Performance ratio. Contents. Quality factor for the PV plant
|
|
|
- Richard Foster
- 9 years ago
- Views:
Transcription
1 Performance ratio Quality factor for the PV plant Contents The performance ratio is one of the most important variables for evaluating the efficiency of a PV plant. Specifically, the performance ratio is the ratio of the actual and theoretically possible energy outputs. It is largely independent of the orientation of a PV plant and the incident solar irradiation on the PV plant. For this reason, the performance ratio can be used to compare PV plants supplying the grid at different locations all over the world. This document explains what the performance ratio is and its function. You will also discover how to calculate the performance ratio for your PV plant and which factors have an influence on it. Perfratio-TI-en-11 Version 1.1 1/9
2 What is the performance ratio? 1 What is the performance ratio? The performance ratio is a measure of the quality of a PV plant that is independent of location and it therefore often described as a a quality factor. The performance ratio (PR) is stated as percent and describes the relationship between the actual and theoretical energy outputs of the PV plant. It thus shows the proportion of the energy that is actually available for export to the grid after deduction of energy loss (e.g. due to thermal losses and conduction losses ) and of energy consumption for operation. The closer the PR value determined for a PV plant approaches 100 %, the more efficiently the respective PV plant is operating. In real life, a value of 100 % cannot be achieved, as unavoidable losses always arise with the operation of the PV plant (e.g. thermal loss due to heating of the PV modules). High-performance PV plants can however reach a performance ratio of up to 80 %. 2 What is the function of the performance ratio? The performance ratio informs you as to how energy efficient and reliable your PV plant is. With the performance ratio you can compare the energy output of your PV plant with that of other PV plants or monitor the status of your PV plant over a prolonged period. The determination of the performance ratio at fixed regular intervals does not provide an absolute comparison. Instead, it provides the operator with the option of checking performance and output: if it is assumed that the PV plant is running optimally on being commissioned, and hence that the initial value for the performance ratio is 100%, then taking of further PR values over time enables the identification of deviations, meaning that appropriate countermeasures can be promptly initiated. Deviations in the PR value in the form of values below the normal range therefore indicate a possible fault in your PV plant at an early stage. The factors that can lead to a deviation in the PR value are described in Chapter 4 "Which factors influence the performance ratio?" (page 7). SMA Solar Technology AG 2/9
3 How is the performance ratio calculated? 3 How is the performance ratio calculated? You need different variables to be able to calculate the performance ratio of your PV plant. On the one hand, these are the solar-irradiation values for the site of the PV plant. You can determine these values using a measuring gage (e.g. Sunny SensorBox) that measures the incident solar irradiation at your PV plant. On the other hand, you need the factor of the modular area of your PV plant and the relative efficiency of your PV modules. The modular efficiency of the data sheet for the PV module can be obtained in the data sheet. You can calculate the performance ratio by yourself (see Page 3) or automatically (see Page 6). Requirements for calculation If you use a measuring gage (e.g. Sunny SensorBox) for your PV plant that measures the direct incident solar irradiation, the orientation of the PV modules and the meter must be the same before you can calculate the PR value correctly. You therefore ensure that the PV modules and the measuring gage are exposed to the same quantities of incident solar irradiation and the same temperatures. Analysis period The optimum analysis period for calculating the performance ratio is 1 year. However, you can also select shorter time periods, e.g. if you want to compare your PV plant directly with other PV plants. That being said, you should select a minimum analysis period of 1 month to ensure that ambient conditions such as low solar elevations, low temperatures and shadows falling on the PV modules and / or measuring gage do not strongly influence the calculation. 3.1 Manual calculation If you wish to calculate the performance ratio by yourself, you can use the following simplified formula: Formula for manual calculation of the performance ratio PR = Actual reading of plant output in kwh p.a. Calculated, nominal plant output in kwh p.a. The actual plant energy production in kwh can be read at the end of the year from the grid export meter. The calculated annual nominal plant output is composed as follows: Formula for calculation of the nominal plant output Annual incident solar irradiation at the generator surface of the PV plant x relative efficiency of the PV plant modules SMA Solar Technology AG 3/9
4 How is the performance ratio calculated? The solar-irradiation value obtained by the measuring gage is measured at modular level, ideally over the whole year. Before this irradiation value can be determined, the mean value of the irradiation values measured by the measuring gage (e.g. Sunny SensorBox) must be determined. The determined irradiation value per m 2 is then extrapolated to the entire modular surface of the PV plant (= generator area). You can obtain the modular efficiency in the data sheet for the PV plant. Example: Calculation of the performance ratio for an analysis period of 1 year This example describes the manual calculation of the performance ratio using data from the Sunny SensorBox and the Sunny WebBox. The manual calculation should be seen as an alternative option. SMA Solar Technology AG offers automatic calculation of the performance ratio in the Sunny Portal (see Page 6). How to register your PV plant in Sunny Portal is described in the operating instructions for the Sunny WebBox. If however you prefer to calculate the performance ratio manually, proceed as follows. You will require the following information for the manual calculation: Analysis period You define the analysis period in advance. The optimum analysis period is 1 year. Generator area of the PV plant The factor of the generator area of your PV plant is known. Efficiency factor of the PV modules You can obtain the modular relative efficiency of your PV plant from the data sheet of the PV modules. Actually measured plant output You read this value from your power export meter at the end of year. Calculated, nominal plant output To calculate this value, you will need the formula for calculation of the nominal plant output (see Page 3) Incident solar irradiation measured in the analysis period To determine this value, you need the irradiation values transmitted by the Sunny SensorBox to the Sunny WebBox. The Sunny WebBox regularly requests the individual values measured by the SensorBox. The Sunny WebBox then calculates daily average values from these individual values. To determine the average solar irradiation in the analysis period, you must extrapolate the daily average values for solar radiation. To do this, proceed as follows. The Sunny WebBox saves the daily average values for incident solar irradiation at your PV plant, depending on the settings on the user interface at intervals of 5 minutes, 10 minutes or 15 minutes. The Sunny WebBox saves the daily average values for each month together with other average values for your PV plant in the corresponding directories as.csv files or.xml files. SMA Solar Technology AG 4/9
5 How is the performance ratio calculated? To calculate the irradiation value for 1 year, for example, you first have to calculate the monthly averages. To do this add the daily average values for a given month. You then divide this amount determined by the number of days in the month, which gives you the monthly average value. In this way you can calculate the monthly average values for all 12 months of the year. To calculate the annual average value, you simply add the 12 monthly averages and divide the total by the number of months, i.e. 12. You then extrapolate the average value calculated to the generator area of your PV plant. In this way, you obtain the nominal plant output for the analysis period of 1 year, which you can enter with the previously known values in the formula for calculating the performance ratio. The following specific conditions and values are given for the example: Analysis period: 1 year Measured average solar irradiation intensity in 1 year: 120 kwh/m 2 Generator area of the PV plant: 10 m 2 Efficiency factor of the PV modules: 15 % Electrical energy actually exported by plant to grid: 110 kwh The irradiation values measured on location yields an average solar irradiation for the entire analysis period of 120 kwh/m 2. This irradiation value is extrapolated to the modular area of the PV plant as follows: Irradiation value in kwh/m 2 xplant area in m 2 = 120 kwh/m 2 x10m 2 = 1,200 kwh In order to subsequently calculate the nominal plant output, the irradiation value for the PV plant is multiplied by the modular efficiency: 1,200 kwh x 15 % = 1,200 kwh x 0.15 = 180 kwh An anticipated nominal plant output of 180 kwh is therefore obtained for the selected analysis period. This anticipated nominal plant output corresponds to a performance ratio of 100 %. However, the actual value for electrical energy exported by the PV plant to the grid is only 110 kwh. If this value and the calculated nominal plant output are fed into the formula for calculating the performance ratio, the following result is obtained: PR = 110 kwh 180 kwh = approx = approx. 61 % The PR value is approx. 61 %. This means that approx. 39 % of the incident solar energy in the analysis period is not converted into usable energy due to circumstances such as conduction loss, thermal loss or, for example, defects in components. Here the performance ratio acts as an indicator and can prompt more detailed inspection of the PV plant so that, for example, soiling of the PV modules is removed or defective components can be repaired or replaced. SMA Solar Technology AG 5/9
6 How is the performance ratio calculated? 3.2 Automatic calculation You can also calculate the performance ratio automatically by transmitting the corresponding data from your PV plant to Sunny Portal. In the Sunny Portal you also can see the performance ratio clear presented in graphical form. How to automatically calculate the performance ratio and display the PR values in graphic form is described in the operating instructions for the Sunny Portal on Requirements for automatic calculation in Sunny Portal The following requirements must be fulfilled before you can calculate the performance ratio in the Sunny Portal: You have a Sunny WebBox that transmits the required data to the Sunny Portal. A Sunny SensorBox is connected to your Sunny WebBox. You use the Sunny SensorBox solar irradiation sensors. The Sunny SensorBox measures a minimum incident solar irradiation of 60 W/m 2 per hour at the installation location of your PV plant. How to register at the Sunny Portal via the Sunny WebBox is described in the operating instructions for the Sunny WebBox. SMA Solar Technology AG 6/9
7 Which factors influence the performance ratio? 4 Which factors influence the performance ratio? The performance ratio is a purely definition-based variable which, under the influence of certain factors, may even exceed values of 100 %. This is because performance characteristics of the PV modules are used in the calculation of the performance ratio that have been determined under standard test conditions (1,000 W/m² solar irradiation and 25 C module temperature). Deviating conditions in real operating conditions therefore influence the performance ratio. The following factors can have influence to the PR value: Environmental factors Temperature of the PV module Solar irradiation and power dissipation The measuring gage (e.g. Sunny SensorBox) is in the shade or soiled PV module in the shade or soiled Other factors Recording period Conduction losses Efficiency factor of the PV modules Efficiency factor of the inverter Differences in solar cell technologies of the measuring gage (e.g. Sunny SensorBox) and of the PV modules Orientation of the measurement gage (e.g. Sunny SensorBox) 4.1 Environmental factors Temperature of the PV module Performance and efficiency of a solar cell depend, amongst others, on the temperature of the PV module. At lower temperatures, a PV module is especially efficient. For example, the PV module is cold when the sky is occluded in winter. If under these conditions, full solar irradiation is incident on the cold PV module, then it operates very efficiently. This can generate a high PR value briefly. After a certain time, the PV module heats up and the efficiency falls again. Solar irradiation and power dissipation In the morning, evening and especially in winter, when the sun is low in the sky, the value for the incident solar irradiation approaches that of power dissipation (= difference between power input and output) more closely than at other times of day and of the year. For this reason, the PR value is lower than usual at these times. SMA Solar Technology AG 7/9
8 Which factors influence the performance ratio? Measuring gage (e.g. Sunny SensorBox) in the shade or soiled Depending on the installation location, plants and buildings can throw shadows on your PV plant's measuring gage (e.g. Sunny SensorBox) and hence the measuring gage can be temporarily or even permanently in the shade. Especially when the sun is low, parts of the PV plant itself can cast shadows over the measuring gage. The partial or complete placing in shadow of the measuring gage can result in PR values of over 100 %. In addition environmental factors such as snow, dust or pollen can lead to soiling of your PV plant and thus also result in PR values of over 100 %. Shading or contamination of the PV modules Depending on the installation location, plants and buildings can throw shadows on your PV plant's measuring gage (e.g. Sunny SensorBox) and hence the measuring gage can be temporarily or even permanently in in the shade. Also soiling by e.g. dust, pollen, snow etc. can lead to shading of the PV modules. This shading leads to the PV module absorbing less solar irradiation than usual. The efficiency of the PV modules and accordingly also the PR value of the PV plant falls. 4.2 Other factors Measurement period If the measurement period is too short (i.e. less than 1 month), there are insufficient measurements for reliable calculation of the performance ratio. Low solar elevations, low and high temperatures and shading influence the calculation result in this case more strongly, as these values may not completely recorded. Conduction losses With the transmission of energy from the inverter to the energy export meter of the grid operator, conduction losses may occur depending on the type and material of the cable used. The PR value can be reduced by the conduction losses. Efficiency factor of the PV modules The efficiency factor of the PV modules has a decisive influence on the performance ratio of your PV plant. The higher the efficiency of the PV modules, the higher the PR value (with corresponding ambient conditions such as higher solar irradiation at the location, etc.). Efficiency factor of the inverter If the inverter employed in your PV plant is highly efficient, this can result in high PR values. SMA inverters with an efficiency of 90 % enable PR values of over 80 %. SMA Solar Technology AG 8/9
9 Which factors influence the performance ratio? Use of different solar cell technologies in the PV modules and measuring gage (e.g. Sunny SensorBox) There are different solar cell types for PV modules. The three following solar cell types are used most frequently: monocrystal silicon cells, polycrystalline silicon cells and thin layer cells. If the measuring gage installed in the PV plant (e.g. Sunny SensorBox) uses a different solar cell technology than your PV modules, this can result in deviations in the performance ratio. Degradation of the solar cells The age-related degradation of the solar cells results in a lower PR value over time. Monocrystalline solar cells and polycrystalline solar cells age up to 20 % in 20 years. Orientation of the measuring gage (e.g. Sunny SensorBox) If your PV plant includes a measuring gage (e.g. Sunny SensorBox) and this is not correspondingly aligned with the PV modules of your PV plant, this can result in PV values of over 100 % due to different solar irradiations. SMA Solar Technology AG 9/9
Electricity from PV systems how does it work?
Electricity from photovoltaic systems Bosch Solar Energy 2 Electricity from PV systems Electricity from PV systems how does it work? Photovoltaics: This is the name given to direct conversion of radiant
Designing PV Plants Optimised for Economic Efficiency
Technical Information Designing PV Plants Optimised for Economic Efficiency Content The most efficient PV plant design is usually not far from the operating limits, for example, the minimum input voltage
LONGTERM EXPERIENCE WITH PV POWER PLANTS IN GERMANY
LONGTERM EXPERIENCE WITH PV POWER PLANTS IN GERMANY Dr. Christian Reise Fraunhofer Institute for Solar Energy Systems ISE Freiburg, Germany Solar Operations & Maintenance Milan, October 9 th, 2013 The
Operational experienced of an 8.64 kwp grid-connected PV array
Hungarian Association of Agricultural Informatics European Federation for Information Technology in Agriculture, Food and the Environment Journal of Agricultural Informatics. 2013 Vol. 4, No. 2 Operational
DAVID WILSON LIBRARY
DAVID WILSON LIBRARY SOLAR PHOTO-VOLTAIC GENERATOR CLEAN GREEN ELECTRICITY, PRODUCED BY THE SUN TECHNICAL DETAILS Dr Hans Bleijs Department of Engineering University Road, Leicester LE1 7RH Tel. 0116 252
SOLAR RADIATION AND YIELD. Alessandro Massi Pavan
SOLAR RADIATION AND YIELD Alessandro Massi Pavan Sesto Val Pusteria June 22 nd 26 th, 2015 DEFINITIONS Solar radiation: general meaning Irradiation [Wh/m 2 ]: energy received per unit area Irradiance [W/m
Application Note - How to Design a SolarEdge System Using PVsyst
March 2015 Application Note - How to Design a SolarEdge System Using PVsyst As of version 5.20, PVsyst - the PV system design software - supports the design of SolarEdge systems. This application note
Design of a Photovoltaic Data Monitoring System and Performance Analysis of the 56 kw the Murdoch University Library Photovoltaic System
School of Engineering and Information Technology ENG460 Engineering Thesis Design of a Photovoltaic Data Monitoring System and Performance Analysis of the 56 kw the Murdoch University Library Photovoltaic
What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun.
What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun. What is the solar industry? The solar industry is
EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER
EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER A willingness to install east-west orientated photovoltaic (PV) systems has lacked in the past. Nowadays, however, interest in installing
Simple and secure monitoring
Simple and secure monitoring SMA Solar Monitoring Systems SMA Solar Monitoring Systems Monitoring, informing, presenting Easily securing yield for small, large and very large solar power systems Sunday
Monitor Simply and Securely
Monitor Simply and Securely Solar Monitoring Systems from SMA Solar Monitoring Systems from SMA MONITORING, INFORMING, PRESENTING Securing yield easily for small, large and very large solar power systems
Information sheet. 1) Solar Panels - Basics. 2) Solar Panels Functionality
1) Solar Panels - Basics A solar cell, sometimes called a photovoltaic cell, is a device that converts light energy into electrical energy. A single solar cell creates a very small amount of energy so
EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION
EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION The Weather Envoy consists of two parts: the Davis Vantage Pro 2 Integrated Sensor Suite (ISS) and the
ANALYSIS 2: Photovoltaic Glass Replacement
ANALYSIS 2: Photovoltaic Glass Replacement Problem Identification Bridgeside II is designed to accommodate 80 percent lab space and 20 percent office space. Laboratory equipment can consume a considerable
Design qualification and type approval of PV modules
Design qualification and type approval of PV modules TÜV Immissionsschutz und Energiesysteme GmbH Test Centre for Energy technologies May 2003 Design qualification and type approval of PV-modules in accordance
Solar Power at Vernier Software & Technology
Solar Power at Vernier Software & Technology Having an eco-friendly business is important to Vernier. Towards that end, we have recently completed a two-phase project to add solar panels to our building
Replacing Fuel With Solar Energy
Replacing Fuel With Solar Energy Analysis by Michael Hauke, RSA Engineering January 22, 2009 The Right Place for Solar Energy Harvesting solar energy at South Pole can reduce the fuel consumption needed
Irradiance. Solar Fundamentals Solar power investment decision making
Solar Fundamentals Solar power investment decision making Chilean Solar Resource Assessment Antofagasta and Santiago December 2010 Edward C. Kern, Jr., Ph.D., Inc. Global Solar Radiation Solar Power is
The different type of photovoltaic systems and their applications
The different type of photovoltaic systems and their applications Solar radiation Solar radiation: electromagnetic energy emitted by the fusion of hydrogen content in the sun. - On the solar surface to
Minor maintenance issues proving difficult to detect for many solar PV system owners
Minor maintenance issues proving difficult to detect for many solar PV system owners Challenges occurring even when system owners have access to their realtime and historical generation data Lack of detection
Photovoltaic Solar Energy Unit EESFB
Technical Teaching Equipment Photovoltaic Solar Energy Unit EESFB Products Products range Units 5.-Energy Electronic console PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION Worlddidac Member ISO 9000: Quality
Design of Grid Connect PV systems. Palau Workshop 8 th -12 th April
Design of Grid Connect PV systems Palau Workshop 8 th -12 th April INTRODUCTION The document provides the minimum knowledge required when designing a PV Grid connect system. The actual design criteria
Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University
Solar Energy Solar Energy Systems Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University 1 SOLAR ENERGY OVERVIEW 1) Types of Solar Power Plants 2) Describing the Solar
Photovoltaic System Technology
Photovoltaic System Technology Photovoltaic Cells What Does Photovoltaic Mean? Solar electricity is created using photovoltaic cells (or PV cells). The word photovoltaic is made up of two words: photo
Solar Photovoltaic Frequently Asked Questions
Table of Contents 1. What is Solar Energy?... 2 2. What are the basic component of a Solar PV system?.2 3. What are the different types of PV systems ATL offers?...2 4. What is the difference between mono-crystalline
Performance Assessment of 100 kw Solar Power Plant Installed at Mar Baselios College of Engineering and Technology
Performance Assessment of 100 kw Solar Power Plant Installed at Mar Baselios College of Engineering and Technology Prakash Thomas Francis, Aida Anna Oommen, Abhijith A.A, Ruby Rajan and Varun S. Muraleedharan
Technical Information Battery Management of the Sunny Island Gentle charging control for lead-acid batteries based on current state of the battery
Technical Information Battery Management of the Sunny Island Gentle charging control for lead-acid batteries based on current state of the battery Content Exact determination of the state of charge is
Solar Energy Opportunities for the Australian Nursery Industry
Solar Energy Opportunities for the Australian Nursery Industry Introduction Solar energy is a freely available source of renewable energy that is suitable for utilisation at almost all locations in Australia.
Free electricity for your home, offices or factory with solar PV panels
Free electricity for your home, offices or factory with solar PV panels Who we are Easy Being Green helps customers reduce their household s energy consumption by using energy saving products. Easy Easy
Solar and Wind Energy for Greenhouses. A.J. Both 1 and Tom Manning 2
Solar and Wind Energy for Greenhouses A.J. Both 1 and Tom Manning 2 1 Associate Extension Specialist 2 Project Engineer NJ Agricultural Experiment Station Rutgers University 20 Ag Extension Way New Brunswick,
sma FlexIble storage system
sma FlexIble storage system now even more attractive with the german incentive program for storage systems easy to use efficient Flexible Future-proof Comprehensive and easy-to-understand visualizations
SA Power Networks Planning for Solar PV? Customer information guide to network connected solar PV inverter systems
SA Power Networks Planning for Solar PV? Customer information guide to network connected solar PV inverter systems Contents Introduction 3 How solar PV power systems work 4 Solar modules 5 Is solar power
2016 Santee Cooper Solar Home & Solar Share Home Program Manual
2016-17 2016 Santee Cooper Solar Home & Solar Share Home Program Manual Version 03232016 This Program Manual is intended to serve as a reference for Santee Cooper s residential Customers that are interested
TIME IS RIGHT FOR SOLAR PANELS
TIME IS RIGHT FOR SOLAR PANELS Cut your home electric blls! The sun floods the earth with energy. Solar panels generate electricity that is free of emissions that harm our atmosphere and costs nothing.
Dispelling the Solar Myth - Evacuated Tube versus Flat Plate Panels. W illiam Comerford Sales Manager Ireland Kingspan Renewables Ltd.
Dispelling the Solar Myth - Evacuated Tube versus Flat Plate Panels W illiam Comerford Sales Manager Ireland Kingspan Renewables Ltd. 1 The Kingspan Group Energy independent buildings for a sustainable
Using the sun to generate electricity
Using the sun to generate electricity Image source: http://www.globalsolarcenter.com/files/2009/04/commercial-solar.jpg Solar panels information sheet What are the benefits? How does it work? What is the
Running the Electric Meter Backwards: Real-Life Experience with a Residential Solar Power System
Running the Electric Meter Backwards: Real-Life Experience with a Residential Solar Power System Brooks Martner Lafayette, Colorado University of Toledo Spring 2015 PHYS 4400 - Principles and Varieties
ADB s Rooftop Solar Project. Aiming Zhou Senior Energy Specialist 15-19 June 2015 10 th Asia Clean Energy Forum
ADB s Rooftop Solar Project Aiming Zhou Senior Energy Specialist 15-19 June 2015 10 th Asia Clean Energy Forum 1. Project Summary 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 >27
Building Integrated Combined Solar Thermal and Electric Generation Demonstration Project at Concordia University
Building Integrated Combined Solar Thermal and Electric Generation Demonstration Project at Concordia University Summary An innovative solar energy installation has been installed at Concordia University
Solar PV checklist Questions to ask installers
Solar PV checklist Questions to ask installers When it comes to choosing a solar photovoltaic (PV) installation, there are a lot of variations which can make it difficult to compare quotes and to be sure
Data Bulletin. Mounting Variable Frequency Drives in Electrical Enclosures Thermal Concerns OVERVIEW WHY VARIABLE FREQUENCY DRIVES THERMAL MANAGEMENT?
Data Bulletin April 2001 Raleigh, NC, USA Mounting Variable Frequency Drives in Electrical Enclosures Thermal Concerns OVERVIEW Variable frequency drives are available from manufacturers as enclosed engineered
For millennia people have known about the sun s energy potential, using it in passive
Introduction For millennia people have known about the sun s energy potential, using it in passive applications like heating homes and drying laundry. In the last century and a half, however, it was discovered
The Solar Power Specialists. Elm Park House, Elm Park Court, Pinner, Middlesex, HA5 3NN Solutions House, Unit A19, 20 Heron Road, Belfast, BT3 9LE
The Solar Power Specialists GB: 0845 64 39 772 NI: 0845 50 40 444 Email: [email protected] Visit: www.metartecsolar.com Elm Park House, Elm Park Court, Pinner, Middlesex, HA5 3NN Solutions House,
PERFORMANCE EVALUATION OF WATER-FLOW WINDOW GLAZING
PERFORMANCE EVALUATION OF WATER-FLOW WINDOW GLAZING LI CHUNYING DOCTOR OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG FEBRUARY 2012 CITY UNIVERSITY OF HONG KONG 香 港 城 市 大 學 Performance Evaluation of Water-flow
Your guide to electricity from Photovoltaic Panel systems
Solar Power Explained: Your guide to electricity from Photovoltaic Panel systems Background Photovoltaic (PV) systems have been in use for over 50 years generating electricity directly from the sun as
PERFORMANCE OF MPPT CHARGE CONTROLLERS A STATE OF THE ART ANALYSIS
PERFORMANCE OF MPPT CHARGE CONTROLLERS A STATE OF THE ART ANALYSIS Michael Müller 1, Roland Bründlinger 2, Ortwin Arz 1, Werner Miller 1, Joachim Schulz 2, Georg Lauss 2 1. STECA ELEKTRONIK GMBH, Mammostr.
Explanation of Net Energy Metering and Annual Net Surplus Electricity Settlement Options
Explanation of Net Energy Metering and Annual Net Surplus Electricity Settlement Options Applicability This document is applicable to any City of Palo Alto Utilities ( CPAU ) Customer Generator currently
A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW
WE BRING GREEN SOLUTIONS TO YOU A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW Provided by A COOLER PLANET A Cooler Planet 1 The Complete Solar Guide WHY GO SOLAR? TOP FIVE FACTORS TO CONSIDER FOR ADDING
Bigger is Better: Sizing Solar Modules for Microinverters
Bigger is Better: Sizing Solar Modules for Microinverters Authors: David Briggs 1 ; Dave Williams 1 ; Preston Steele 1 ; Tefford Reed 1 ; 1 Enphase Energy, Inc. October 25, 2012 SUMMARY This study analyzed
KACO-monitoring. onlinecomponents.com. Integrated monitoring available. Monitor up to 32 inverters per prolog. Reliable and accurate data
KACO-monitoring watchdog insight prolog Integrated monitoring available Monitor up to 32 inverters per prolog Reliable and accurate data Email alarms to maximize uptime Historical, current and production
Self-consumption. that you need to purchase from your power company. Bosch Solar Energy recommends photovoltaic systems with self-consumption.
Self-consumption of Solar Energy Bosch Solar Energy Self-consumption The self-consumption of solar energy refers to the proportion of energy which is used directly in the building where a PV system is
Silicon Pyranometer Smart Sensor (Part # S-LIB-M003)
(Part # S-LIB-M003) The smart sensor is designed to work with the HOBO Weather Station logger. The smart sensor has a plug-in modular connector that allows it to be added easily to a HOBO Weather Station.
Solar Up NH. Frequently Asked Questions
Solar Up NH Frequently Asked Questions Q. What is Solar UP New Hampshire? A. Solar Up New Hampshire is a program designed to make it easy and affordable for residents and businesses to go solar that is,
Renewable Energy. Solar Power. Courseware Sample 86352-F0
Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this
Fact Sheet March 2013. Solar Photovoltaic Systems Electricity from Sunshine
Fact Sheet March 2013 Solar Photovoltaic Systems Electricity from Sunshine Farming connect Introduction Farming has always been about harvesting energy from the sun after all, every green leaf is a solar
Corona Department of Water & Power (DWP) Solar Partnership Program Guidelines and Application
Corona Department of Water & Power (DWP) Solar Partnership Program Guidelines and Application DWP s new Solar Partnership Program is available to help offset your investment in a PV system and get you
Solar Matters III Teacher Page
Solar Matters III Teacher Page Solar Powered System - 2 Student Objective Given a photovoltaic system will be able to name the component parts and describe their function in the PV system. will be able
Solar air collectors for industry and larger halls S Ø. Efficient dehumidification and air heating for free...
Solar air collectors for industry and larger halls N S Ø Efficient dehumidification and air heating for free... This booklet contains information about SolarVenti Industrial air solar system. The system
Visualization and remote access for small and medium-scale PV plants. Be a solar expert
Visualization and remote access for small and medium-scale PV plants Be a solar expert Organizational Matters > Escape routes > Meeting point in case of fire alarm > Closest sanitary facilities > Contact
Gross/Active PV Surface Area: 13.094,40 / 13.086,29 m². Energy Produced by PV Array (AC):
1x17 1x17 1x 8 x Trina Solar Trina TSM-PC5A 6 6 W 5 ; x Danfoss Solar Inverters TLX 1,5k 1,5kW Location: Arrondissement d'issoire Climate Data Record: Arrondissement d'issoire PV Output:.8, kwp Gross/Active
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC
Design qualification and type approval of PV modules acc. to IEC 61215:2005 / IEC 61646:2008
Design qualification and type approval of PV modules acc. to IEC 61215:2005 / IEC 61646:2008 TÜV Rheinland Immissionsschutz und Energiesysteme GmbH Renewable Energies 2009-01-22 January 2009 Design qualification
Solar Energy Systems
Solar Energy Systems Energy Needs Today s global demand for energy is approximately 15 terawatts and is growing rapidly Much of the U.S. energy needs are now satisfied from petroleum (heating, cooling,
Technical Information POWER PLANT CONTROLLER
Technical Information POWER PLANT CONTROLLER Content The Power Plant Controller offers intelligent and flexible solutions for the control of all PV power plants in the megawatt range. It is suitable for
SOLAR SKI LIFT PV CARPORT AND OTHER SOLAR WINGS CABLE BASED SOLUTIONS
of the 27 th European Photovoltaic Solar Energy Conference, Frankfurt 25 st Sept. 2015; 4BV.1.60 SOLAR SKI LIFT PV CARPORT AND OTHER SOLAR WINGS CABLE BASED SOLUTIONS F. Baumgartner 1, A. Büchel 2, R.
SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL
SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL SOLAR TECHNOLOGY Photovoltaics Funding Options Solar Thermal Photovoltaics 1. What are they and how do they work? 2. The Solar
Application of photovoltaic s in the building and construction industry as a power generating facility
Application of photovoltaic s in the building and construction industry as a power generating facility Matthew P. Peloso Science and Technology Business Services LLP 10 Gopeng Street, ICON #34-22 Singapore,
Ambient Temperature Sensor TEMPSENSOR-AMBIENT
Ambient Temperature Sensor TEMPSENSOR-AMBIENT Installation Guide TempsensorAmb-IEN110610 98-0042210 Version 1.0 EN SMA Solar Technology AG Table of Contents Table of Contents 1 Notes on this Guide...............................
MORE POWER. A BETTER INVESTMENT.
SUNPOWERCORP.COM US HEADQUARTERS SunPower Corporation 3939 N. 1st Street San Jose, California 95134 USA 1-800-SUNPOWER sunpowercorp.com MORE POWER. A BETTER INVESTMENT. Established Incorporated in 1985
Making the most of free electricity from your solar panels
Making the most of free electricity from your solar panels A guide to your Solar Photovoltaic (PV) system Delivering Sustainable Energy Solutions www.wolverhamptonhomes.org.uk WHAM4001 05/13 2 Cut your
Volther Hybrid PV-T Panels
Volther Hybrid PV-T Panels 2010 1 OUTLINE Problem: PV Paradox Solution: Hybrid Panels Types of PV-T Panels Types of Mounting System Components Certification Warranty Volther on World Media Case Studies
PVWATTS DERATING FACTORS FOR SOLARBRIDGE PANTHEON MICROINVERTERS AND ACPV SYSTEMS
PVWATTS DERATING FACTORS FOR SOLARBRIDGE PANTHEON MICROINVERTERS AND ACPV SYSTEMS AUTHOR Vincent Bartlett Senior Member of Technical Staff Version 1.5 March 22, 2013 SolarBridge Technologies 1 INTRODUCTION
Optimum Solar Orientation: Miami, Florida
Optimum Solar Orientation: Miami, Florida The orientation of architecture in relation to the sun is likely the most significant connection that we can make to place in regards to energy efficiency. In
Solar Electric Power System Owner s Manual
GE Energy Solar Electric Power System Owner s Manual v4.2nmtr Safety...3 Documents...4 Congratulations...5 Principles of Operation...5 Measuring Your Power and Energy...7 Table of Contents Estimating Your
Greenhouse Glazing Effects on Heat Transfer for Winter Heating and Summer Cooling
Greenhouse Glazing Effects on Heat Transfer for Winter Heating and Summer Cooling David R. Mears, Ph.D. Bioresource Engineering Department of Plant Biology and Pathology Rutgers University 20 Ag Extension
SOLAR POWER. Information Book
SOLAR POWER Information Book OUR BUSINESS Easy Being Green; Is Australia s largest energy saving company Has helped over 800,000 Australians go solar or become more energy efficient Is Australian owned
FIELD TESTS OF FUEL EFFICIENCY MAGNETS J A CRABB JULY 1997 SWEEG REPORT 80
FIELD TESTS OF FUEL EFFICIENCY MAGNETS J A CRABB JULY 1997 SWEEG REPORT 80 List of symbols T f average temperature at the flow header, C T r average temperature at the return header, C f average water
GUIDE TO NET ENERGY METERING. www.heco.com
GUIDE TO NET ENERGY METERING www.heco.com Welcome to Net Energy Metering As a Net Energy Metering (NEM) customer, you are helping Hawaii reach its clean energy goals. Your photovoltaic (PV) system should
SOFTWARE FOR MONITORING A GRID CONNECTED PHOTOVOLTAIC POWER PLANT
Contemporary Materials (Renewable energy sources), II 2 (2011) Page 191 of 203 Professional paper UDK 621.311:004.896 doi:10.5767/anurs.cmat.110202.en.191t SOFTWARE FOR MONITORING A GRID CONNECTED PHOTOVOLTAIC
SMA Service Concept Sunny Central
SMA Service Concept Sunny Central SMA SERVICE CONCEPT SUNNY CENTRAL SECURITY WITH A MODULAR APPROACH Solar power plants represent a profitable and secure investment opportunity. In combination with high-yield
SMA SERVICE FOR PV POWER PLANTS
SMA SERVICE FOR PV POWER PLANTS EN Successful Projects with Sunny Central System Solutions SMA SERVICE Top Performance and Maximum Yields One thing is certain: PV power plants are investments in the future.
ENERGY SAVINGS FROM SOLAR HEATED WATER IN BULGARIA
ENERGY SAVINGS FROM SOLAR HEATED WATER IN BULGARIA R. Todorova National Institute of Meteorology and Hydrology Blvd.Tzarigradsko shousee 66 Email: [email protected] Abstract At the present work
Solar PV Cells Free Electricity from the Sun?
Solar PV Cells Free Electricity from the Sun? An Overview of Solar Photovoltaic Electricity Carl Almgren and George Collins( editor) Terrestrial Energy from the Sun 5 4 3 2 1 0.5 Electron-Volts per Photon
Frequently Asked Questions SOLAR ENERGY:
Frequently Asked Questions SOLAR ENERGY: Why should I have Solar Power? There are lots of reasons that make installing Solar Power Generation worthwhile: Environmental Green advantages Zero carbon emissions
Solar Power HourSM. Solar educa on for your community.
Solar Power HourSM Solar educa on for your community. 1 Contents About. 1 Commonly Asked Questions.. 2-3 The Solar Site Assessment.. 3-4 Selecting a Solar Installer. 5-7 Certified Installers by State.
Communication Interface for SMA Inverters SMA BLUETOOTH PIGGY-BACK
Communication Interface for SMA Inverters SMA BLUETOOTH PIGGY-BACK Installation Guide BTPB-IEN112112 98-0014212 Version 1.2 EN SMA Solar Technology AG Table of Contents Table of Contents 1 Notes on this
THE NATIONAL BUILDING REGULATIONS PART XA: ENERGY EFFICIENCY. Presentation by Peter Henshall-Howard: HEAD: BUILDING DEVELOPMENT MANAGEMENT.
THE NATIONAL BUILDING REGULATIONS PART XA: ENERGY EFFICIENCY. Presentation by Peter Henshall-Howard: HEAD: BUILDING DEVELOPMENT MANAGEMENT. A Diagrammatic representation of the relationship between the
CHANGING THE WORLD WITH COMPELLING IDEAS. German Indian Renewable Energy Dialogue 1st of October 2008
Titel: IBC SOLAR mit starken Ideen die Welt verändern Autor: Ort, 00. Monat 2008 CHANGING THE WORLD WITH COMPELLING IDEAS German Indian Renewable Energy Dialogue 1st of October 2008 2008 IBC SOLAR Agenda
ABB central inverters PVS800 100 to 1000 kw
Solar inverters ABB central inverters PVS800 100 to 1000 kw ABB central inverters raise reliability, efficiency and ease of installation to new levels. The inverters are aimed at system integrators and
How To Use The Sunny Central Communication Controller
Technical Information SUNNY CENTRAL COMMUNICATION CONTROLLER Content The Sunny Central Communication Controller is an integral part of the central inverter which is responsible for establishing the connection
Valuing The Return on Solar Projects for Businesses and Government Agencies
Valuing The Return on Solar Projects for Businesses and Government Agencies EXECUTIVE SUMMARY With rising grid electricity prices and declining solar technology costs, the economic benefits of solar power
HIGH FREQUENCY TRANSFORMER WITH TRANSFORMER SWITCHOVER
OPTIMUM EFFICIENCY AND FLEXIBLE USE HIGH FREQUENCY TRANSFORMER WITH TRANSFORMER SWITCHOVER One of the many requirements of the modern inverter is a broad, coordinated input and MPP voltage range with a
Module 2.2. Heat transfer mechanisms
Module 2.2 Heat transfer mechanisms Learning Outcomes On successful completion of this module learners will be able to - Describe the 1 st and 2 nd laws of thermodynamics. - Describe heat transfer mechanisms.
Photovoltaic system sizing report
Angel-Global Partner.com Adresse: Fatih cad.14 Sok 11/f Oba mah. Antalya/alanya Photovoltaic system sizing report 1012 KWp Kurulum Genel Gorunumu Project : Client : Address : Antalya 1 MWp Arazi Ustu Zeki
