APPLICATIONS OF DATA MINING TO PREDICT MESOSCALE WEATHER EVENTS (TORNADOES AND CLOUDBURSTS)

Size: px
Start display at page:

Download "APPLICATIONS OF DATA MINING TO PREDICT MESOSCALE WEATHER EVENTS (TORNADOES AND CLOUDBURSTS)"

Transcription

1 International Journal of Computer Engineering and Technology (IJCET) Volume 6, Issue 7, July 2015, pp , Article ID: Available online at ISSN Print: and ISSN Online: IAEME Publication APPLICATIONS OF DATA MINING TO PREDICT MESOSCALE WEATHER EVENTS (TORNADOES AND CLOUDBURSTS) Miss Gurbrinder Kaur Assistant Professor, M.C.A Department, BCIIT, Delhi ABSTRACT Over the last decade or so, predicting the weather and climate has emerged as one of the most important areas of scientific Research. This is partly because the increase in skill of current weather forecasts has made society more and more dependent on them day to day for a whole range of decision making. And it is partly because climate change is now widely accepted and the realization is growing rapidly that it will affect every person in the world either directly or indirectly. Keywords: False Alarm Ratio (FAR), Mesocyclone Detection Algorithm (MDA), Numerical Weather Prediction (NWP), Receiver Operating Characteristic (ROC), Probability of Detection (POD). Cite This Article: Miss Gurbrinder Kaur, Applications of Data Mining To Predict Mesoscale Weather Events (Tornadoes and Cloudbursts). International Journal of Computer Engineering and Technology, 6(7), 2015, pp INTRODUCTION Although considerable progress has been made in the observation, modeling and understanding of tornadoes, warning and forecasting before ahead remains a considerable challenge for the forecasters. The statistics have clearly shown warning probability of detection (POD) and lead time have remained at the same level in recent years with false alarm ratio (FAR) remaining relatively constant. This is principally because the existing radars and weather detection methodologies suffer from limitations that allow meteorological quantities and associated features to go undetected. There is a need of new advances in this area if substantial improvements in warning and forecasting accuracy are to take place. The improvements over the past decades are evident from the Figure.1 with POD and Lead Time but FAR relatively remain constant over the past 20 years with approximate value of 75%.Because FAR never shown improvement over the past [email protected]

2 Miss Gurbrinder Kaur years thus is not expected to improve in near future until new advancement in the technology is not developed. Figure.1 Nationwide tornado warning verification statistics from as well as NWS goals for new storm-based beginning in 2008: Probability of Detection (black line with circles), false alarm ration (red line with squares) and lead time (blue line) with future goals (same with dotted lines). [Data courtesy of B. MacAloney II, National Weather Service Performance Branch, 2008] 2. RELATED WORK A. Predicting Tornadoes by Applying Data Mining Techniques In [1] the goal of much of Amy McGovern s research as an associate professor in the School of Computer Science at the University of Oklahoma has been to revolutionize tornado prediction and other forms of severe weather. The author has done these using artificial intelligent techniques, data mining, machine learning, and storm simulations. The research proves that Radars provide an incomplete picture of the atmosphere. Although they can sense the intensity of the precipitation and a single dimension of the wind vector, there are many other important variables such as the full threedimensional wind field, pressure, temperature, etc. that are important to prediction [2].The author has developed a unique set of simulations of supercell thunderstorms which are most severe type of thunderstorms and cause most destructive tornadoes. McGovern s models provide the ability to identify spatiotemporal relationships between these regions that can be used to predict the severe weather events. Novel data mining models has been developed that make use of the spatiotemporal nature of the data because neither space nor time can be ignored for weather prediction. Weather is three-dimensional and the models can identify arbitrary shapes and relationships between the shapes. In [3] McGovern et al. developed spatiotemporal models and applied these models to severe weather data. These models addressed both the spatial and spatiotemporal changes in data using a relational approach. In their work they have also developed a set of high resolution simulations capable of resolving tornadoes. In [4] V Lakshmanan, Gregory J. Stumpf, Arthur Witt developed A Mesocyclone Detection Algorithm (MDA) and a near-storm environment (NSE) algorithm at the National Severe Storms Laboratory. The MDA algorithm identified those storm-scale circulations which are precursors to tornadoes. Marzban and Stumpf in [5] and [6] 20 [email protected]

3 Applications of Data Mining To Predict Mesoscale Weather Events (Tornadoes and Cloudbursts) developed a neural network based on the MDA parameters to identify which of the circulations would be tornadic using a small set of data cases [5]. That work was extended to cover 43 storm days in [7] using a more robust methodology. The neural networks developed in this paper (both for MDA and MDA+NSE inputs) achieve similiar Heidke skill scores on the training, validation and independent data sets. The low variability of the Receiver Operating Characteristic (ROC) plots in this paper also suggest that the neural networks developed in this paper are robust and not overtrained. In [8] Indra Adrianto, Theodore B. Trafalis, And Valliappa lakshmanan make use of Support Vector Machines for predicting the location and time of tornadoes. They extended the work of Lakshmanan et al [7] to use a set of 33 storm days and introduced some variations to the above results. The objective of the research was to estimate the probability of a tornado event at a particular location within a given time window. They presented least-squares methodology to estimate shear, quality control of radar reflectivity, morphological image processing to estimate gradients, fuzzy logic to generate compact measures of tornado possibility and support vector machine classification to generate the final spatiotemporal probability field. The results of the research proved that it might increase the lead time of tornado warning since the estimated probability that there would be a tornado at a particular spatial location in the next 30 minutes, while the average lead time of a tornado being predicted by the National Weather Service currently is 18 minutes. Thus the results were promising. Thus more spatial inputs can be considered and other classification methods such as Bayesian SVMs and Bayesian neural networks may improve the results. B. Application of Data Mining In Predicting Cloudburst Formation There is no satisfactory technique for anticipating the occurrence of cloud bursts because of their small scale. A very fine net work of radars is required to be able to detect the likelihood of a cloud burst and this would be prohibitively expensive. Only the areas likely to receive heavy rainfall can be identified on a short range scale. A real life case of cloudburst has been discussed using DM k-means clustering technique by Kavita in [9]. It is observed that this very large region of relative humidity is an early signal of formation of cloudburst. In the research, the derivation of sub-grid scale weather systems from NWP model output products is demonstrated. Such signals are not possible through normal MOS technique. The study has demonstrated that intelligent systems can be a good alternative for unstable MOS. Data mining, specially clustering when applied on divergence and relative humidity can provide an early indication of formation of cloudburst. This study is an effort towards providing timely and actionable information of these events using data mining techniques in supplement with NWP models that can be a great benefit to society. 3. PRINCIPAL AND METHODOLOGY OF WEATHER FORECASTING A. Ensemble Forecasting A forecast is an estimate of the future state of the atmosphere. It is created by estimating the current state of the atmosphere using observations, and then calculating how this state will evolve in time using a numerical weather prediction computer model. As the atmosphere is a chaotic system, very small errors in its initial state can 21 [email protected]

4 Miss Gurbrinder Kaur lead to large errors in the forecast. This means that we can never create a perfect forecast system because we can never observe each detail of the atmosphere's initial state. Tiny errors in the initial state will be amplified, so there is always a limit to how far ahead we can predict any detail. To test how these small differences in the initial conditions may affect the outcome of the forecast, an ensemble system can be used to produce many forecasts. Instead of running just a single forecast, the computer model is run a number of times from slightly different starting conditions. The complete set of forecasts is referred to as the ensemble, and individual forecasts within it as ensemble members. Instead of running just a single forecast, the computer model is run a number of times from slightly different starting conditions. The complete set of forecasts is referred to as the ensemble, and individual forecasts within it as ensemble members. Figure. 2. Schematic of how the ensemble samples the uncertainty in the forecast. The notion of ensemble forecasting was first introduced in the studies of Lorenz [10], where he examined the initial state uncertainties and well known butterfly effect. The study of Lorenz showed that no matter how good the observations are, or how good the forecasting techniques, there is almost certainly an insurmountable limit as to how far into the future one can forecast. In ensemble forecasting the major issue relates to the removal of the collective errors of multimodels. The major drawback of straight average approach of assigning an equal weight of 1.0 to each model is that it may include several poor models. The average of these poor models degrades the overall results. To address this problem if ensemble forecasting, in [11] and [12] Krishnamurti introduced a multimodel super ensemble technique that shows a major improvement in the prediction skill. B. Observation and Assimilation of Observational Data Observations are important to the process of creating forecasts. Around huge number of observations is received recording the atmospheric conditions around the world every day. Current main sources of observations are: Surface and marine data, satellites, weather balloons and aircraft. To use these observations in an operational weather forecasting system, observations have to monitor their availability; quality controls them, and processes them into a form that can be used by the computer models and forecasters. Current main sources of observations are surface and marine data, satellites, radiosondes and aircrafts. Even with the many observations received we do not have enough information to tell us what the atmosphere is doing at all 22 [email protected]

5 Applications of Data Mining To Predict Mesoscale Weather Events (Tornadoes and Cloudbursts) points on and above the Earth's surface. There are large areas of ocean, inaccessible regions on land and remote levels in the atmosphere where we have very few, or no, observations. To fill in the 'gaps' we can combine what observations we do have with forecasts of what we expect the conditions in the atmosphere to be. This is a process called data assimilation and gives us our best estimate of the current state of the atmosphere - the first step in producing a weather forecast. Without data assimilation, any attempt to produce reliable forecasts is almost certain to end in failure. Data assimilation research is focused on making the best use of observations using advanced variational and ensemble data assimilation techniques. C. Numerical Weather Prediction Model The numerical weather prediction (NWP) process involves assimilation of observations to provide the starting conditions for a numerical weather forecast model. The model is essentially a computer simulation of the processes in the Earth's atmosphere, land surface and oceans which affect the weather. Once current weather conditions are known, the changes in the weather are predicted by the model. Even tiny changes in the atmospheric conditions can lead to drastically different weather patterns after only a short time, so it is vital that the current state of the atmosphere is represented as accurately as possible. This process is highly mathematical and takes the supercomputer longer to accurately estimate the current atmospheric state than it does to actually make the forecast. Weather Forecasting entails predicting how the present state of the atmosphere will change. Present weather conditions are obtained by ground observations, observation from satellites, ships, aircraft, buoys, balloons and weather stations covering the entire planet. This includes information from over the oceans, from the surface (ships and buoys), from high in the atmosphere (satellites) and below the oceans (a network of special floats called Argo).Creating forecasts is a complex process which is constantly being updated. Weather forecasts made for 12 and 24 hours are typically quite accurate. Forecasts made for two and three days are usually good. But beyond about five days, forecast accuracy falls off rapidly. The rate of data generation and storage far exceeds the rate of data analyses. This represents lost opportunities in terms of scientific insights not gained and impacts or adaptation strategies not adequately informed. D. The Synoptic and Mesoscale Weather Phenomenon The synoptic scale in meteorology is the term used to describe the scale of large-scale weather systems of the scale of the order of 1000 kilometres or more. The extratropical weather. This corresponds to weather events to occur at low pressure areas e.g extropical cyclones. The term mesoscale is believed to have been introduced by Ligda in [13] reviewing the use of weather radar, in order to describe phenomena smaller than the synoptic scale but larger than the microscale, a term that was widely used at the time (and still is) in reference to phenomena having a scale of a few kilometers or less. Several weather events associated with small-scale disturbances, regarded as noise in daily weather analyses, became the focal point of storm researchers a micro study by Fujita [14].Meanwhile U.S weather Bureau defined the mesoscale to be centered between 10 and 100 mi, leading to the publication of mesometeorological (mesometeorological study of squall lines by Fujita[15].Further Fujita in [16] found that diameter of tornadoes rarely exceeds 1000m or the mesoscale [email protected]

6 Miss Gurbrinder Kaur Figure. 3 Typical Time and Space Scale of atmospheric motion (Source: DTU university of Denmark) Figure.4. From large scale to small scale forecast (source: Mesoscale meteorological modeling, university of Denmark) 4. CONCLUSION While forecasters can identify conditions favorable for major tornado outbreaks several days in advance, short-term forecasting of individual storms, providing additional advanced notice, and predicting probable tornado paths remain a challenge. Because of these limitations the weather forecasters strongly need to corporate additional information to develop the better understanding of the formation of tornadoes. 5. ACKNOWLEDGEMENT The author would like to express deepest sense of gratitude to Guide Dr. Rattan K. Datta, Former Advisor, Department of Science & Technology, Government of India 24 [email protected]

7 Applications of Data Mining To Predict Mesoscale Weather Events (Tornadoes and Cloudbursts) and currently Director, Mohyal Educational Research Institute of Technology, for his encouragement, guidance and mentoring. Without his support, it would not have been possible to take up research in this challenging field. REFERENCES [1] McGovern, Amy and Barto, Andrew G. (2002) Autonomous Discovery of Temporal Abstractions from Interaction with an Environment.Poster presentation at the Symposium on Abstraction, Refomulation, and Approximation (SARA 2002), Volume 2371/2002, pages [2] McGovern, Amy and Hiers, Nathan and Collier, Matthew and Gagne II, David J. and Brown, Rodger A. (2008). Spatiotemporal Relational Probability Trees. Proceedings of the 2008 IEEE International Conference on Data Mining, Pages Pisa, Italy December [3] McGovern, Amy and Gagne II, David John and Troutman, Nathaniel and Brown, Rodger A. and Basara, Jeffrey and Williams, John. (2011) Using Spatiotemporal Relational Random Forests to Improve our Understanding of Severe Weather Processes. Statistical Analysis and Data Mining, special issue on the best of the 2010 NASA Conference on Intelligent Data Understanding. Vol 4, Issue 4, pages [4] Lakshmanan, V., Rabin, R. and DeBrunner, V. (2003a) Multiscale storm identification and forecast, Atmospheric Research, 67-68, [5] Lakshmanan, V., Hondl, K., Stumpf, G., and Smith, T. (2003b) Quality control of weather radar data using texture features and a neural network, in 5th International Conferece on Advances in Pattern Recognition (Kolkota, India), IEEE. [6] Lakshmanan, V., Adrianto, I., Smith, T., and Stumpf, G. (2005a) A spatiotemporal approach to tornado prediction, in Proceedings of 2005 IEEE International Joint Conference on Neural Networks (Montreal, Canada), 3, [7] Lakshmanan, V., Stumpf, G., and Witt, A. (2005b) A neural network for detecting and diagnosing tornadic circulations using the mesocyclone detection and near storm 21 environment algorithms, in 21st International Conference on Information Processing Systems (San Diego, CA), American Meteorological Society, CD ROM, J5.2. [8] Adrianto, I., Trafalis, T. B., & Lakshmanan, V., Support vector machines for spatiotemporal tornado prediction, International Journal of General Systems, Volume 38, Issue 7, Pages , [9] (Kavita Pabreja; Rattan K. Datta) A data warehousing and data mining approach for analysis and forecast of cloudburst events using OLAP-based data hypercube Int. J. of Data Analysis Techniques and Strategies, 2012 Vol.4, No.1, pp [10] Lorenz E.N 1963 Deterministic non-periodic flow. J. Atmos. Sci. 42, [11] Krishnamurti, T. N., C. M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran (1999), improved weather and seasonal climate forecasts from multimodel superensemble, Science, 285, , doi: /science [12] Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, C. E. Williford, S. Gadgil, and S. Surendran (2000), Multimodel ensemble forecasts for weather and seasonal climate, J. Clim., 13, , doi: / (2000) co [email protected]

8 Miss Gurbrinder Kaur [13] Ligda, M. G. H., 1951: Radar storm observation. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., [14] Fujita, T.T., 1973: Proposed mechanism of tornado formation from rotating thunderstorms. [15] Climatological Data, National Summary, 4, 6, 1953, p FUJITA, T., 1950: Microanalytical study of thundernose, Geoph. Mag. ojjapan, 22, 2, pp [16] Fujita, T. T., 1963: Analytical mesometeorology: A review, Meteor. Monogr., 5, No. 27, Amer. Meteor. Soc., [email protected]

6A.2 The testing of NSSL multi-sensor applications and data from prototype platforms in NWS forecast operations

6A.2 The testing of NSSL multi-sensor applications and data from prototype platforms in NWS forecast operations 6A.2 The testing of NSSL multi-sensor applications and data from prototype platforms in NWS forecast operations Kevin A. Scharfenberg* and Travis M. Smith Cooperative Institute for Mesoscale Meteorology

More information

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang

More information

UTILIZING GOOGLE EARTH AS A GIS PLATFORM FOR WEATHER APPLICATIONS

UTILIZING GOOGLE EARTH AS A GIS PLATFORM FOR WEATHER APPLICATIONS UTILIZING GOOGLE EARTH AS A GIS PLATFORM FOR WEATHER APPLICATIONS Travis M. Smith 1,2 and Valliappa Lakshmanan 1,2 1 U. of Oklahoma/CIMMS; 2 NOAA/NSSL 1. Introduction Google Earth (formerly known as Keyhole;

More information

NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada

NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada 1. INTRODUCTION Short-term methods of precipitation nowcasting range from the simple use of regional numerical forecasts

More information

How To Forecast Solar Power

How To Forecast Solar Power Forecasting Solar Power with Adaptive Models A Pilot Study Dr. James W. Hall 1. Introduction Expanding the use of renewable energy sources, primarily wind and solar, has become a US national priority.

More information

Regional Forecast Center Timişoara 15. Gh. Adam St., Timişoara, Romania, e-mail: [email protected]

Regional Forecast Center Timişoara 15. Gh. Adam St., Timişoara, Romania, e-mail: cristi_nichita2004@yahoo.com Analele UniversităŃii din Oradea Seria Geografie Tom XX, no. 2/2010 (December), pp 197-203 ISSN 1221-1273, E-ISSN 2065-3409 Article no. 202106-492 SOME DOPPLER RADAR FEATURES OF SEVERE WEATHER IN SUPERCELLS

More information

Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models

Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute

More information

[ Climate Data Collection and Forecasting Element ] An Advanced Monitoring Network In Support of the FloodER Program

[ Climate Data Collection and Forecasting Element ] An Advanced Monitoring Network In Support of the FloodER Program [ Climate Data Collection and Forecasting Element ] An Advanced Monitoring Network In Support of the FloodER Program December 2010 1 Introduction Extreme precipitation and the resulting flooding events

More information

Real-time Quality Control of Reflectivity Data Using Satellite Infrared Channel and Surface Observations

Real-time Quality Control of Reflectivity Data Using Satellite Infrared Channel and Surface Observations Real-time Quality Control of Reflectivity Data Using Satellite Infrared Channel and Surface Observations V Lakshmanan 1, Miguel Valente 2 Abstract Radar reflectivity data can be quality-controlled using

More information

Development of a. Solar Generation Forecast System

Development of a. Solar Generation Forecast System ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,

More information

Baudouin Raoult, Iryna Rozum, Dick Dee

Baudouin Raoult, Iryna Rozum, Dick Dee ECMWF contribution to the EU funded CHARME Project: A Significant Event Viewer tool Matthew Manoussakis Baudouin Raoult, Iryna Rozum, Dick Dee 5th Workshop on the use of GIS/OGC standards in meteorology

More information

THE STRATEGIC PLAN OF THE HYDROMETEOROLOGICAL PREDICTION CENTER

THE STRATEGIC PLAN OF THE HYDROMETEOROLOGICAL PREDICTION CENTER THE STRATEGIC PLAN OF THE HYDROMETEOROLOGICAL PREDICTION CENTER FISCAL YEARS 2012 2016 INTRODUCTION Over the next ten years, the National Weather Service (NWS) of the National Oceanic and Atmospheric Administration

More information

Meteorological Forecasting of DNI, clouds and aerosols

Meteorological Forecasting of DNI, clouds and aerosols Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, 2014-05-07 Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR) Overview What

More information

ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY. Theses of the PhD dissertation

ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY. Theses of the PhD dissertation ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY Theses of the PhD dissertation ANDRÁS TAMÁS SERES EÖTVÖS LORÁND UNIVERSITY FACULTY OF SCIENCE PhD

More information

SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY

SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY Wolfgang Traunmüller 1 * and Gerald Steinmaurer 2 1 BLUE SKY Wetteranalysen, 4800 Attnang-Puchheim,

More information

Artificial Neural Network and Non-Linear Regression: A Comparative Study

Artificial Neural Network and Non-Linear Regression: A Comparative Study International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 Artificial Neural Network and Non-Linear Regression: A Comparative Study Shraddha Srivastava 1, *, K.C.

More information

http://www.isac.cnr.it/~ipwg/

http://www.isac.cnr.it/~ipwg/ The CGMS International Precipitation Working Group: Experience and Perspectives Vincenzo Levizzani CNR-ISAC, Bologna, Italy and Arnold Gruber NOAA/NESDIS & Univ. Maryland, College Park, MD, USA http://www.isac.cnr.it/~ipwg/

More information

Hong Kong Observatory Summer Placement Programme 2015

Hong Kong Observatory Summer Placement Programme 2015 Annex I Hong Kong Observatory Summer Placement Programme 2015 Training Programme : An Observatory mentor with relevant expertise will supervise the students. Training Period : 8 weeks, starting from 8

More information

II. Related Activities

II. Related Activities (1) Global Cloud Resolving Model Simulations toward Numerical Weather Forecasting in the Tropics (FY2005-2010) (2) Scale Interaction and Large-Scale Variation of the Ocean Circulation (FY2006-2011) (3)

More information

8B.6 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS, 2003-2009

8B.6 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS, 2003-2009 8B.6 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS, 2003-2009 Jason M. Davis*, Andrew R. Dean 2, and Jared L. Guyer 2 Valparaiso University, Valparaiso, IN 2 NOAA/NWS Storm Prediction Center, Norman, OK.

More information

Random forest algorithm in big data environment

Random forest algorithm in big data environment Random forest algorithm in big data environment Yingchun Liu * School of Economics and Management, Beihang University, Beijing 100191, China Received 1 September 2014, www.cmnt.lv Abstract Random forest

More information

USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower

USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP M. Taylor J. Freedman K. Waight M. Brower Page 2 ABSTRACT Since field measurement campaigns for proposed wind projects typically last no more than

More information

Data Sets of Climate Science

Data Sets of Climate Science The 5 Most Important Data Sets of Climate Science Photo: S. Rahmstorf This presentation was prepared on the occasion of the Arctic Expedition for Climate Action, July 2008. Author: Stefan Rahmstorf, Professor

More information

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners

More information

Design and Deployment of Specialized Visualizations for Weather-Sensitive Electric Distribution Operations

Design and Deployment of Specialized Visualizations for Weather-Sensitive Electric Distribution Operations Fourth Symposium on Policy and Socio-Economic Research 4.1 Design and Deployment of Specialized Visualizations for Weather-Sensitive Electric Distribution Operations Lloyd A. Treinish IBM, Yorktown Heights,

More information

Enhanced Boosted Trees Technique for Customer Churn Prediction Model

Enhanced Boosted Trees Technique for Customer Churn Prediction Model IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V5 PP 41-45 www.iosrjen.org Enhanced Boosted Trees Technique for Customer Churn Prediction

More information

Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images

Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images Ng Ka Ho, Hong Kong Observatory, Hong Kong Abstract Automated forecast of significant convection

More information

David P. Ruth* Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA Silver Spring, Maryland

David P. Ruth* Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA Silver Spring, Maryland 9.9 TRANSLATING ADVANCES IN NUMERICAL WEATHER PREDICTION INTO OFFICIAL NWS FORECASTS David P. Ruth* Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA

More information

Use of Artificial Neural Network in Data Mining For Weather Forecasting

Use of Artificial Neural Network in Data Mining For Weather Forecasting Use of Artificial Neural Network in Data Mining For Weather Forecasting Gaurav J. Sawale #, Dr. Sunil R. Gupta * # Department Computer Science & Engineering, P.R.M.I.T& R, Badnera. 1 [email protected]

More information

MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION

MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION Blake J. Allen National Weather Center Research Experience For Undergraduates, Norman, Oklahoma and Pittsburg State University, Pittsburg,

More information

Requirements of Aircraft Observations data and Data Management Framework for Services and Other Data Users. (Submitted bymichael Berechree)

Requirements of Aircraft Observations data and Data Management Framework for Services and Other Data Users. (Submitted bymichael Berechree) WORLD METEOROLOGICAL ORGANIZATION WMO AMDAR PANEL WORKSHOP ON AIRCRAFT OBSERVING SYSTEM DATA MANAGEMENT Workshop on Aircraft Observing System Data Management/Doc.3.2 (31.V.2012) (GENEVA, SWITZERLAND, 5

More information

Flash Flood Guidance Systems

Flash Flood Guidance Systems Flash Flood Guidance Systems Introduction The Flash Flood Guidance System (FFGS) was designed and developed by the Hydrologic Research Center a non-profit public benefit corporation located in of San Diego,

More information

Basic Climatological Station Metadata Current status. Metadata compiled: 30 JAN 2008. Synoptic Network, Reference Climate Stations

Basic Climatological Station Metadata Current status. Metadata compiled: 30 JAN 2008. Synoptic Network, Reference Climate Stations Station: CAPE OTWAY LIGHTHOUSE Bureau of Meteorology station number: Bureau of Meteorology district name: West Coast State: VIC World Meteorological Organization number: Identification: YCTY Basic Climatological

More information

REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES

REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,

More information

P2.7 Online Weather Studies in a 2-year program in Applied Meteorology at West Virginia State University

P2.7 Online Weather Studies in a 2-year program in Applied Meteorology at West Virginia State University P2.7 Online Weather Studies in a 2-year program in Applied Meteorology at West Virginia State University Tina J. Cartwright * and Steven Fleegel West Virginia State University 1. INTRODUCTION West Virginia

More information

ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln

ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln REMOTE SENSING (SATELLITE) SYSTEM TECHNOLOGIES Michael A. Okoye and Greg T. Earth Satellite Corporation, Rockville Maryland, USA Keywords: active microwave, advantages of satellite remote sensing, atmospheric

More information

Development of an Integrated Data Product for Hawaii Climate

Development of an Integrated Data Product for Hawaii Climate Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes

More information

1 In this report, "tropical cyclone (TC)" is used as a generic term that includes "low pressure area (LPA)", "tropical depression

1 In this report, tropical cyclone (TC) is used as a generic term that includes low pressure area (LPA), tropical depression Comparative Study on Organized Convective Cloud Systems detected through Early Stage Dvorak Analysis and Tropical Cyclones in Early Developing Stage in the Western North Pacific and the South China Sea

More information

Partnership to Improve Solar Power Forecasting

Partnership to Improve Solar Power Forecasting Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office

More information

Weather Radar Basics

Weather Radar Basics Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW

More information

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University

More information

Basics of weather interpretation

Basics of weather interpretation Basics of weather interpretation Safety at Sea Seminar, April 2 nd 2016 Dr. Gina Henderson Oceanography Dept., USNA [email protected] Image source: http://earthobservatory.nasa.gov/naturalhazards/view.php?id=80399,

More information

New challenges of water resources management: Title the future role of CHy

New challenges of water resources management: Title the future role of CHy New challenges of water resources management: Title the future role of CHy by Bruce Stewart* Karl Hofius in his article in this issue of the Bulletin entitled Evolving role of WMO in hydrology and water

More information

IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS

IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and

More information

Climate Extremes Research: Recent Findings and New Direc8ons

Climate Extremes Research: Recent Findings and New Direc8ons Climate Extremes Research: Recent Findings and New Direc8ons Kenneth Kunkel NOAA Cooperative Institute for Climate and Satellites North Carolina State University and National Climatic Data Center h#p://assessment.globalchange.gov

More information

Predicting Flight Delays

Predicting Flight Delays Predicting Flight Delays Dieterich Lawson [email protected] William Castillo [email protected] Introduction Every year approximately 20% of airline flights are delayed or cancelled, costing

More information

The THREDDS Data Repository: for Long Term Data Storage and Access

The THREDDS Data Repository: for Long Term Data Storage and Access 8B.7 The THREDDS Data Repository: for Long Term Data Storage and Access Anne Wilson, Thomas Baltzer, John Caron Unidata Program Center, UCAR, Boulder, CO 1 INTRODUCTION In order to better manage ever increasing

More information

The Scientific Data Mining Process

The Scientific Data Mining Process Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In

More information

Real-time, rapidly updating severe weather products for virtual globes

Real-time, rapidly updating severe weather products for virtual globes Manuscript Click here to download Manuscript: VirtualGlobePaper_SmithLakshmanan.doc Real-time, rapidly updating severe weather products for virtual globes Travis M. Smith a and Valliappa Lakshmanan b a

More information

Empirical study of the temporal variation of a tropical surface temperature on hourly time integration

Empirical study of the temporal variation of a tropical surface temperature on hourly time integration Global Advanced Research Journal of Physical and Applied Sciences Vol. 4 (1) pp. 051-056, September, 2015 Available online http://www.garj.org/garjpas/index.htm Copyright 2015 Global Advanced Research

More information

Implementation of Data Mining Techniques for Weather Report Guidance for Ships Using Global Positioning System

Implementation of Data Mining Techniques for Weather Report Guidance for Ships Using Global Positioning System International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 3 Implementation of Data Mining Techniques for Weather Report Guidance for Ships Using Global Positioning System

More information

Recent activities on Big Data Assimilation in Japan

Recent activities on Big Data Assimilation in Japan August 17, 2014, WWOSC, Montreal, Canada Recent activities on Big Data Assimilation in Japan M. Kunii, J. Ruiz, K. Kondo, and Takemasa Miyoshi* RIKEN Advanced Institute for Computational Science *PI and

More information

RAVEN: A GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework

RAVEN: A GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework INL/CON-13-28360 PREPRINT RAVEN: A GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework ANS Annual Meeting C. Rabiti D. Mandelli A. Alfonsi J. J. Cogliati R. Kinoshita D. Gaston R. Martineau

More information

Title. Introduction to Data Mining. Dr Arulsivanathan Naidoo Statistics South Africa. OECD Conference Cape Town 8-10 December 2010.

Title. Introduction to Data Mining. Dr Arulsivanathan Naidoo Statistics South Africa. OECD Conference Cape Town 8-10 December 2010. Title Introduction to Data Mining Dr Arulsivanathan Naidoo Statistics South Africa OECD Conference Cape Town 8-10 December 2010 1 Outline Introduction Statistics vs Knowledge Discovery Predictive Modeling

More information

Joint Polar Satellite System (JPSS)

Joint Polar Satellite System (JPSS) Joint Polar Satellite System (JPSS) John Furgerson, User Liaison Joint Polar Satellite System National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration

More information

COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU

COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU Image Processing Group, Landcare Research New Zealand P.O. Box 38491, Wellington

More information

AMS 2009 Summer Community Meeting Renewable Energy Topic

AMS 2009 Summer Community Meeting Renewable Energy Topic AMS 2009 Summer Community Meeting Renewable Energy Topic The 2009 American Meteorological Society s Summer Community Meeting addressed the roles of academia, industry and government in supporting the development

More information

Knowledge Discovery from patents using KMX Text Analytics

Knowledge Discovery from patents using KMX Text Analytics Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs [email protected] Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers

More information

Hurricanes. Characteristics of a Hurricane

Hurricanes. Characteristics of a Hurricane Hurricanes Readings: A&B Ch. 12 Topics 1. Characteristics 2. Location 3. Structure 4. Development a. Tropical Disturbance b. Tropical Depression c. Tropical Storm d. Hurricane e. Influences f. Path g.

More information

Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia

Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -

More information

Sanjeev Kumar. contribute

Sanjeev Kumar. contribute RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a

More information

Grid Density Clustering Algorithm

Grid Density Clustering Algorithm Grid Density Clustering Algorithm Amandeep Kaur Mann 1, Navneet Kaur 2, Scholar, M.Tech (CSE), RIMT, Mandi Gobindgarh, Punjab, India 1 Assistant Professor (CSE), RIMT, Mandi Gobindgarh, Punjab, India 2

More information

INVESTIGATIONS INTO EFFECTIVENESS OF GAUSSIAN AND NEAREST MEAN CLASSIFIERS FOR SPAM DETECTION

INVESTIGATIONS INTO EFFECTIVENESS OF GAUSSIAN AND NEAREST MEAN CLASSIFIERS FOR SPAM DETECTION INVESTIGATIONS INTO EFFECTIVENESS OF AND CLASSIFIERS FOR SPAM DETECTION Upasna Attri C.S.E. Department, DAV Institute of Engineering and Technology, Jalandhar (India) [email protected] Harpreet Kaur

More information

Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF

Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF 3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ

More information

In this presentation, you will be introduced to data mining and the relationship with meaningful use.

In this presentation, you will be introduced to data mining and the relationship with meaningful use. In this presentation, you will be introduced to data mining and the relationship with meaningful use. Data mining refers to the art and science of intelligent data analysis. It is the application of machine

More information

Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction

Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Jin Xu, Shinjae Yoo, Dantong Yu, Dong Huang, John Heiser, Paul Kalb Solar Energy Abundant, clean, and secure

More information

COASTAL WIND ANALYSIS BASED ON ACTIVE RADAR IN QINGDAO FOR OLYMPIC SAILING EVENT

COASTAL WIND ANALYSIS BASED ON ACTIVE RADAR IN QINGDAO FOR OLYMPIC SAILING EVENT COASTAL WIND ANALYSIS BASED ON ACTIVE RADAR IN QINGDAO FOR OLYMPIC SAILING EVENT XIAOMING LI a, b, * a Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, 82234, Germany

More information

A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS

A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS Mrs. Jyoti Nawade 1, Dr. Balaji D 2, Mr. Pravin Nawade 3 1 Lecturer, JSPM S Bhivrabai Sawant Polytechnic, Pune (India) 2 Assistant

More information

Fundamentals of Climate Change (PCC 587): Water Vapor

Fundamentals of Climate Change (PCC 587): Water Vapor Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor

More information

Prediction of Heart Disease Using Naïve Bayes Algorithm

Prediction of Heart Disease Using Naïve Bayes Algorithm Prediction of Heart Disease Using Naïve Bayes Algorithm R.Karthiyayini 1, S.Chithaara 2 Assistant Professor, Department of computer Applications, Anna University, BIT campus, Tiruchirapalli, Tamilnadu,

More information

Application of Google Earth for flood disaster monitoring in 3D-GIS

Application of Google Earth for flood disaster monitoring in 3D-GIS Disaster Management and Human Health Risk II 271 Application of Google Earth for flood disaster monitoring in 3D-GIS M. Mori & Y. L. Chan Department of Information and Computer Science, Kinki University,

More information

SPATIAL DATA CLASSIFICATION AND DATA MINING

SPATIAL DATA CLASSIFICATION AND DATA MINING , pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal

More information

IBM Big Green Innovations Environmental R&D and Services

IBM Big Green Innovations Environmental R&D and Services IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project

More information

Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin *

Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin * Send Orders for Reprints to [email protected] 766 The Open Electrical & Electronic Engineering Journal, 2014, 8, 766-771 Open Access Research on Application of Neural Network in Computer Network

More information

Medical Big Data Interpretation

Medical Big Data Interpretation Medical Big Data Interpretation Vice president of the Xiangya Hospital, Central South University The director of the ministry of mobile medical education key laboratory Professor Jianzhong Hu BIG DATA

More information

WEATHER RADAR VELOCITY FIELD CONFIGURATIONS ASSOCIATED WITH SEVERE WEATHER SITUATIONS THAT OCCUR IN SOUTH-EASTERN ROMANIA

WEATHER RADAR VELOCITY FIELD CONFIGURATIONS ASSOCIATED WITH SEVERE WEATHER SITUATIONS THAT OCCUR IN SOUTH-EASTERN ROMANIA Romanian Reports in Physics, Vol. 65, No. 4, P. 1454 1468, 2013 ATMOSPHERE PHYSICS WEATHER RADAR VELOCITY FIELD CONFIGURATIONS ASSOCIATED WITH SEVERE WEATHER SITUATIONS THAT OCCUR IN SOUTH-EASTERN ROMANIA

More information

Predictive modelling around the world 28.11.13

Predictive modelling around the world 28.11.13 Predictive modelling around the world 28.11.13 Agenda Why this presentation is really interesting Introduction to predictive modelling Case studies Conclusions Why this presentation is really interesting

More information

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.

More information

2. The map below shows high-pressure and low-pressure weather systems in the United States.

2. The map below shows high-pressure and low-pressure weather systems in the United States. 1. Which weather instrument has most improved the accuracy of weather forecasts over the past 40 years? 1) thermometer 3) weather satellite 2) sling psychrometer 4) weather balloon 6. Wind velocity is

More information

ANALYSIS OF INDIAN WEATHER DATA SETS USING DATA MINING TECHNIQUES

ANALYSIS OF INDIAN WEATHER DATA SETS USING DATA MINING TECHNIQUES ANALYSIS OF INDIAN WEATHER DATA SETS USING DATA MINING TECHNIQUES ABSTRACT T V Rajini kanth 1, V V SSS Balaram 2 and N.Rajasekhar 3 1 Professor, CSE, SNIST, Hyderabad [email protected] 2 Professor & HOD,

More information

The State of the Climate And Extreme Weather. Deke Arndt NOAA s National Climatic Data Center

The State of the Climate And Extreme Weather. Deke Arndt NOAA s National Climatic Data Center The State of the Climate And Extreme Weather Deke Arndt June Feb 2013 2011 1 The world s largest archive of weather and climate data NCDC is located in Asheville, North Carolina A place of active retirement

More information

Weather forecast prediction: a Data Mining application

Weather forecast prediction: a Data Mining application Weather forecast prediction: a Data Mining application Ms. Ashwini Mandale, Mrs. Jadhawar B.A. Assistant professor, Dr.Daulatrao Aher College of engg,karad,[email protected],8407974457 Abstract

More information

DIN Department of Industrial Engineering School of Engineering and Architecture

DIN Department of Industrial Engineering School of Engineering and Architecture DIN Department of Industrial Engineering School of Engineering and Architecture Elective Courses of the Master s Degree in Aerospace Engineering (MAE) Forlì, 08 Nov 2013 Master in Aerospace Engineering

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A SURVEY ON BIG DATA ISSUES AMRINDER KAUR Assistant Professor, Department of Computer

More information