The Rise of Cloud Computing Systems
|
|
|
- Whitney Owen
- 10 years ago
- Views:
Transcription
1 The Rise of Cloud Computing Systems Jeff Dean Google, Inc. (Describing the work of thousands of people!) 1
2 Utility computing: Corbató & Vyssotsky, Introduction and Overview of the Multics system, AFIPS Conference, Picture credit: 2
3 3
4 4
5 5
6 How Did We Get to Where We Are? Prior to mid 1990s: Distributed systems emphasized: modest-scale systems in a single site (Grapevine, many others), as well as widely distributed, decentralized systems (DNS) 6
7 Adjacent fields High Performance Computing: Heavy focus on performance, but not on fault-tolerance Transactional processing systems/database systems: Strong emphasis on structured data, consistency Limited focus on very large scale, especially at low cost 7
8 Caveats Very broad set of areas: Can t possible cover all relevant work Focus on few important areas, systems, and trends Will describe context behind systems with which I am most familiar 8
9 What caused the need for such large systems? Very resource-intensive interactive services like search were key drivers Growth of web from millions to hundreds of billions of pages and need to index it all, and search it millions and then billions of times per day with sub-second latencies 9
10 A Case for Networks of Workstations: NOW, Anderson, Culler, & Patterson. IEEE Micro, 1995 Cluster-Based Scalable Network Services, Fox, Gribble, Chawathe, Brewer, & Gauthier, SP Picture credit: and 10
11 My Vantage Point Joined DEC WRL in 1996 around launch of 11 Picture credit:
12 My vantage point, continued: Google, circa 1999 Early Google tenet: Commodity PCs give high perf/$ Commodity components even better! Aside: use of cork can land your computing platform in the Smithsonian 12 Picture credit:
13 At Modest Scale: Treat as Separate Machines for m in a7 a8 a9 a10 a12 a13 a14 a16 a17 a18 a19 a20 a21 a22 a23 a24; do ssh -n $m "cd /root/google; for j in "`seq $i $[$i+3]`'; do j2=`printf %02d $j`; f=`echo '$files' sed s/bucket00/bucket$j2/g`; fgrun bin/buildindex $f; done' & i=$[$i+4]; done What happened to poor old a11 and a15? 13
14 At Larger Scale: Becomes Untenable 14
15 Typical first year for a new Google cluster (circa 2006) ~1 network rewiring (rolling ~5% of machines down over 2-day span) ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back) ~5 racks go wonky (40-80 machines see 50% packetloss) ~8 network maintenances (4 might cause ~30-min random connectivity losses) ~12 router reloads (takes out DNS and external vips for a couple minutes) ~3 router failures (have to immediately pull traffic for an hour) ~dozens of minor 30-second blips for DNS ~1000 individual machine failures ~thousands of hard drive failures slow disks, bad memory, misconfigured machines, flaky machines, etc. Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc. Reliability Must Come From Software 15
16 A Series of Steps, All With Common Theme: Provide Higher-Level View Than Large Collection of Individual Machines Self-manage and self-repair as much as possible... 16
17 First Step: Abstract Away Individual Disks Distributed file system... 17
18 Long History of Distributed File Systems Xerox Alto (1973), NFS (1984), many others: File servers, distributed clients AFS (Howard et al. 88): 1000s of clients, whole file caching, weakly consistent xfs (Anderson et al. 95): completely decentralized Petal (Lee & Thekkath, 95), Frangipani (Thekkath et al., 96): distributed virtual disks, plus file system on top of Petal 18
19 Google File System (Ghemawat, Gobioff, & Leung, SP 03) Centralized master manages metadata 1000s of clients read/write directly to/from 1000s of disk serving processes Files chunks of 64 MB, each replicated on 3 different servers High fault tolerance + automatic recovery, high availability GFS file system clients Metadata ops Huge I/O bandwidth Master Distributed file system... 19
20 Disks in datacenter basically self-managing 20
21 Successful design pattern: Centralized master for metadata/control, with thousands of workers and thousands of clients 21
22 Once you can store data, then you want to be able to process it efficiently Large datasets implies need for highly parallel computation One important building block: Scheduling jobs with 100s or 1000s of tasks 22
23 Multiple Approaches Virtual machines Containers : akin to a VM, but at the process level, not whole 23
24 Virtual Machines Early work done by MIT and IBM in 1960s Give separate users their own executing copy of Reinvigorated by Bugnion, Rosenblum et al. in late 1990s simplify effective utilization of multiprocessor machines allows consolidation of servers Raw VMs: key abstraction now offered by cloud service providers 24
25 Cluster Scheduling Systems Goal: Place containers or VMs on physical machines handle resource requirements, constraints run multiple tasks per machine for efficiency handle machine failures Similar problem to earlier HPC scheduling and distributed workstation cluster scheduling systems e.g. Condor [Litzkow, Livny & Mutkow, 88] 25
26 Many Such Systems Proprietary: Borg [Google: Verma et al., published 2015, in use since 2004] (unpublished predecessor by Liang, Dean, Sercinoglu, et al. in use since 2002) Autopilot [Microsoft: Isaard et al., 2007] Tupperware [Facebook, Narayanan slide deck, 2014] Fuxi [Alibaba: Zhang et al., 2014] Open source: Hadoop Yarn Apache Mesos [Hindman et al., 2011] Apache Aurora [2014] Kubernetes [2014] 26
27 Tension: Multiplexing resources & performance isolation Sharing machines across completely different jobs and tenants necessary for effective utilization But leads to unpredictable performance blips Isolating while still sharing Memory ballooning [Waldspurger, DI 2002] Linux containers... Controlling tail latency very important [Dean & Barroso, 2013] Especially in large fan-out systems 27
28 Higher-Level Computation Frameworks Give programmer a high-level abstraction for computation Map computation automatically onto a large cluster of machines 28
29 MapReduce [Dean & Ghemawat, DI 2004] simple Map and Reduce abstraction hides messy details of locality, scheduling, fault tolerance, dealing with slow machines, etc. in its implementation makes it very easy to do very wide variety of large-scale computations Hadoop - open source version of MapReduce 29
30 Succession of Higher-Level Computation Systems Dryad [Isard et al., 2007] - general dataflow graphs Sawzall [Pike et al. 2005], PIG [Olston et al. 2008], DryadLinq [Yu et al. 2008], Flume [Chambers et al. 2010] higher-level languages/systems using MapReduce/Hadoop/Dryad as underlying execution engine Pregel [Malewicz et al., 2010] - graph computations Spark [Zaharia et al., 2010] - in-memory working sets... 30
31 Many Applications Need To Update Structured State With Low-Latency and Large Scale TBs to 100s of PBs of data keys 106, 108, or more reqs/sec Desires: Spread across many machines, grow and shrink automatically Handle machine failures quickly and transparently Often prefer low latency and high performance over consistency 31
32 Distributed Semi-Structured Storage Systems BigTable [Google: Chang et al. DI 2006] higher-level storage system built on top of distributed file system (GFS) data model: rows, columns, timestamps no cross-row consistency guarantees state managed in small pieces (tablets) recovery fast (10s or 100s of machines each recover state of one tablet) Dynamo [Amazon: DeCandia et al., 2007] versioning + app-assisted conflict resolution Spanner [Google: Corbett et al., 2012] wide-area distribution, supports both strong and weak consistency 32
33 Successful design pattern: Give each machine hundreds or thousands of units of work or state Helps with: dynamic capacity sizing load balancing faster failure recovery 33
34 The Public Cloud Making these systems available to developers everywhere 34
35 Cloud Service Providers Make computing resources available on demand through a growing set of simple APIs leverages economies of scale of large datacenters for anyone with a credit card at a large scale, if desired 35
36 Cloud Service Providers Amazon: Queue API in 2004, EC2 launched in 2006 Google: AppEngine in 2005, other services starting in 2008 Microsoft: Azure launched in Millions of customers using these services Shift towards these services is accelerating Comprehensiveness of APIs increasing over time 36
37 So where are we? 37
38 Amazon Web Services, Google Cloud Platform, Microsoft Azure Powerful web services BigTable, Dynamo, Spanner MapReduce, Dryad, Pregel,... Cluster Scheduling System Distributed file system... 38
39 What s next? Abstractions for interactive services with 100s of subsystems less configuration, much more automated operation, self-tuning, Systems to handle greater heterogeneity e.g. automatically split computation between mobile device and datacenters 39
40 Thanks for listening! Thanks to Ken Birman, Eric Brewer, Peter Denning, Sanjay Ghemawat, and Andrew Herbert for comments on this presentation 40
Data Centers and Cloud Computing. Data Centers
Data Centers and Cloud Computing Slides courtesy of Tim Wood 1 Data Centers Large server and storage farms 1000s of servers Many TBs or PBs of data Used by Enterprises for server applications Internet
Distributed File Systems
Distributed File Systems Mauro Fruet University of Trento - Italy 2011/12/19 Mauro Fruet (UniTN) Distributed File Systems 2011/12/19 1 / 39 Outline 1 Distributed File Systems 2 The Google File System (GFS)
The Google File System
The Google File System By Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung (Presented at SOSP 2003) Introduction Google search engine. Applications process lots of data. Need good file system. Solution:
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms
Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
What Is Datacenter (Warehouse) Computing. Distributed and Parallel Technology. Datacenter Computing Application Programming
Distributed and Parallel Technology Datacenter and Warehouse Computing Hans-Wolfgang Loidl School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh 0 Based on earlier versions by
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
6.S897 Large-Scale Systems
6.S897 Large-Scale Systems Instructor: Matei Zaharia" Fall 2015, TR 2:30-4, 34-301 bit.ly/6-s897 Outline What this course is about" " Logistics" " Datacenter environment What this Course is About Large-scale
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 14 Big Data Management IV: Big-data Infrastructures (Background, IO, From NFS to HFDS) Chapter 14-15: Abideboul
Improving MapReduce Performance in Heterogeneous Environments
UC Berkeley Improving MapReduce Performance in Heterogeneous Environments Matei Zaharia, Andy Konwinski, Anthony Joseph, Randy Katz, Ion Stoica University of California at Berkeley Motivation 1. MapReduce
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
Data Centers. Mendel Rosenblum. CS142 Lecture Notes - Data centers
Data Centers Mendel Rosenblum Evolution of data centers 1960's, 1970's: a few very large time-shared computers 1980's, 1990's: heterogeneous collection of lots of smaller machines. Today and into the future:
Distributed File Systems
Distributed File Systems Paul Krzyzanowski Rutgers University October 28, 2012 1 Introduction The classic network file systems we examined, NFS, CIFS, AFS, Coda, were designed as client-server applications.
Data-Intensive Computing with Map-Reduce and Hadoop
Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan [email protected] Abstract Every day, we create 2.5 quintillion
Hadoop Distributed File System. T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela
Hadoop Distributed File System T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela Agenda Introduction Flesh and bones of HDFS Architecture Accessing data Data replication strategy Fault tolerance
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Lecture 5: GFS & HDFS! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 5: GFS & HDFS!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind
Cloud Computing using MapReduce, Hadoop, Spark
Cloud Computing using MapReduce, Hadoop, Spark Benjamin Hindman [email protected] Why this talk? At some point, you ll have enough data to run your parallel algorithms on multiple computers SPMD (e.g.,
What is Big Data? Concepts, Ideas and Principles. Hitesh Dharamdasani
What is Big Data? Concepts, Ideas and Principles Hitesh Dharamdasani # whoami Security Researcher, Malware Reversing Engineer, Developer GIT > George Mason > UC Berkeley > FireEye > On Stage Building Data-driven
Snapshots in Hadoop Distributed File System
Snapshots in Hadoop Distributed File System Sameer Agarwal UC Berkeley Dhruba Borthakur Facebook Inc. Ion Stoica UC Berkeley Abstract The ability to take snapshots is an essential functionality of any
Introduction to Cloud Computing
Discovery 2015: Cloud Computing Workshop June 20-24, 2011 Berkeley, CA Introduction to Cloud Computing Keith R. Jackson Lawrence Berkeley National Lab What is it? NIST Definition Cloud computing is a model
Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation
Facebook: Cassandra Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/24 Outline 1 2 3 Smruti R. Sarangi Leader Election
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
A programming model in Cloud: MapReduce
A programming model in Cloud: MapReduce Programming model and implementation developed by Google for processing large data sets Users specify a map function to generate a set of intermediate key/value
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Assignment # 1 (Cloud Computing Security)
Assignment # 1 (Cloud Computing Security) Group Members: Abdullah Abid Zeeshan Qaiser M. Umar Hayat Table of Contents Windows Azure Introduction... 4 Windows Azure Services... 4 1. Compute... 4 a) Virtual
NoSQL Data Base Basics
NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS
Big Table A Distributed Storage System For Data
Big Table A Distributed Storage System For Data OSDI 2006 Fay Chang, Jeffrey Dean, Sanjay Ghemawat et.al. Presented by Rahul Malviya Why BigTable? Lots of (semi-)structured data at Google - - URLs: Contents,
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 15
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 15 Big Data Management V (Big-data Analytics / Map-Reduce) Chapter 16 and 19: Abideboul et. Al. Demetris
Challenges for Data Driven Systems
Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Load Rebalancing for File System in Public Cloud Roopa R.L 1, Jyothi Patil 2
Load Rebalancing for File System in Public Cloud Roopa R.L 1, Jyothi Patil 2 1 PDA College of Engineering, Gulbarga, Karnataka, India [email protected] 2 PDA College of Engineering, Gulbarga, Karnataka,
Application Development. A Paradigm Shift
Application Development for the Cloud: A Paradigm Shift Ramesh Rangachar Intelsat t 2012 by Intelsat. t Published by The Aerospace Corporation with permission. New 2007 Template - 1 Motivation for the
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
How To Build Cloud Storage On Google.Com
Building Scalable Cloud Storage Alex Kesselman [email protected] Agenda Desired System Characteristics Scalability Challenges Google Cloud Storage What does a customer want from a cloud service? Reliability
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
Designs, Lessons and Advice from Building Large Distributed Systems. Jeff Dean Google Fellow [email protected]
Designs, Lessons and Advice from Building Large Distributed Systems Jeff Dean Google Fellow [email protected] Computing shifting to really small and really big devices UI-centric devices Large consolidated
Managing large clusters resources
Managing large clusters resources ID2210 Gautier Berthou (SICS) Big Processing with No Locality Job( /crawler/bot/jd.io/1 ) submi t Workflow Manager Compute Grid Node Job This doesn t scale. Bandwidth
Big Systems, Big Data
Big Systems, Big Data When considering Big Distributed Systems, it can be noted that a major concern is dealing with data, and in particular, Big Data Have general data issues (such as latency, availability,
Seminar Presentation for ECE 658 Instructed by: Prof.Anura Jayasumana Distributed File Systems
Seminar Presentation for ECE 658 Instructed by: Prof.Anura Jayasumana Distributed File Systems Prabhakaran Murugesan Outline File Transfer Protocol (FTP) Network File System (NFS) Andrew File System (AFS)
Big data management with IBM General Parallel File System
Big data management with IBM General Parallel File System Optimize storage management and boost your return on investment Highlights Handles the explosive growth of structured and unstructured data Offers
Big Data and Hadoop with components like Flume, Pig, Hive and Jaql
Abstract- Today data is increasing in volume, variety and velocity. To manage this data, we have to use databases with massively parallel software running on tens, hundreds, or more than thousands of servers.
Future Prospects of Scalable Cloud Computing
Future Prospects of Scalable Cloud Computing Keijo Heljanko Department of Information and Computer Science School of Science Aalto University [email protected] 7.3-2012 1/17 Future Cloud Topics Beyond
Comparative analysis of Google File System and Hadoop Distributed File System
Comparative analysis of Google File System and Hadoop Distributed File System R.Vijayakumari, R.Kirankumar, K.Gangadhara Rao Dept. of Computer Science, Krishna University, Machilipatnam, India, [email protected]
Parallel Processing of cluster by Map Reduce
Parallel Processing of cluster by Map Reduce Abstract Madhavi Vaidya, Department of Computer Science Vivekanand College, Chembur, Mumbai [email protected] MapReduce is a parallel programming model
Introduction to Cloud Computing
Introduction to Cloud Computing Cloud Computing I (intro) 15 319, spring 2010 2 nd Lecture, Jan 14 th Majd F. Sakr Lecture Motivation General overview on cloud computing What is cloud computing Services
Dell In-Memory Appliance for Cloudera Enterprise
Dell In-Memory Appliance for Cloudera Enterprise Hadoop Overview, Customer Evolution and Dell In-Memory Product Details Author: Armando Acosta Hadoop Product Manager/Subject Matter Expert [email protected]/
Distributed Systems. Tutorial 12 Cassandra
Distributed Systems Tutorial 12 Cassandra written by Alex Libov Based on FOSDEM 2010 presentation winter semester, 2013-2014 Cassandra In Greek mythology, Cassandra had the power of prophecy and the curse
From GWS to MapReduce: Google s Cloud Technology in the Early Days
Large-Scale Distributed Systems From GWS to MapReduce: Google s Cloud Technology in the Early Days Part II: MapReduce in a Datacenter COMP6511A Spring 2014 HKUST Lin Gu [email protected] MapReduce/Hadoop
Accelerating and Simplifying Apache
Accelerating and Simplifying Apache Hadoop with Panasas ActiveStor White paper NOvember 2012 1.888.PANASAS www.panasas.com Executive Overview The technology requirements for big data vary significantly
Object Storage: A Growing Opportunity for Service Providers. White Paper. Prepared for: 2012 Neovise, LLC. All Rights Reserved.
Object Storage: A Growing Opportunity for Service Providers Prepared for: White Paper 2012 Neovise, LLC. All Rights Reserved. Introduction For service providers, the rise of cloud computing is both a threat
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Cloud Computing. Adam Barker
Cloud Computing Adam Barker 1 Overview Introduction to Cloud computing Enabling technologies Different types of cloud: IaaS, PaaS and SaaS Cloud terminology Interacting with a cloud: management consoles
Parallel Programming Map-Reduce. Needless to Say, We Need Machine Learning for Big Data
Case Study 2: Document Retrieval Parallel Programming Map-Reduce Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 31 st, 2013 Carlos Guestrin
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS Dr. Ananthi Sheshasayee 1, J V N Lakshmi 2 1 Head Department of Computer Science & Research, Quaid-E-Millath Govt College for Women, Chennai, (India)
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Big Data. White Paper. Big Data Executive Overview WP-BD-10312014-01. Jafar Shunnar & Dan Raver. Page 1 Last Updated 11-10-2014
White Paper Big Data Executive Overview WP-BD-10312014-01 By Jafar Shunnar & Dan Raver Page 1 Last Updated 11-10-2014 Table of Contents Section 01 Big Data Facts Page 3-4 Section 02 What is Big Data? Page
Design and Evolution of the Apache Hadoop File System(HDFS)
Design and Evolution of the Apache Hadoop File System(HDFS) Dhruba Borthakur Engineer@Facebook Committer@Apache HDFS SDC, Sept 19 2011 Outline Introduction Yet another file-system, why? Goals of Hadoop
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Cloud Computing. Lecture 24 Cloud Platform Comparison 2014-2015
Cloud Computing Lecture 24 Cloud Platform Comparison 2014-2015 1 Up until now Introduction, Definition of Cloud Computing Pre-Cloud Large Scale Computing: Grid Computing Content Distribution Networks Cycle-Sharing
Apache Hadoop FileSystem and its Usage in Facebook
Apache Hadoop FileSystem and its Usage in Facebook Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System [email protected] Presented at Indian Institute of Technology November, 2010 http://www.facebook.com/hadoopfs
International Journal of Advance Research in Computer Science and Management Studies
Volume 2, Issue 8, August 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
Fault Tolerance in Hadoop for Work Migration
1 Fault Tolerance in Hadoop for Work Migration Shivaraman Janakiraman Indiana University Bloomington ABSTRACT Hadoop is a framework that runs applications on large clusters which are built on numerous
Big Data Processing in the Cloud. Shadi Ibrahim Inria, Rennes - Bretagne Atlantique Research Center
Big Data Processing in the Cloud Shadi Ibrahim Inria, Rennes - Bretagne Atlantique Research Center Data is ONLY as useful as the decisions it enables 2 Data is ONLY as useful as the decisions it enables
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
The Google File System
The Google File System Motivations of NFS NFS (Network File System) Allow to access files in other systems as local files Actually a network protocol (initially only one server) Simple and fast server
Zadara Storage Cloud A whitepaper. @ZadaraStorage
Zadara Storage Cloud A whitepaper @ZadaraStorage Zadara delivers two solutions to its customers: On- premises storage arrays Storage as a service from 31 locations globally (and counting) Some Zadara customers
Distributed File Systems
Distributed File Systems Alemnew Sheferaw Asrese University of Trento - Italy December 12, 2012 Acknowledgement: Mauro Fruet Alemnew S. Asrese (UniTN) Distributed File Systems 2012/12/12 1 / 55 Outline
Massive Data Storage
Massive Data Storage Storage on the "Cloud" and the Google File System paper by: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung presentation by: Joshua Michalczak COP 4810 - Topics in Computer Science
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing Sven Groot 1, Kazuo Goda 1, and Masaru Kitsuregawa 1 University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Abstract.
Efficient Metadata Management for Cloud Computing applications
Efficient Metadata Management for Cloud Computing applications Abhishek Verma Shivaram Venkataraman Matthew Caesar Roy Campbell {verma7, venkata4, caesar, rhc} @illinois.edu University of Illinois at Urbana-Champaign
Alternatives to HIVE SQL in Hadoop File Structure
Alternatives to HIVE SQL in Hadoop File Structure Ms. Arpana Chaturvedi, Ms. Poonam Verma ABSTRACT Trends face ups and lows.in the present scenario the social networking sites have been in the vogue. The
Hadoop: Embracing future hardware
Hadoop: Embracing future hardware Suresh Srinivas @suresh_m_s Page 1 About Me Architect & Founder at Hortonworks Long time Apache Hadoop committer and PMC member Designed and developed many key Hadoop
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed
Google File System. Web and scalability
Google File System Web and scalability The web: - How big is the Web right now? No one knows. - Number of pages that are crawled: o 100,000 pages in 1994 o 8 million pages in 2005 - Crawlable pages might
CS246: Mining Massive Datasets Jure Leskovec, Stanford University. http://cs246.stanford.edu
CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2 CPU Memory Machine Learning, Statistics Classical Data Mining Disk 3 20+ billion web pages x 20KB = 400+ TB
MASSIVE DATA PROCESSING (THE GOOGLE WAY ) 27/04/2015. Fundamentals of Distributed Systems. Inside Google circa 2015
7/04/05 Fundamentals of Distributed Systems CC5- PROCESAMIENTO MASIVO DE DATOS OTOÑO 05 Lecture 4: DFS & MapReduce I Aidan Hogan [email protected] Inside Google circa 997/98 MASSIVE DATA PROCESSING (THE
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction
Systems Engineering II. Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de
Systems Engineering II Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de About me! Since May 2015 2015 2012 Research Group Leader cfaed, TU Dresden PhD Student MPI- SWS Research Intern Microsoft
Introduction to Hadoop
Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction
Highly available, scalable and secure data with Cassandra and DataStax Enterprise. GOTO Berlin 27 th February 2014
Highly available, scalable and secure data with Cassandra and DataStax Enterprise GOTO Berlin 27 th February 2014 About Us Steve van den Berg Johnny Miller Solutions Architect Regional Director Western
Resource Scalability for Efficient Parallel Processing in Cloud
Resource Scalability for Efficient Parallel Processing in Cloud ABSTRACT Govinda.K #1, Abirami.M #2, Divya Mercy Silva.J #3 #1 SCSE, VIT University #2 SITE, VIT University #3 SITE, VIT University In the
Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN
Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current
EXPERIMENTATION. HARRISON CARRANZA School of Computer Science and Mathematics
BIG DATA WITH HADOOP EXPERIMENTATION HARRISON CARRANZA Marist College APARICIO CARRANZA NYC College of Technology CUNY ECC Conference 2016 Poughkeepsie, NY, June 12-14, 2016 Marist College AGENDA Contents
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Hadoop Distributed File System (HDFS) Overview
2012 coreservlets.com and Dima May Hadoop Distributed File System (HDFS) Overview Originals of slides and source code for examples: http://www.coreservlets.com/hadoop-tutorial/ Also see the customized
BIG DATA USING HADOOP
+ Breakaway Session By Johnson Iyilade, Ph.D. University of Saskatchewan, Canada 23-July, 2015 BIG DATA USING HADOOP + Outline n Framing the Problem Hadoop Solves n Meet Hadoop n Storage with HDFS n Data
Introduction to Cloud : Cloud and Cloud Storage. Lecture 2. Dr. Dalit Naor IBM Haifa Research Storage Systems. Dalit Naor, IBM Haifa Research
Introduction to Cloud : Cloud and Cloud Storage Lecture 2 Dr. Dalit Naor IBM Haifa Research Storage Systems 1 Advanced Topics in Storage Systems for Big Data - Spring 2014, Tel-Aviv University http://www.eng.tau.ac.il/semcom
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
