 3D structure, EM density and secondary structure prediction A135 MSKVIKPPGQARTADFRTLERESRFINPPKDKSAFPLLQEAVQPHIGSFNALTEGPDGGL 60 Rpb2 MSDLANSE-KYYDEDPYGFEDESAPITAEDSWAVISAFFREKGLVSQQLDSFNQFVDYTL 59 ** * * ** * * * A135 LNLGVKDIGEKVIFDGKPLNSEDEISNSGYLGNKLSVSVEQVSIAKPMSNDGVSSAVERK 120 Rpb2 QDIICEDS--TLILEQLAQHTTE----SDNISRKYEISFGKIYVTKPMVNE--SDGVTHA 111 * * * * * *** * * * A135 VYPSESRQRLTSYRGKLLLKLKWSVNN-----GEENLFEVRD-------------CGGLP 162 Rpb2 LYPQEARLRNLTYSSGLFVDVKKRTYEAIDVPGRELKYELIAEESEDDSESGKVFIGRLP 171 ** * * * * * * * * * * ** A135 VMLQSNRCHLNKMSPYELVQHKEESDEIGGYFIVNGIEKLIRMLIVQRRNHPMAIIRPSF 222 Rpb2 IMLRSKNCYLSEATESDLYKLKECPFDMGGYFIINGSEKVLIAQERSAGNIVQVFKKAAP 231 ** * * * * ** ***** ** ** * A135 ANRGASYSHYGIQIRSVRPDQTSQTNVLHYLNDGQVTFRFSWRKNEYLVPVVMILKALCH 282 Rpb2 SPISHVAEIRSALEKGSRFISTLQVKLYGREGSSARTIKATLPYIKQDIPIVIIFRALGI 291 * * * * * * * ** A135 TSDREIFDGIIGNDVKDSFLTDRLELLLRGFKKRYPHLQNRTQVLQYLGDKFRVVFQASP 342 Rpb2 IPDGEILEHIC-YDVNDWQMLEMLKPCVEDG----FVIQDRETALDFIGR--RGTALGIK 344 * ** * ** * * * * * * * A135 DQSDLEVGQEVLDRIVLVHLGKDG--SQDKFRMLLFMIRKLYSLVAGECSPDNPDATQHQ 400 Rpb2 KEKRIQYAKDILQKEFLPHITQLEGFESRKAFFLGYMINRLLLCALDRKDQDDRDHFGKK 404 * * * * * ** * * * A135 EVLLGGFLYGMILKEKIDEYLQNIIAQVRMDINRGMAINFKDKRYMSRVLMRVNENIGSK 460 Rpb2 RLDLAGPLLAQLFKTLFKKLTKDIFRYMQRTVEEAHDFNMK--------LAINAKTITSG 456 * * * * * * * * * * A135 MQYFLSTGNLVSQSGLDLQQVSGYTVVAEKINFYRFISHFRMVHRGSFFAQLKTTTVRKL 520 Rpb2 LKYALATGNWGEQK-KAMSSRAGVSQVLNRYTYSSTLSHLRRTN-TPIGRDGKLAKPRQL 514 * * *** * * * ** * * * * A135 LPESWGFLCPVHTPDGSPCGLLNHFAHKCRISTQQSDVSRIPSILYSLGVAPASHTFAAG 580 Rpb2 HNTHWGLVCPAETPEGQACGLVKNLSLMSCISVG-TDPMPIITFLSEWGMEPLEDYVPHQ 573 ** ** ** * *** ** * * * * * A135 -PSLCCVQIDGKIIGWVSHEQGKIIADTLRYWKVEGKTPGLPIDLEIG----YVPPSTRGQ- 636 Rpb2 SPDATRVFVNGVWHGV--HRNPARLMETLRTLRRKGDINPEVSMIRDIREKELKIFTDAGRV 633 * * * * *** * * A135 YPGLYLFGG---------HSRMLRPVRYLPLDK-----------------------EDIV 662 Rpb2 YRPLFIVEDDESLGHKELKVRKGHIAKLMATEYQDIEGGFEDVEEYTWSSLLNEGLVEYI 693 * * * A135 GPFEQVYMNIAVTPQEIQ-----------------------NNVHTHVEFTPTNILSILA 701 Rpb2 DAEEEESILIAMQPEDLEPAEANEENDLDVDPAKRIRVSHHATTFTHCEIHPSMILGVAA 753 * ** * ** * * ** * A135 NLTPFSDFNQSPRNMYQCQMGKQTMGTPGVALCHRSDNKLYRLQTGQTPIVKANLYDDYG 761 Rpb2 SIIPFPDHNQSPRNTYQSAMGKQAMGVFLTNYNVRMDTMANILYYPQKPLGTTRAMEYLK 813 ** * ****** ** **** ** * * * * * A135 MDNFPNGFNAVVAVISYTGYDMDDAMIINKSADERGFGYGTMYKTEK-VDLALNRNRGDP 820 Rpb2 FRELPAGQNAIVAIACYSGYNQEDSMIMNQSSIDRGLFRSLFFRSYMDQEKKYGMSITET 873 * * ** ** * ** * ** * * ** A135 ITQHFGFGNDEWPKEWLEKLDEDGLPYIGTYVEEGDPICAYFDDT-------LNKTKIKT 873 Rpb2 FEKPQRTNTLRMKHGTYDKLDDDGLIAPGVRVSGEDVIIGKTTPISPDEEELGQRTAYHS 933 *** *** * * * * * A135 YHSSEPAYIEEVNLIGDESNKFQE---LQTVSIKYRIRRTPQIGDKFSSRHGQKGVCSRK 930 Rpb2 KRDASTPLRSTENGIVDQVLVTTNQDGLKFVKVRVRTTKIPQIGDKFASRHGQKGTIGIT 993 * * * * * * ******* *******

Functional architecture of RNA polymerase I Page 6 A135 WPTIDMPFSETGIQPDIIINPHAFPSRMTIGMFVESLAGKAGALHGIAQDSTPWIFNEDD 990 Rpb2 YRREDMPFTAEGIVPDLIINPHAIPSRMTVAHLIECLLSKVAALSGNEGDASPFT----D 1049 **** ** ** ****** ***** * * * ** * * * * A135 TPADYFGEQLAKAGYNYHGNEPMYSGATGEELRADIYVGVVYYQRLRHMVNDKFQVRSTG 1050 Rpb2 ITVEGISKLLREHGYQSRGFEVMYNGHTGKKLMAQIFFGPTYYQRLRHMVDDKIHARARG 1109 * ** * * ** * ** * * * * ********* ** * * A135 PVNSLTMQPVKGRKRHGGIRVGEMERDALIGHGTSFLLQDRLLNSSDYTQASVCRECGSI 1110 Rpb2 PMQVLTRQPVEGRSRDGGLRFGEMERDCMIAHGAASFLKERLMEASDAFRVHICGICGLM 1169 * ** *** ** * ** * ****** * ** * ** ** * ** A135 LTTQQSVPRIGSISTVCCRRCSMRFEDAKKLLTKSEDGEKIFIDDSQIWEDGQGNKFVGG 1170 Rpb2 TVIAKLN-----HNQFECKGCDN------------------------------------K 1188 * * A135 NETTTVAIPFVLKYLDSELSAMGIRLRYNVEPK--- 1203 Rpb2 IDIYQIHIPYAAKLLFQELMAMNITPRLYTDRSRDF 1224 ** * * ** ** * *

Functional architecture of RNA polymerase I Page 7 AC40-Rpb3 edited by hand according to 3D structure, EM density and secondary structure prediction AC40 MSNIVGIEYNRVTNTTSTDFPGFSKDAENEWNVEKFKKDFEVNISSLDAREANFDLINID 60 Rpb3 ----------------------------------MSEEGPQVKIREASKDNVDFILSNVD 26 * * * * * * AC40 TSIANAFRRIMISEVPSVAAEYVYFFNNTSVIQDEVLAHRIGLVPLK-VDPDMLTWVDSN 119 Rpb3 LAMANSLRRVMIAEIPTLAIDSVEVETNTTVLADEFIAHRLGLIPLQSMDIEQLEYSRDC 86 ** ** ** * * * * ** * ** *** ** ** * * AC40 LPDDEKFTDENTIVLSLNVKCTRNPDAPKGSTDPKELYNNAHVYARDLKFEPQGRQSTTF 179 Rpb3 FCED--HCDKCSVVLTLQAFGESE--------------STTNVYSKDLVIVSNLMGRNIG 130 * * ** * ** ** AC40 ADCPVVPADPDILLAKLRPGQEISLKAHCILGIGGDHAKFSPVSTASYRLLPQINILQPI 239 Rpb3 HPIIQDKEGNGVLICKLRKGQELKLTCVAKKGIAKEHAKWGPAAAIEFEYDPWNKLKH-- 188 * *** *** * ** *** * * AC40 KGESARRFQKCFPPGVIGIDEGSDEAYVKDARKDTVSREVLRYEEFADK---VKLGRVRN 296 Rpb3 ----------------------TDYWYEQDSAKEWPQSKNCEYEDPPNEGDPFDYKAQAD 226 * * * * ** AC40 HFIFNVESAGAMTPEEIFFKSVRILKNKAEYLKNCPITQ--------------------- 335 Rpb3 TFYMNVESVGSIPVDQVVVRGIDTLQKKVASIL-LALTQMDQDKVNFASGDNNTASNMLG 282 * **** * * * ** AC40 --------------------------------- 356 Rpb3 SNEDVMMTGAEQDPYSNASQMGNTGSGGYDNAW 318

Functional architecture of RNA polymerase I Page 8 AC19-Rpb11 edited by hand according to 3D structure, EM density and secondary structure prediction AC19 MTEDIEQKKTATEVTPQEPKHIQEEEEQDVDMTGDEEQEEEPDREKIKLLTQATSEDGTS 60 Rpb11 ------------------------------MNAPDRFELFLLGEGESKLKIDPDTKAPNA 30 * ** AC19 ASFQIVEEDHTLGNALRYVIMKNPDVEFCGYSIPHPSENLLNIRIQTYGETTAVDALQKG 120 Rpb11 VVITFEKEDHTLGNLIRAELLNDRKVLFAAYKVEHPFFARFKLRIQTTEGYDPKDALKNA 90 ******* * * * * ** **** *** AC19 LKDLMDLCDVVESKFTEKIKSM-------- 142 Rpb11 CNSIINKLGALKTNFETEWNLQTLAADDAF 120 *

Functional architecture of RNA polymerase I Page 9 A12.2-Rpb9 edited by hand according to 3D structure, EM density and secondary structure prediction A12.2 MSVVGSLIFCLDCGDLLENPNAVLG---SNVECSQCKAIYPKSQFSNLKVVTTTADDAFPSSLRAKKSVVKTSL 71 Rpb9 ---MTTFRFCRDCNNMLY-PREDKENNRLLFECRTCSYVEEAGS----------PLVYRHELITNIGETAGVVQ 60 ** ** * * * ** * A12.2 KKNELKDGATIKEKCPQCGNEEMNYHTLQLRSADEGATVFYTCTSCGYKFRTNN-------- 125 Rpb9 DIGSDPTLPRSDRECPKCHSRENVFFQSQQRRKDTSMVLFFVCLSCSHIFTSDQKNKRTQFS 122 ** * * * * * * * ** * A12.2 C-terminus -----RAKKSVVKTSLKKNE---LKDGATIKEKCPQCGNEEMNYHTLQLRSADEGATVFY 52 TFIIS 3rd domain PAPLKQKIEEIAKQNLYNAQGATIERSVTDRFTCGKCKEKKVSYYQLQTRSADEPLTTFC 60 * * * * * * ** ***** * * A12.2 C-terminus TCTSCGYKFRTNN 65 TFIIS 3rd domain TCEACGNRWKFS- 72 ** **

Functional architecture of RNA polymerase I Page 10 Figure S2. Electron density for A14/43 (A) Initial unbiased electron density map calculated from observed amplitudes and phases derived from single anomalous diffraction (blue, contoured at 1.0σ). The final model is superimposed. (B) Anomalous difference Fourier map calculated with phases from the final model, revealing the selenium atoms (red, contoured at 4.0σ). The backbone of the final model is shown, selenomethionine side chains are depicted. (C) Final model with final 2Fo-Fc map superimposed (blue, contoured at 1.0σ).

Functional architecture of RNA polymerase I Page 11 Figure S3. Fit of yeast Rpb4/7 to part of the Pol I cryo-em density, obtained by superposition of the tip domain with the tip domain of A43. Deleted: 3

Functional architecture of RNA polymerase I Page 12 Figure S4. Comparison of crystal structures of A14/43 (this work) and its counterparts in other RNA polymerases (A) Primary and secondary structure. Structure-based alignments of amino acid sequences of S. cerevisiae A43 (top) and A14 (bottom) with their counterparts in Pol II (Rpb7 and Rpb4), Pol III (C25 and C17) and an archeal RNA polymerase (M. jannaschii RpoE and RpoF). Secondary structure elements are shown above the sequences (broad lines, α helices; arrows, β strands; lines, loops; dashed lines, disordered regions). Conserved residues are highlighted according to decreasing conservation from green, through orange, to yellow. Cleavage sites revealed by limited proteolysis are indicated with arrows. The invariant proline residue that is predicted to contribute to the A43-Rpb6 interface is indicated with a black square. Residues involved in A43-Rrn3 interaction (Peyroche et al., 2000) are indicated with red squares. Residues not present in the crystallized variant are underlined. (B) Structural comparison of yeast A14/43 (this study, upper left), Rpb4/7 (Armache et al., 2005) (upper right), C17/25 (Jasiak et al., 2006) (lower left) and archaeal RpoE/F (Todone et al., 2001) (lower right). A43, Rpb7, C25 and RpoE are in blue. A14, Rpb4, C17 and RpoF are in red; the HRDC domains are in light red. Disordered regions in the A14/43 structure include the A43 N-terminus (residues M1-H20), the A43 tip loop (residues S96-T111), the A43 loop C1-C2 (residues V173- F209), the A43 C-terminus (residues S251-D326), the A14 N-terminus (residues M1- T15), the A14 loop H1-H2 (residues S53-N77) and the A14 C-terminus (residues A102- E137).

Functional architecture of RNA polymerase I Page 13

Functional architecture of RNA polymerase I Page 14 Figure S5. Distribution of crystallographic B-factors in the A14/43 structure The graph shows the distribution of crystallographic B-factors according to the residue number in A43 (A) and A14 (B). The three complexes in the asymmetric unit are colored in red (chain A and chain B), blue (chain C and chain D) and green (chain E and chain F).

Functional architecture of RNA polymerase I Page 15 Figure S6. Structural similarity between A49/34.5 and TFIIF RAP74/30 (A) Sequence alignments of amino acid sequences of S. cerevisiae A49 (top) and A34.5 (bottom) with their putative counterparts in H. sapiens TFIIF (RAP74 and RAP30, respectively). Sequence similarity is only observed in the N-terminal part of both proteins (residues 1-166 in RAP74 and residues 1-118 in RAP30). Secondary structure elements are shown above the sequences (broad lines, α-helices; arrows, β-strands; lines, loops). Conserved residues are highlighted according to decreasing conservation from green, through orange, to yellow. Residues involved in a conserved core interaction are marked with a C below the sequence, while charged residues forming a salt bridge are depicted in blue and red, respectively. Secondary structure elements are depicted above the RAP74/30 sequences, according to structural information (Gaiser et al., 2000). For clarity, the symbols a/b are used in RAP74, α/β in RAP30. For A49 and A34.5, predicted secondary structure elements are depicted in dark green (aligned by HHpred), light green (predicted to be present by secondary structure propensity) and grey (not predicted to be present). (B) Structure of the TFIIF RAP74/30 interaction domain (Gaiser et al., 2000). RAP74 residues 2-172 and RAP30 residues 2-119 form a triple barrel β-structure, which is likely to be conserved in A49/34.5. Secondary structure elements are colored according to (A). Residues involved in conserved hydrophobic core interactions are shown as spheres and colored according to their atom types. Residues involved in a conserved salt bridge are shown as spheres and colored in blue (K22, RAP30) and red (E115, RAP30).

Functional architecture of RNA polymerase I Page 16

Functional architecture of RNA polymerase I Page 17 Supplemental References Armache, K.-J., Mitterweger, S., Meinhart, A., and Cramer, P. (2005). Structures of complete RNA polymerase II and its subcomplex Rpb4/7. J Biol Chem 280, 7131-7134. Gaiser, F., Tan, S., and Richmond, T. J. (2000). Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 A resolution. J Mol Biol 302, 1119-1127. Jasiak, A. J., Armache, K. J., Martens, B., Jansen, R. P., and Cramer, P. (2006). Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model. Mol Cell 23, 71-81. Peyroche, G., Milkereit, P., Bischler, N., Tschochner, H., Schultz, P., Sentenac, A., Carles, C., and Riva, M. (2000). The recruitment of RNA polymerase I on rdna is mediated by the interaction of the A43 subunit with Rrn3. EMBO J 19, 5473-5482. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensibility of progressive multiple sequence alignment through sequence weighing, positions-specific gap penalties and weight matrix choice. Nuc Acid Res 22, 4673-4680. Todone, F., Brick, P., Werner, F., Weinzierl, R. O., and Onesti, S. (2001). Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Mol Cell 8, 1137-1143.