Performance Investigations. Hannes Tschofenig, Manuel Pégourié-Gonnard 25 th March 2015
|
|
|
- Martha Bruce
- 10 years ago
- Views:
Transcription
1 Performance Investigations Hannes Tschofenig, Manuel Pégourié-Gonnard 25 th March
2 Motivation In <draft-ietf-lwig-tls-minimal> we tried to provide guidance for the use of DTLS (TLS) when used in IoT deployments and included performance data to help understand the design tradeoffs. Later, work in the IETF DICE was started with the profile draft, which offers detailed guidance concerning credential types, communication patterns. It also indicates which extensions to use or not to use. Goal of <draft-ietf-lwig-tls-minimal> is to offer performance data based on the recommendations in the profile draft. This presentation is about the current status of gathering performance data for later inclusion into the <draft-ietf-lwig-tls-minimal> document. 2
3 Performance Data This is the data we want: Flash code size Message size / Communication Overhead CPU performance Energy consumption RAM usage Also allows us to judge the improvements of various extensions and gives engineers a rough idea what to expect when planning to use DTLS/TLS in an IoT product. <draft-ietf-lwig-tls-minimal-01> offers preliminary data about Code size of various basic building blocks (data from one stack only) Memory (RAM/flash) (pre-shared secret credential only) Communication overhead (high level only) 3
4 Overview Goal of the authors: Determine performance of asymmetric cryptography on ARM-based processors. Next slides explains Assumptions for the measurements, ARM processors used for the measurements, Development boards used, Actual performance data, and Comparison with other algorithms. 4
5 Assumptions Main focus of the measurements so far was on raw crypto (and not on protocol exchanges) ECC rather than RSA Different ECC curves Run-time performance (not energy consumption, RAM usage, code size) No hardware acceleration was used. Used open source software; code based on PolarSSL/mbed TLS stack. No hardware-based random number generator in the development platform was used à Not fit for real deployment. 5
6 ARM Cortex-M Processors Processors used in the performance tests Lowest cost Low power Lowest power Outstanding energy efficiency Performance efficiency Feature rich connectivity Digital Signal Control (DSC) Processor with DSP Accelerated SIMD Floating point (FP) Recently released; Best performance 6 Processors use the 32-bit RISC architecture
7 Prototyping Boards used in Performance Tests ST Nucleo F401RE (STM32F401RET6) ARM Cortex-M4 CPU with FPU at 84MHz 512KB Flash, 96KB SRAM ST Nucleo F103 (STM32F103RBT6) ARM Cortex-M4 CPU with FPU at 72MHz 128KB Flash, 20KB SRAM ST Nucleo L152RE (STM32L152RET6) ARM Cortex-M3 CPU at 32MHz 512 KBytes Flash, 80KB RAM ST Nucleo F091 (STM32F091RCT6) ARM Cortex-M0 CPU at 48MHz 256 KBytes Flash, 32KB RAM NXP LPC1768 ARM Cortex-M3 CPU at 96MHz 512KB Flash, 32KB RAM Freescale FRDM-KL25Z ARM Cortex-M0+ CPU at 48MHz 128KB Flash, 16KB RAM 7 LPC1768 ST Nucleo FRDM-KL25Z
8 ECC Curves NIST curves: secp521r1, secp384r1, secp256r1, secp224r1, secp192r1 Koblitz curves : secp256k1, secp224k1, secp192k1 Brainpool curves: brainpoolp512r1, brainpoolp384r1, brainpoolp256r1 Curve25519 (only preliminary results). Note that FIPS186-4 refers to secp192r1 as P-192, secp224r1 as P-224, secp256r1 as P-256, secp384r1 as P-384, and secp521r1 as P
9 Optimizations NIST Optimization Utilizes special structure of NIST chosen curves. Appendix 1 of Longer version in FIPS PUB 186-4: Relevant configuration parameter: POLARSSL_ECP_NIST_OPTIM Fixed Point Optimization: Pre-computes points Described in Relevant configuration parameter: POLARSSL_ECP_FIXED_POINT_OPTIM Window: Technique for more efficient exponentation Sliding window technique described in Relevant configuration parameter: POLARSSL_ECP_WINDOW_SIZE (min=2, max=7). 9
10 ECDSA, ECDHE, and ECDH Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve variant of the Digital Signature Algorithm (DSA) or, as it is sometimes called, the Digital Signature Standard (DSS). It is used in TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 ciphersuite recommended in CoAP (and consequently also in the DTLS profile draft). ECDSA, like DSA, has the property that poor randomness used during signature generation can compromise the long-term signing key. For this reason the deterministic variant of (EC)DSA (RFC 6979) is implemented, which uses the private key as a source or entropy to seed a PRNG. Note: None of the prototyping boards listed in the slide deck provide true random number generation. CoAP recommends this ciphersuite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 that makes use of the Ephemeral Elliptic Curve Diffie-Hellman (ECDHE). The Elliptic Curve Diffie-Hellman (ECDH) is only used for comparison purposes in this slide deck but not used in the recommended ciphersuites. 10
11 Key Length Tradeoff between security and performance. Values based on recommendations from RFC [I-D.ietf-uta-tls-bcp] recommends at least 112 bits symmetric keys. A 2013 ENISA report states that an 80bit symmetric key is sufficient for legacy applications but recommends 128 bits for new systems. Symmetric ECC DH/DSA/RSA
12 Observations: Performance Figures ECDSA signature operation is faster than ECDSA verify operation. Brainpool curves are slower than NIST curves because Brainpool curves use random primes. ECC key sizes above 256 bits are substantially slower than ECC curves with key size 192, 224, and 256. ECDH is only slightly faster than ECDHE (when fixed point optimization is enabled). CPU speed has a significant impact on the performance. The performance of symmetric key cryptography (keyed hash functions, encryption functions) is neglectable. 12
13 Observations: Optimizations NIST curve optimization provides substantial benefit for NIST secp*r1 curves. Fixed point optimization has a significant influence on the performance. There is a performance RAM usage tradeoff: increased performance comes at the expense of additional RAM usage. ECC library increases code size but also requires a fair amount of RAM for optimizations (for most curves). 13
14 14 ECC Performance of the Cortex M3/M4
15 Performance of various NIST/Koblitz ECC Curves NIST curves: secp521r1, secp384r1, secp256r1, secp224r1, secp192r1 Koblitz curves: secp256k1, secp224k1, secp192k1 15
16 Performance difference between signature vs. verify For comparison: secp192r1 (signature) needs 66msec. For comparison: secp256r1 (signature) needs 122msec. 16
17 Performance of Brainpool Curves For comparison: Secp256r1 (signature) needs 122msec. 17
18 Performance of Brainpool Curves For comparison: Secp256r1 (verify) needs 458msec. 18
19 Performance impact of the window parameter For comparison: secp521r1 (signature, W=7) needs 351msec. For comparison: secp192r1 (signature, W=7) needs 66msec. 19
20 The Performance Impact of the NIST Optimization secp192r1 (ECDHE): 5986 msec (F401RE, optimization disabled) vs. 638 msec (optimization enabled) 20
21 21 ECC Performance of the Cortex M0/M0+
22 ECDHE Performance of the KL25Z 22
23 ECDSA Performance of the KL25Z 23
24 24 + FP optimization enabled
25 25 + FP optimization enabled
26 26 + FP optimization enabled
27 27 CPU Speed Impact
28 Performance of ECDHE: L152RE vs. LPC1768 L152RE: Cortex-M3 with 32MHz LPC1768: Cortex-M3 with 96MHz 28 secp192r1 (ECDHE): 1155 msec (L152RE) vs. 229 msec (LPC1768) NIST optimization enabled. Fixed-point speed-up enabled.
29 Performance Comparison: Prototyping Boards ECDSA Performance (Signature Operation, w=7, NIST Optimization Enabled) Time (msec) secp192r1 secp224r1 secp256r1 secp384r1 secp521r LPC1768, 96 MHz, Cortex M3 L152RE, 32 MHz, Cortex M3 F103RB, 72 MHz, Cortex M4 F401RE, 84 MHz, Cortex M4 Prototyping Boards 29
30 Curve25519 (Warning: Preliminary Results) 30
31 FRDM-KL46Z (Cortex-M0+, 48 MHz) LPC1768 (Cortex-M3, 96 MHz) msec msec Curve25519-mbedtls Curve25519-donna P256-mbed ECDHE Notes: The Curve25519-mbedtls implementation uses a generic libary. Hence, the special properties of Curve25519 are not utilized. Curve25519 has very low RAM requirements (~1 Kbyte only). Curve25519-donna is based on the Google implementation. Improvements for M0/M0+ are likely since the code has not been tailored to the architecture. Question: 31 Is Curve25519 a way to get ECC on M0/M0+? msec 0 Curve25519-mbedtls Curve25519-donna P256-mbed ECDHE FRDM-K64F (Cortex-M4, 120 MHz) Curve25519-mbedtls Curve25519-donna P256-mbed ECDHE
32 The Power of Assembly Optimizations Example: micro-ecc library Written in C, with optional inline assembly for ARM and Thumb platforms. LPC1114 at 48MHz (ARM Cortex-M0) ECDH time (ms) secp192r1 secp256r1 LPC STM32F , ECDSA verify time (ms) secp192r1 Secp256r1 LPC STM32F Performance improvement between 200 and 300 % 32
33 33 RAM Usage
34 What was measured? Heap using a custom memory allocation handler (instead of malloc). Memory allocated on the stack was not measured (but it is negligible). Measurement was done on a Linux PC (rather than on the embedded device itself for convenience reasons). Two aspects investigated: Memory impact caused by different window parameter changes. Memory impact caused by FP performance optimization. 34
35 Heap Usage with Disabled FP Optimization w6 w= Bytes secp521r1 secp384r1 secp256r1 secp224r1 secp192r1 secp521r1 secp384r1 secp256r1 secp224r1 secp192r1 secp521r1 secp384r1 secp256r1 secp224r1 secp192r1 Sign Sign Sign Sign Sign Verify Verify Verify Verify Cryptographic Computations Verify ECDHE ECDHE ECDHE ECDHE ECDHE 35
36 Heap Usage with FP Optimization Enabled w=6 w= Bytes secp521r1 secp384r1 secp256r1 secp224r1 secp192r1 secp521r1 secp384r1 secp256r1 secp224r1 secp192r1 secp521r1 secp384r1 secp256r1 secp224r1 secp192r1 Sign Sign Sign Sign Sign Verify Verify Verify Verify Verify ECDHE ECDHE ECDHE ECDHE ECDHE 36 Cryptographic Operation
37 Heap Usage (Window Size 6) Enabled Optimization Disabled Optimization Bytes secp521r1 secp384r1 secp256r1 secp224r1 secp192r1 secp521r1 secp384r1 secp256r1 secp224r1 secp192r1 secp521r1 secp384r1 secp256r1 secp224r1 secp192r1 Sign Sign Sign Sign Sign Verify Verify Verify Verify Verify ECDHE ECDHE ECDHE ECDHE ECDHE Cryptographic Computations 37 Note: NIST optimization enabled in both cases since it does not have an impact on the heap usage.
38 Summary To enable certain optimizations sufficient RAM is needed. A tradeoff decision between RAM and speed. Heap Usage (secp256r1) Optimizations pays off This slide shows heap usage 5000 (NIST optimization 4000 enabled). Bytes Sign Verify ECDHE W=6, FP W=2, No FP
39 LPC1768 (secp256r1) msec Sign Verify ECDHE w=6, FP, NIST w=6, no FP, NIST w=2, no FP, NIST w=2, no FP, no NIST Using ~50 % more RAM increases the performance by a factor 8 or more. 39
40 40 Applying Results to TLS/DTLS
41 Raw Public Keys with TLS_ECDHE_ECDSA_* TLS / DTLS client needs to perform the following computations: 1. Client verifies the signature covering the Server Key Exchange message that contains the server's ephemeral ECDH public key (and the corresponding elliptic curve domain parameters). 2. Client computes ECDHE. 3. Client creates signature over the Client Key Exchange message containing the client's ephemeral ECDH public key (and the corresponding elliptic curve domain parameters). Summary: 1 x ECDSA verification for step (1) 1 x ECDHE computation for step (2) 1 x ECDSA signature for step (3) Example (LPC1768, secp224r1, W=7, FP and NIST optimization enabled) 329msec (ECDSA verification) 303 msec (ECDHE computation) 85 msec (ECDSA signature) Total: 717 msec 41
42 Applying Results to TLS/DTLS Certificates with TLS_ECDHE_ECDSA_* Same as with raw public key plus (assuming no OCSP and certs are signed with ECC certificates) CA Certificate CA Certificate 1 st Intermediate CA Certificate 1 x ECDSA verification for 1 st Intermediate CA certificate CA Certificate Intermediate CA Certificate 1 x ECDSA verification for Intermediate CA certificate 2 nd Intermediate CA Certificate 1 x ECDSA verification for 2 nd Intermediate CA certificate Server Certificate 1 x ECDSA verification for server certificate Server Certificate 1 x ECDSA verification for server certificate Server Certificate 1 x ECDSA verification for server certificate 42
43 43 Symmetric Key Cryptography
44 Symmetric Key Cryptography Secure Hash Algorithm (SHA) creates a fixed length fingerprint based on an arbitrarily long input. The output length of the fingerprint is determined by the hash function itself. For example, SHA256 produces an output of 256 bits. Advanced Encryption Standard (AES) is an encryption algorithm, which has a fixed block size of 128 bits, and a key size of 128, 192, or 256 bits. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block. Examples of modes of operation: CCM, GCM, CBC. Test relevant information: SHA computes a hash over a buffer with a length of 1024 bytes. AES-CBC: 1024 input bytes are encrypted. No integrity protection is used. IV size is 16 bytes. AES-CCM and AES-GCM: 1024 input bytes are encrypted and integrity protected. No additional data is used. In this version of the test a 12 bytes nonce value is used together with the input data. In addition to the encrypted data a 16 byte tag value is produced. 44
45 Symmetric Key Crypto: Performance of the KL25Z Time (msec) SHA-256 SHA-512 AES- CBC-128 AES- CBC-192 AES- CBC-256 AES- GCM-128 AES- GCM-192 AES- GCM-256 AES- CCM-128 AES- CCM-192 AES- CCM-256 Cryptographic Operation 45
46 Symmetric Key Crypto: Performance of the LPC Time (msec) SHA-256 SHA-512 AES- CBC-128 AES- CBC-192 AES- CBC-256 AES- GCM-128 AES- GCM-192 AES- GCM-256 AES- CCM-128 AES- CCM-192 AES- CCM-256 Cryptographic Operation 46
47 Conclusion ECC requires performance-demanding computations. Those take time. What an acceptable delay is depends on the application. Many applications only need to run public key cryptographic operations during the initial (session) setup phase and infrequently afterwards. With session resumption DTLS/TLS uses symmetric key cryptography most of the time (which is lightning fast). Detailed performance figures depend on the enabled performance optimizations (and indirectly the available RAM size), the key size, the type of curve, and CPU speed. Choosing the microprocessor based on the expected usage environment is important. 47
48 Next Steps Collecting performance data on IoT devices is time-consuming. We would appreciate help. In particular, we need Verification of the gathered data Data from other crypto libraries Further tests (energy efficiency, complete DTLS/TLS handshake data, data about various extensions, more data for Curve25519, etc.). We plan to update <draft-ietf-lwig-tls-minimal> accordingly. 48
1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies
1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies Dave Corbett Technical Product Manager Implementing Forward Secrecy 1 Agenda Part 1: Introduction Why is Forward Secrecy important?
NXP & Security Innovation Encryption for ARM MCUs
NXP & Security Innovation Encryption for ARM MCUs Presenters Gene Carter- International Product Manager, NXP Semiconductors Gene is responsible for marketing of the ARM7 and Cortex-M3 microcontrollers.
Security Technical. Overview. BlackBerry Enterprise Service 10. BlackBerry Device Service Solution Version: 10.2
BlackBerry Enterprise Service 10 BlackBerry Device Service Solution Version: 10.2 Security Technical Overview Published: 2014-09-10 SWD-20140908123239883 Contents 1 About BlackBerry Device Service solution
Thanks, But No Thanks
Thanks, But No Thanks Current Cryptographic Standards Are Sufficient for Software Dan Shumow MSR Security and Cryptography Group Microsoft Research Introduction Disclaimer: I am a Software Developer, so
Pulse Secure, LLC. January 9, 2015
Pulse Secure Network Connect Cryptographic Module Version 2.0 Non-Proprietary Security Policy Document Version 1.1 Pulse Secure, LLC. January 9, 2015 2015 by Pulse Secure, LLC. All rights reserved. May
Secure Network Communications FIPS 140 2 Non Proprietary Security Policy
Secure Network Communications FIPS 140 2 Non Proprietary Security Policy 21 June 2010 Table of Contents Introduction Module Specification Ports and Interfaces Approved Algorithms Test Environment Roles
NIST Cryptographic Algorithm Validation Program (CAVP) Certifications for Freescale Cryptographic Accelerators
Freescale Semiconductor White Paper Document Number: FSLNISTCAVP Rev. 1.7, 03/2015 NIST Cryptographic Algorithm Validation Program (CAVP) Certifications for Freescale Cryptographic Accelerators This document
I N F O R M A T I O N S E C U R I T Y
NIST Special Publication 800-78-2 DRAFT Cryptographic Algorithms and Key Sizes for Personal Identity Verification W. Timothy Polk Donna F. Dodson William. E. Burr I N F O R M A T I O N S E C U R I T Y
SMPTE Standards Transition Issues for NIST/FIPS Requirements v1.1
SMPTE Standards Transition Issues for NIST/FIPS Requirements v1.1 Contents 2010.8.23 DRM inside, Taehyun Kim ETRI, Kisoon Yoon 1 Introduction NIST (National Institute of Standards and Technology) published
FIPS 140-2 Non- Proprietary Security Policy. McAfee SIEM Cryptographic Module, Version 1.0
FIPS 40-2 Non- Proprietary Security Policy McAfee SIEM Cryptographic Module, Version.0 Document Version.4 December 2, 203 Document Version.4 McAfee Page of 6 Prepared For: Prepared By: McAfee, Inc. 282
National Security Agency Perspective on Key Management
National Security Agency Perspective on Key Management IEEE Key Management Summit 5 May 2010 Petrina Gillman Information Assurance (IA) Infrastructure Development & Operations Technical Director National
I N F O R M A T I O N S E C U R I T Y
NIST Special Publication 800-78-3 DRAFT Cryptographic Algorithms and Key Sizes for Personal Identity Verification W. Timothy Polk Donna F. Dodson William E. Burr Hildegard Ferraiolo David Cooper I N F
Information Security
SE 4472 / ECE 9064 Information Security Week 11: Transport Layer Security (TLS): Putting it all together Fall 2015 Prof. Aleksander Essex Security at the Transport Layer Where we started in this course:
RSA BSAFE. Crypto-C Micro Edition for MFP SW Platform (psos) Security Policy. Version 3.0.0.1, 3.0.0.2 October 22, 2012
RSA BSAFE Crypto-C Micro Edition for MFP SW Platform (psos) Security Policy Version 3.0.0.1, 3.0.0.2 October 22, 2012 Strong encryption technology for C/C++ developers Contact Information See our Web sites
CRYPTOGRAPHY AS A SERVICE
CRYPTOGRAPHY AS A SERVICE Peter Robinson RSA, The Security Division of EMC Session ID: ADS R01 Session Classification: Advanced Introduction Deploying cryptographic keys to end points such as smart phones,
UM0586 User manual. STM32 Cryptographic Library. Introduction
User manual STM32 Cryptographic Library Introduction This manual describes the API of the STM32 cryptographic library (STM32-CRYP-LIB) that supports the following cryptographic algorithms: AES-128, AES-192,
Cryptographic Algorithms and Key Size Issues. Çetin Kaya Koç Oregon State University, Professor http://islab.oregonstate.edu/koc [email protected].
Cryptographic Algorithms and Key Size Issues Çetin Kaya Koç Oregon State University, Professor http://islab.oregonstate.edu/koc [email protected] Overview Cryptanalysis Challenge Encryption: DES AES Message
Safeguarding Data Using Encryption. Matthew Scholl & Andrew Regenscheid Computer Security Division, ITL, NIST
Safeguarding Data Using Encryption Matthew Scholl & Andrew Regenscheid Computer Security Division, ITL, NIST What is Cryptography? Cryptography: The discipline that embodies principles, means, and methods
White Paper. Enhancing Website Security with Algorithm Agility
ENHANCING WEBSITE SECURITY WITH ALGORITHM AGILITY White Paper Enhancing Website Security with Algorithm Agility Enhancing Website Security with Algorithm Agility Contents Introduction 3 Encryption Today
Computer Security: Principles and Practice
Computer Security: Principles and Practice Chapter 20 Public-Key Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Public-Key Cryptography
Authentication requirement Authentication function MAC Hash function Security of
UNIT 3 AUTHENTICATION Authentication requirement Authentication function MAC Hash function Security of hash function and MAC SHA HMAC CMAC Digital signature and authentication protocols DSS Slides Courtesy
SPC5-CRYP-LIB. SPC5 Software Cryptography Library. Description. Features. SHA-512 Random engine based on DRBG-AES-128
SPC5 Software Cryptography Library Data brief SHA-512 Random engine based on DRBG-AES-128 RSA signature functions with PKCS#1v1.5 ECC (Elliptic Curve Cryptography): Key generation Scalar multiplication
Secure Socket Layer (SSL) and Transport Layer Security (TLS)
Secure Socket Layer (SSL) and Transport Layer Security (TLS) Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Audio/Video recordings of this lecture are available
WIRELESS LAN SECURITY FUNDAMENTALS
WIRELESS LAN SECURITY FUNDAMENTALS Jone Ostebo November 2015 #ATM15ANZ @ArubaANZ Learning Goals Authentication with 802.1X But first: We need to understand some PKI And before that, we need a cryptography
OpenADR 2.0 Security. Jim Zuber, CTO QualityLogic, Inc.
OpenADR 2.0 Security Jim Zuber, CTO QualityLogic, Inc. Security Overview Client and server x.509v3 certificates TLS 1.2 with SHA256 ECC or RSA cipher suites TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLS_RSA_WITH_AES_128_CBC_SHA256
Secure Sockets Layer (SSL ) / Transport Layer Security (TLS) Network Security Products S31213
Secure Sockets Layer (SSL ) / Transport Layer Security (TLS) Network Security Products S31213 UNCLASSIFIED Example http ://www. greatstuf f. com Wants credit card number ^ Look at lock on browser Use https
Haswell Cryptographic Performance
White Paper Sean Gulley Vinodh Gopal IA Architects Intel Corporation Haswell Cryptographic Performance July 2013 329282-001 Executive Summary The new Haswell microarchitecture featured in the 4 th generation
Lecture 9: Application of Cryptography
Lecture topics Cryptography basics Using SSL to secure communication links in J2EE programs Programmatic use of cryptography in Java Cryptography basics Encryption Transformation of data into a form that
NIST Test Personal Identity Verification (PIV) Cards
NISTIR 7870 NIST Test Personal Identity Verification (PIV) Cards David A. Cooper http://dx.doi.org/10.6028/nist.ir.7870 NISTIR 7870 NIST Text Personal Identity Verification (PIV) Cards David A. Cooper
2. Cryptography 2.4 Digital Signatures
DI-FCT-UNL Computer and Network Systems Security Segurança de Sistemas e Redes de Computadores 2010-2011 2. Cryptography 2.4 Digital Signatures 2010, Henrique J. Domingos, DI/FCT/UNL 2.4 Digital Signatures
Table of Contents. Bibliografische Informationen http://d-nb.info/996514864. digitalisiert durch
1 Introduction to Cryptography and Data Security 1 1.1 Overview of Cryptology (and This Book) 2 1.2 Symmetric Cryptography 4 1.2.1 Basics 4 1.2.2 Simple Symmetric Encryption: The Substitution Cipher...
2014 IBM Corporation
2014 IBM Corporation This is the 27 th Q&A event prepared by the IBM License Metric Tool Central Team (ICT) Currently we focus on version 9.x of IBM License Metric Tool (ILMT) The content of today s session
Certicom Security for Government Suppliers developing client-side products to meet the US Government FIPS 140-2 security requirement
certicom application notes Certicom Security for Government Suppliers developing client-side products to meet the US Government FIPS 140-2 security requirement THE PROBLEM How can vendors take advantage
Outline. Transport Layer Security (TLS) Security Protocols (bmevihim132)
Security Protocols (bmevihim132) Dr. Levente Buttyán associate professor BME Híradástechnikai Tanszék Lab of Cryptography and System Security (CrySyS) [email protected], [email protected] Outline - architecture
SPINS: Security Protocols for Sensor Networks
SPINS: Security Protocols for Sensor Networks Adrian Perrig, Robert Szewczyk, J.D. Tygar, Victor Wen, and David Culler Department of Electrical Engineering & Computer Sciences, University of California
NANOSSH Mocana s comprehensive SSH and RADIUS developers suite, purpose-built for resource-constrained or high-performance device environments.
NANOSSH Mocana s comprehensive SSH and RADIUS developers suite, purpose-built for resource-constrained or high-performance device environments. Features & Benefits Small footprint, high performance FIPS
An Introduction to Cryptography as Applied to the Smart Grid
An Introduction to Cryptography as Applied to the Smart Grid Jacques Benoit, Cooper Power Systems Western Power Delivery Automation Conference Spokane, Washington March 2011 Agenda > Introduction > Symmetric
Security Technical. Overview. BlackBerry Enterprise Server for Microsoft Exchange. Version: 5.0 Service Pack: 4
BlackBerry Enterprise Server for Microsoft Exchange Version: 5.0 Service Pack: 4 Security Technical Overview Published: 2014-01-17 SWD-20140117135425071 Contents 1 New in this release...10 2 Overview...
Accellion Secure File Transfer Cryptographic Module Security Policy Document Version 1.0. Accellion, Inc.
Accellion Secure File Transfer Cryptographic Module Security Policy Document Version 1.0 Accellion, Inc. December 24, 2009 Copyright Accellion, Inc. 2009. May be reproduced only in its original entirety
Final Exam. IT 4823 Information Security Administration. Rescheduling Final Exams. Kerberos. Idea. Ticket
IT 4823 Information Security Administration Public Key Encryption Revisited April 5 Notice: This session is being recorded. Lecture slides prepared by Dr Lawrie Brown for Computer Security: Principles
, ) I Transport Layer Security
Secure Sockets Layer (SSL, ) I Transport Layer Security _ + (TLS) Network Security Products S31213 UNCLASSIFIED Location of SSL -L Protocols TCP Ethernet IP SSL Header Encrypted SSL data= HTTP " Independent
Symantec Mobility: Suite Server Cryptographic Module
FIPS 140-2 Non-Proprietary Security Policy Symantec Mobility: Suite Server Cryptographic Module Software Version 1.0 Document Version 1.4 February 10, 2016 Prepared For: Prepared By: Symantec Corporation
Security Engineering Part III Network Security. Security Protocols (I): SSL/TLS
Security Engineering Part III Network Security Security Protocols (I): SSL/TLS Juan E. Tapiador [email protected] Department of Computer Science, UC3M Security Engineering 4th year BSc in Computer Science,
CPA SECURITY CHARACTERISTIC IPSEC VPN GATEWAY
CPA SECURITY CHARACTERISTIC IPSEC VPN GATEWAY Version 2.5 Crown Copyright 2016 All Rights Reserved 48770392 Page 1 of 25 About this document This document describes the features, testing and deployment
BlackBerry Enterprise Server 5.0 SP3 and BlackBerry 7.1
BlackBerry Enterprise Server 5.0 SP3 and BlackBerry 7.1 Version: 5.0 Service Pack: 3 Security Technical Overview Published: 2012-01-17 SWD-1936256-0117012253-001 Contents 1 Document revision history...
IoT Security Platform
IoT Security Platform 2 Introduction Wars begin when the costs of attack are low, the benefits for a victor are high, and there is an inability to enforce law. The same is true in cyberwars. Today there
Usable Crypto: Introducing minilock. Nadim Kobeissi HOPE X, NYC, 2014
Usable Crypto: Introducing minilock Nadim Kobeissi HOPE X, NYC, 2014 2012 Browsers are an environment that is hostile to cryptography Malleability of the JavaScript runtime. The lack of low-level (system-level)
Figure 1: Application scheme of public key mechanisms. (a) pure RSA approach; (b) pure EC approach; (c) RSA on the infrastructure
A Low Power Security Architecture for Mobile Commerce Peter Langendoerfer +, Zoya Dyka +, Oliver Maye + and Rolf Kraemer + Abstract: Mobile devices have limited resources in terms of computational power
SE 4472a / ECE 9064a: Information Security
Western University Faculty of Engineering Department of Electrical and Computer Engineering SE 4472a / ECE 9064a: Information Security Course Outline 2015-16 Description: This course provides an introduction
RSA BSAFE. Security tools for C/C++ developers. Solution Brief
RSA BSAFE Security tools for C/C++ developers Solution Brief Introduction Built on more than 20 years of expertise in delivering high-quality productsfor implementing strong security controls in software
Overview of Cryptographic Tools for Data Security. Murat Kantarcioglu
UT DALLAS Erik Jonsson School of Engineering & Computer Science Overview of Cryptographic Tools for Data Security Murat Kantarcioglu Pag. 1 Purdue University Cryptographic Primitives We will discuss the
FIPS 140-2 Non-Proprietary Security Policy. IBM Internet Security Systems SiteProtector Cryptographic Module (Version 1.0)
FIPS 140-2 Non-Proprietary Security Policy IBM Internet Security Systems SiteProtector Document Version 2.3 August 5, 2010 Document Version 2.3 IBM Internet Security Systems Page 1 of 24 Prepared For:
SSL BEST PRACTICES OVERVIEW
SSL BEST PRACTICES OVERVIEW THESE PROBLEMS ARE PERVASIVE 77.9% 5.2% 19.2% 42.3% 77.9% of sites are HTTP 5.2% have an incomplete chain 19.2% support weak/insecure cipher suites 42.3% support SSL 3.0 83.1%
Using etoken for SSL Web Authentication. SSL V3.0 Overview
Using etoken for SSL Web Authentication Lesson 12 April 2004 etoken Certification Course SSL V3.0 Overview Secure Sockets Layer protocol, version 3.0 Provides communication privacy over the internet. Prevents
Symantec Corporation Symantec Enterprise Vault Cryptographic Module Software Version: 1.0.0.2
Symantec Corporation Symantec Enterprise Vault Cryptographic Module Software Version: 1.0.0.2 FIPS 140 2 Non Proprietary Security Policy FIPS Security Level: 1 Document Version: 1.1 Prepared for: Prepared
OFFICIAL SECURITY CHARACTERISTIC MOBILE DEVICE MANAGEMENT
SECURITY CHARACTERISTIC MOBILE DEVICE MANAGEMENT Version 1.3 Crown Copyright 2015 All Rights Reserved 49358431 Page 1 of 12 About this document This document describes the features, testing and deployment
Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23
Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest
Cryptography and Key Management Basics
Cryptography and Key Management Basics Erik Zenner Technical University Denmark (DTU) Institute for Mathematics [email protected] DTU, Oct. 23, 2007 Erik Zenner (DTU-MAT) Cryptography and Key Management
FIPS 140-2 Security Policy LogRhythm 6.0.4 Log Manager
FIPS 140-2 Security Policy LogRhythm 6.0.4 Log Manager LogRhythm 3195 Sterling Circle, Suite 100 Boulder CO, 80301 USA September 17, 2012 Document Version 1.0 Module Version 6.0.4 Page 1 of 23 Copyright
BlackBerry Enterprise Solution
BlackBerry Enterprise Solution Security Technical Overview for BlackBerry Enterprise Server Version 4.1 Service Pack 5 and BlackBerry Device Software Version 4.5 2008 Research In Motion Limited. All rights
Overview of CSS SSL. SSL Cryptography Overview CHAPTER
CHAPTER 1 Secure Sockets Layer (SSL) is an application-level protocol that provides encryption technology for the Internet, ensuring secure transactions such as the transmission of credit card numbers
Network Security Services (NSS) Cryptographic Module Version 3.12.4
Network Security Services () Cryptographic Module Version 3.12.4 FIPS 140-2 Security Policy Level 1 Validation Wind River Systems, Inc. Version 1.2 Last Update: 2010-12-13 Table of Contents 1 Introduction...
Randomized Hashing for Digital Signatures
NIST Special Publication 800-106 Randomized Hashing for Digital Signatures Quynh Dang Computer Security Division Information Technology Laboratory C O M P U T E R S E C U R I T Y February 2009 U.S. Department
GCM-SIV: Full Nonce Misuse-Resistant Authenticated Encryption at Under One Cycle per Byte. Yehuda Lindell Bar-Ilan University
GCM-SIV: Full Nonce Misuse-Resistant Authenticated Encryption at Under One Cycle per Byte Shay Gueron Haifa Univ. and Intel Yehuda Lindell Bar-Ilan University Appeared at ACM CCS 2015 How to Encrypt with
Chapter 11 Security+ Guide to Network Security Fundamentals, Third Edition Basic Cryptography
Chapter 11 Security+ Guide to Network Security Fundamentals, Third Edition Basic Cryptography What Is Steganography? Steganography Process of hiding the existence of the data within another file Example:
How To Encrypt Data With Encryption
USING ENCRYPTION TO PROTECT SENSITIVE INFORMATION Commonwealth Office of Technology Security Month Seminars Alternate Title? Boy, am I surprised. The Entrust guy who has mentioned PKI during every Security
The Impact of Cryptography on Platform Security
The Impact of Cryptography on Platform Security Ernie Brickell Intel Corporation 2/28/2012 1 Security is Intel s Third Value Pillar Intel is positioning itself to lead in three areas: energy-efficient
Triathlon of Lightweight Block Ciphers for the Internet of Things
NIST Lightweight Cryptography Workshop 2015 Triathlon of Lightweight Block Ciphers for the Internet of Things Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Leo Perrin, Johann Großschädl, Alex Biryukov
TLS and SRTP for Skype Connect. Technical Datasheet
TLS and SRTP for Skype Connect Technical Datasheet Copyright Skype Limited 2011 Introducing TLS and SRTP Protocols help protect enterprise communications Skype Connect now provides Transport Layer Security
GNUTLS. a Transport Layer Security Library This is a Draft document Applies to GnuTLS 1.0.13. by Nikos Mavroyanopoulos
GNUTLS a Transport Layer Security Library This is a Draft document Applies to GnuTLS 1.0.13 by Nikos Mavroyanopoulos ii Copyright c 2001,2002,2003 Nikos Mavroyanopoulos Permission is granted to copy, distribute
Using BroadSAFE TM Technology 07/18/05
Using BroadSAFE TM Technology 07/18/05 Layers of a Security System Security System Data Encryption Key Negotiation Authentication Identity Root Key Once root is compromised, all subsequent layers of security
Connected from everywhere. Cryptelo completely protects your data. Data transmitted to the server. Data sharing (both files and directory structure)
Cryptelo Drive Cryptelo Drive is a virtual drive, where your most sensitive data can be stored. Protect documents, contracts, business know-how, or photographs - in short, anything that must be kept safe.
Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths
NIST Special Publication 800-131A Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths Elaine Barker and Allen Roginsky Computer Security Division Information
BroadSAFE Enhanced IP Phone Networks
White Paper BroadSAFE Enhanced IP Phone Networks Secure VoIP Using the Broadcom BCM11xx IP Phone Technology September 2005 Executive Summary Voice over Internet Protocol (VoIP) enables telephone calls
Northrop Grumman M5 Network Security SCS Linux Kernel Cryptographic Services. FIPS Security Policy Version 2.42. www.northropgrumman.
Northrop Grumman M5 Network Security SCS Linux Kernel Cryptographic Services FIPS Security Policy Version 2.42 www.northropgrumman.com/m5/ SCS Linux Kernel Cryptographic Services Security Policy Version
Security Protocols HTTPS/ DNSSEC TLS. Internet (IPSEC) Network (802.1x) Application (HTTP,DNS) Transport (TCP/UDP) Transport (TCP/UDP) Internet (IP)
Security Protocols Security Protocols Necessary to communicate securely across untrusted network Provide integrity, confidentiality, authenticity of communications Based on previously discussed cryptographic
FIPS 140-2 Level 1 Security Policy for Cisco Secure ACS FIPS Module
FIPS 140-2 Level 1 Security Policy for Cisco Secure ACS FIPS Module Contents Overview, page 1 Security Requirements, page 2 Cryptographic Module Specification, page 2 Cryptographic Module Ports and Interfaces,
Real-Time Communication Security: SSL/TLS. Guevara Noubir [email protected] CSU610
Real-Time Communication Security: SSL/TLS Guevara Noubir [email protected] CSU610 1 Some Issues with Real-time Communication Session key establishment Perfect Forward Secrecy Diffie-Hellman based PFS
Managed Portable Security Devices
Managed Portable Security Devices www.mxisecurity.com MXI Security leads the way in providing superior managed portable security solutions designed to meet the highest security and privacy standards of
Communication Security for Applications
Communication Security for Applications Antonio Carzaniga Faculty of Informatics University of Lugano March 10, 2008 c 2008 Antonio Carzaniga 1 Intro to distributed computing: -server computing Transport-layer
TLS all the tubes! TLS Fast Yet? IsWebRTC. It can be. Making TLS fast(er)... the nuts and bolts. +Ilya Grigorik @igrigorik
TLS all the tubes! IsWebRTC TLS Fast Yet? It can be. Making TLS fast(er)... the nuts and bolts. +Ilya Grigorik @igrigorik All communication should be secure, always, and by default! HTTPS everywhere! ...
SEC 2: Recommended Elliptic Curve Domain Parameters
STANDARDS FOR EFFICIENT CRYPTOGRAPHY SEC 2: Recommended Elliptic Curve Domain Parameters Certicom Research Contact: [email protected] September 20, 2000 Version 1.0 c 2000 Certicom Corp. License
C O M P U T E R S E C U R I T Y
NIST Special Publication 800-56C Recommendation for Key Derivation through Extraction-then-Expansion Lily Chen Computer Security Division Information Technology Laboratory C O M P U T E R S E C U R I T
The Secure Sockets Layer (SSL)
Due to the fact that nearly all businesses have websites (as well as government agencies and individuals) a large enthusiasm exists for setting up facilities on the Web for electronic commerce. Of course
Ciphire Mail. Abstract
Ciphire Mail Technical Introduction Abstract Ciphire Mail is cryptographic software providing email encryption and digital signatures. The Ciphire Mail client resides on the user's computer between the
Announcement. Final exam: Wed, June 9, 9:30-11:18 Scope: materials after RSA (but you need to know RSA) Open books, open notes. Calculators allowed.
Announcement Final exam: Wed, June 9, 9:30-11:18 Scope: materials after RSA (but you need to know RSA) Open books, open notes. Calculators allowed. 1 We have learned Symmetric encryption: DES, 3DES, AES,
High-speed high-security cryptography on ARMs
High-speed high-security cryptography on ARMs Daniel J. Bernstein Research Professor, University of Illinois at Chicago Professor, Cryptographic Implementations, Technische Universiteit Eindhoven Tanja
Network Security Part II: Standards
Network Security Part II: Standards Raj Jain Washington University Saint Louis, MO 63131 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 18-1 Overview
SECURE USB FLASH DRIVE. Non-Proprietary Security Policy
SECURE USB FLASH DRIVE Non-Proprietary Security Policy FIPS 140-2 SECURITY POLICY VERSION 9 Page 1 of 10 Definitions and Acronyms AES Advanced Encryption Standard CBC Cipher Block Chaining CRC Cyclic Redundancy
Security Policy for Oracle Advanced Security Option Cryptographic Module
Security Policy for Oracle Advanced Security Option Cryptographic Module Version 1.0 September 1999 Prepared by Oracle Corporation A. Scope of Document This document describes the security policy for the
Chapter 17. Transport-Level Security
Chapter 17 Transport-Level Security Web Security Considerations The World Wide Web is fundamentally a client/server application running over the Internet and TCP/IP intranets The following characteristics
Digital Signature Standard (DSS)
FIPS PUB 186-4 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION Digital Signature Standard (DSS) CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY Information Technology Laboratory National Institute
ARCHIVED PUBLICATION
ARCHIVED PUBLICATION The attached publication, FIPS Publication 186-3 (dated June 2009), was superseded on July 19, 2013 and is provided here only for historical purposes. For the most current revision
APPLICATION NOTE. Atmel AT02333: Safe and Secure Bootloader Implementation for SAM3/4. Atmel 32-bit Microcontroller. Features.
APPLICATION NOTE Atmel AT02333: Safe and Secure Bootloader Implementation for SAM3/4 Atmel 32-bit Microcontroller Features Getting familiar with the conception of in-field upgrading and bootloader Discussing
Secure Socket Layer. Carlo U. Nicola, SGI FHNW With extracts from publications of : William Stallings.
Secure Socket Layer Carlo U. Nicola, SGI FHNW With extracts from publications of : William Stallings. Abstraction: Crypto building blocks NS HS13 2 Abstraction: The secure channel 1., run a key-exchange
Cryptography and Network Security Sicurezza delle reti e dei sistemi informatici SSL/TSL
Cryptography and Network Security Sicurezza delle reti e dei sistemi informatici SSL/TSL Security architecture and protocol stack Applicat. (SHTTP) SSL/TLS TCP IPSEC IP Secure applications: PGP, SHTTP,
BlackBerry Enterprise Solution Security Release 4.1.2 Technical Overview www.vodafone.com.mt
BlackBerry Enterprise Solution Security Release 4.1.2 Technical Overview www.vodafone.com.mt Life is now BlackBerry Enterprise Solution Security 1 Contents 5 Wireless security 5 BlackBerry Enterprise Solution
The new 32-bit MSP432 MCU platform from Texas
Technology Trend MSP432 TM microcontrollers: Bringing high performance to low-power applications The new 32-bit MSP432 MCU platform from Texas Instruments leverages its more than 20 years of lowpower leadership
