Using multiple models: Bagging, Boosting, Ensembles, Forests
|
|
|
- Esther Page
- 10 years ago
- Views:
Transcription
1 Using multiple models: Bagging, Boosting, Ensembles, Forests
2 Bagging Combining predictions from multiple models Different models obtained from bootstrap samples of training data Average predictions or majority voting from multiple models If different training datasets cause significant differences in learned model, then bagging can improve accuracy.
3 Performance (decision tree) Mis-classication Rates (Percent) Data Set e S e B Decrease Waveform % Heart % breast cancer % Ionosphere % Diabetes % Glass % Soybean % 50 bootstrap samples each.
4 Performance (Regression trees) Mean Squared Test Set Error Data Set e S e B Decrease Boston Housing % Ozone % Friedman # % Friedman #2 30,800 21,700 30% Friedman # %
5 Bagging Advantage improved accuracy Disadvantage no simple, interpretable model Bagging can improve performance for unstable learning algorithms Performance of stable learning methods can deteriorate Bagging good models can make them optimal Bagging poor models can make them worse
6 Boosting Multiple models developed in sequence by assigning higher weights (boosting) for those training cases that are difficult to classify Generate the first model Repeat Weight the training data such that the misclassified cases get higher weights Generate the next model Combine predictions from individual models (weighted by accuracy of the models)
7 Stream Data Mining Examples Surveillance of trading data for security fraud Mining web click stream data Monitoring network traffic Analysis of sensor network data Measuring power consumption Stream data Continuous flow of information vs. finite, statically stored data Data volumes too large to be stored on permanent devices Burstiness in data - data rate of the stream isn't constant Continuously evolving patterns Stream Data Mining IBM Research
8 Stream data mining - approaches Data condensation/summarization condensed representation is used to track the changes over time Temporal granularity Greater importance to more recent data Privacy Protecting personal data in the stream data points K-anonymity: minimum k other data points from which this cannot be distinguished Clustering Stream data points is first represented as members of micro-clusters; then track these micro-clusters rather than the potentially infinite number of individual data points Classifier ensembles Separate classifiers developed on blocks of sequential data, instead of continuously updating a single classifier Each classifier in ensemble can be weighted by accuracy on the current test cases
9 Random Forests Multiple trees developed Majority voting for predicted class - each tree votes for the predicted class label of an example Developing each tree (N = training data size, M = number of variables) Sample N cases at random, with replacement use as training data for this tree (bootstrap sample) Select m << M, and use m randomly chosen variables for selection at each node (select the best split amongst the m variables) Grow the full tree without pruning (m is a fixed parameter) Random Forests - Leo Breiman and Adele Cutler
10 Random forests error rate Error rate depends on correlation between any two trees in the forest higher correlation increases the forest error rate error rate of each individual tree in the forest a tree with a low error rate decreases the forest error rate Reducing m reduces correlation increases the error rate of individual trees Optimal m value (usually in a wide range)
11 Random Forest error rate Out-of-bag error estimate Bootstrapped sample leaves out about a third of the cases (oob) For each tree, pass each oob case (say, case q) thru the tree and get its class prediction (say, j is the predicted class from the tree) Proportion of times that j does not match the true class (out of the number of times that the case q is oob) gives the error rate for this case Average over the error across all training cases (an unbiased estimate of error)
12 Random Forests variable importance Importance of a variable v For each tree, run the oob cases thru the tree and find the number of correct classifications (ncorrecta) For a variable v, randomly permute its values amongst the oob cases and run the oob cases thru the tree; find the number of correct classifications (ncorrectp) Calculate (ncorrecta ncorrectp) for the tree Average over all trees gives importance score of variable v Significance If importance score is independent for different trees, then z-scores can be calculated and significance level obtained assuming normal distribution of scores (low correlations between importance scores across trees for many datasets)
13 Random Forests - Proximities Proximity After each tree is built, pass all the cases thru the tree If two cases j and k are in the same terminal node, increase their proximity score by 1 Normalize the proximity values - divide by number of trees A measure of similarity between two data points Can be used for imputing missing values
14 Random Forests Missing values using proximity If variable m in the j-th case is missing Iterative process to fill missing value Weighted average over all cases k where the variable is not missing, weighted by proximity(j, k) (For categorical variable, take the most frequent value, with frequency weighted by proximities) Replaced missing values are used in next iteration of RF, where new proximities are calculated Re-calculate fills for missing value Repeat till no further improvements (4-6 iterations adequate)
15 Random Forests missing values replacement
16 Random Forests Detecting outliers using proximities Outlier a case with low proximity to all other cases Measure of outlyingness For a case j: 1/(sum of squares of prox(j,k) for all other cases k) Values > 10 are outliers? Mis-labeled data can be outliers Class labels can be prone to error Labels often assigned by hand
17 Outliers based on proximity PIMA Indian hepatitis data, 768 cases)
18 Mislabeled cases as outliers
19 Random Forests Picturing the Data Matrix of proximity values Proximity(j, k) (1 proximity(j, k) ) gives the squared distance in highdimensional Euclidean space Metric scaling projects the data into lower dimensional space, while preserving the distances between them scaling coordinates (related to the eigenvectors of a modified version of the proximity matrix) 3 or 4 scaling coordinates usually enough Plot 1 st versus the 2 nd scaling coordinates to get a picture of the data
20 Using proximities and scaling coordinates to picture the data
21 Random Forests Unsupervised learning - Clustering Data with no class labels How to use to grow trees? Original data of N cases class 1 Create a synthetic data set of N cases class 2 Random sampling from univariate distributions in original data Let x(v, j) be the v-th variable in the j-th case of class 1 For a case of class 2: Select the 1 st variable s value at random from the N values x(1, j), j=1,..n Select the 2nd variable s value at random from the N values x(2, j), j=1,..n Etc. Class 2 destroys the dependencies between variables in Class 1
22 Random Forests - Clustering Use RF on 2 class problem Error rates close to 50% implies RF cannot distinguish Low error implies good separation between classes Strong dependency structure amongst variables in the original data We can use all the RF tools (proximities, scaling views, variable importance, outliers, etc.) on the original data Testing approach: Dataset with class labels, Remove labels Apply clustering Do clusters correspond to original classes?
23 Metric scaling for supervised learning data
24 RF for clustering Metric scaling for unsupervised learning data
Leveraging Ensemble Models in SAS Enterprise Miner
ABSTRACT Paper SAS133-2014 Leveraging Ensemble Models in SAS Enterprise Miner Miguel Maldonado, Jared Dean, Wendy Czika, and Susan Haller SAS Institute Inc. Ensemble models combine two or more models to
Data Mining Practical Machine Learning Tools and Techniques
Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea
Classification and Regression by randomforest
Vol. 2/3, December 02 18 Classification and Regression by randomforest Andy Liaw and Matthew Wiener Introduction Recently there has been a lot of interest in ensemble learning methods that generate many
Knowledge Discovery and Data Mining
Knowledge Discovery and Data Mining Unit # 11 Sajjad Haider Fall 2013 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right
Package bigrf. February 19, 2015
Version 0.1-11 Date 2014-05-16 Package bigrf February 19, 2015 Title Big Random Forests: Classification and Regression Forests for Large Data Sets Maintainer Aloysius Lim OS_type
Gerry Hobbs, Department of Statistics, West Virginia University
Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit
Generalizing Random Forests Principles to other Methods: Random MultiNomial Logit, Random Naive Bayes, Anita Prinzie & Dirk Van den Poel
Generalizing Random Forests Principles to other Methods: Random MultiNomial Logit, Random Naive Bayes, Anita Prinzie & Dirk Van den Poel Copyright 2008 All rights reserved. Random Forests Forest of decision
CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore.
CI6227: Data Mining Lesson 11b: Ensemble Learning Sinno Jialin PAN Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore Acknowledgements: slides are adapted from the lecture notes
Data Mining. Nonlinear Classification
Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15
Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05
Ensemble Methods Knowledge Discovery and Data Mining 2 (VU) (707004) Roman Kern KTI, TU Graz 2015-03-05 Roman Kern (KTI, TU Graz) Ensemble Methods 2015-03-05 1 / 38 Outline 1 Introduction 2 Classification
Knowledge Discovery and Data Mining. Bootstrap review. Bagging Important Concepts. Notes. Lecture 19 - Bagging. Tom Kelsey. Notes
Knowledge Discovery and Data Mining Lecture 19 - Bagging Tom Kelsey School of Computer Science University of St Andrews http://tom.host.cs.st-andrews.ac.uk [email protected] Tom Kelsey ID5059-19-B &
Decision Trees from large Databases: SLIQ
Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values
Chapter 12 Bagging and Random Forests
Chapter 12 Bagging and Random Forests Xiaogang Su Department of Statistics and Actuarial Science University of Central Florida - 1 - Outline A brief introduction to the bootstrap Bagging: basic concepts
Comparison of Data Mining Techniques used for Financial Data Analysis
Comparison of Data Mining Techniques used for Financial Data Analysis Abhijit A. Sawant 1, P. M. Chawan 2 1 Student, 2 Associate Professor, Department of Computer Technology, VJTI, Mumbai, INDIA Abstract
How To Make A Credit Risk Model For A Bank Account
TRANSACTIONAL DATA MINING AT LLOYDS BANKING GROUP Csaba Főző [email protected] 15 October 2015 CONTENTS Introduction 04 Random Forest Methodology 06 Transactional Data Mining Project 17 Conclusions
COPYRIGHTED MATERIAL. Contents. List of Figures. Acknowledgments
Contents List of Figures Foreword Preface xxv xxiii xv Acknowledgments xxix Chapter 1 Fraud: Detection, Prevention, and Analytics! 1 Introduction 2 Fraud! 2 Fraud Detection and Prevention 10 Big Data for
Model Combination. 24 Novembre 2009
Model Combination 24 Novembre 2009 Datamining 1 2009-2010 Plan 1 Principles of model combination 2 Resampling methods Bagging Random Forests Boosting 3 Hybrid methods Stacking Generic algorithm for mulistrategy
CS570 Data Mining Classification: Ensemble Methods
CS570 Data Mining Classification: Ensemble Methods Cengiz Günay Dept. Math & CS, Emory University Fall 2013 Some slides courtesy of Han-Kamber-Pei, Tan et al., and Li Xiong Günay (Emory) Classification:
Chapter 11 Boosting. Xiaogang Su Department of Statistics University of Central Florida - 1 -
Chapter 11 Boosting Xiaogang Su Department of Statistics University of Central Florida - 1 - Perturb and Combine (P&C) Methods have been devised to take advantage of the instability of trees to create
Implementation of Breiman s Random Forest Machine Learning Algorithm
Implementation of Breiman s Random Forest Machine Learning Algorithm Frederick Livingston Abstract This research provides tools for exploring Breiman s Random Forest algorithm. This paper will focus on
Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms
Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms Yin Zhao School of Mathematical Sciences Universiti Sains Malaysia (USM) Penang, Malaysia Yahya
A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier
A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier G.T. Prasanna Kumari Associate Professor, Dept of Computer Science and Engineering, Gokula Krishna College of Engg, Sullurpet-524121,
Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets
Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets http://info.salford-systems.com/jsm-2015-ctw August 2015 Salford Systems Course Outline Demonstration of two classification
Knowledge Discovery and Data Mining
Knowledge Discovery and Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Evaluating the Accuracy of a Classifier Holdout, random subsampling, crossvalidation, and the bootstrap are common techniques for
EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.
EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER ANALYTICS LIFECYCLE Evaluate & Monitor Model Formulate Problem Data Preparation Deploy Model Data Exploration Validate Models
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
Distributed forests for MapReduce-based machine learning
Distributed forests for MapReduce-based machine learning Ryoji Wakayama, Ryuei Murata, Akisato Kimura, Takayoshi Yamashita, Yuji Yamauchi, Hironobu Fujiyoshi Chubu University, Japan. NTT Communication
Predicting borrowers chance of defaulting on credit loans
Predicting borrowers chance of defaulting on credit loans Junjie Liang ([email protected]) Abstract Credit score prediction is of great interests to banks as the outcome of the prediction algorithm
Classification of Bad Accounts in Credit Card Industry
Classification of Bad Accounts in Credit Card Industry Chengwei Yuan December 12, 2014 Introduction Risk management is critical for a credit card company to survive in such competing industry. In addition
Didacticiel Études de cas
1 Theme Data Mining with R The rattle package. R (http://www.r project.org/) is one of the most exciting free data mining software projects of these last years. Its popularity is completely justified (see
Using Random Forest to Learn Imbalanced Data
Using Random Forest to Learn Imbalanced Data Chao Chen, [email protected] Department of Statistics,UC Berkeley Andy Liaw, andy [email protected] Biometrics Research,Merck Research Labs Leo Breiman,
Performance Metrics for Graph Mining Tasks
Performance Metrics for Graph Mining Tasks 1 Outline Introduction to Performance Metrics Supervised Learning Performance Metrics Unsupervised Learning Performance Metrics Optimizing Metrics Statistical
Supervised Feature Selection & Unsupervised Dimensionality Reduction
Supervised Feature Selection & Unsupervised Dimensionality Reduction Feature Subset Selection Supervised: class labels are given Select a subset of the problem features Why? Redundant features much or
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar
Random Forest Based Imbalanced Data Cleaning and Classification
Random Forest Based Imbalanced Data Cleaning and Classification Jie Gu Software School of Tsinghua University, China Abstract. The given task of PAKDD 2007 data mining competition is a typical problem
Data Mining Methods: Applications for Institutional Research
Data Mining Methods: Applications for Institutional Research Nora Galambos, PhD Office of Institutional Research, Planning & Effectiveness Stony Brook University NEAIR Annual Conference Philadelphia 2014
Data Mining Techniques Chapter 6: Decision Trees
Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................
How To Perform An Ensemble Analysis
Charu C. Aggarwal IBM T J Watson Research Center Yorktown, NY 10598 Outlier Ensembles Keynote, Outlier Detection and Description Workshop, 2013 Based on the ACM SIGKDD Explorations Position Paper: Outlier
Better credit models benefit us all
Better credit models benefit us all Agenda Credit Scoring - Overview Random Forest - Overview Random Forest outperform logistic regression for credit scoring out of the box Interaction term hypothesis
Credit Card Fraud Detection and Concept-Drift Adaptation with Delayed Supervised Information
Credit Card Fraud Detection and Concept-Drift Adaptation with Delayed Supervised Information Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gianluca Bontempi 15/07/2015 IEEE IJCNN
ISSN: 2320-1363 CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS
CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS A.Divya *1, A.M.Saravanan *2, I. Anette Regina *3 MPhil, Research Scholar, Muthurangam Govt. Arts College, Vellore, Tamilnadu, India Assistant
Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center
Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II
Ensemble Methods. Adapted from slides by Todd Holloway h8p://abeau<fulwww.com/2007/11/23/ ensemble- machine- learning- tutorial/
Ensemble Methods Adapted from slides by Todd Holloway h8p://abeau
Ensemble Learning Better Predictions Through Diversity. Todd Holloway ETech 2008
Ensemble Learning Better Predictions Through Diversity Todd Holloway ETech 2008 Outline Building a classifier (a tutorial example) Neighbor method Major ideas and challenges in classification Ensembles
Why Ensembles Win Data Mining Competitions
Why Ensembles Win Data Mining Competitions A Predictive Analytics Center of Excellence (PACE) Tech Talk November 14, 2012 Dean Abbott Abbott Analytics, Inc. Blog: http://abbottanalytics.blogspot.com URL:
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trajkovski [email protected] Ensembles 2 Learning Ensembles Learn multiple alternative definitions of a concept using different training
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Beating the MLB Moneyline
Beating the MLB Moneyline Leland Chen [email protected] Andrew He [email protected] 1 Abstract Sports forecasting is a challenging task that has similarities to stock market prediction, requiring time-series
Statistical Data Mining. Practical Assignment 3 Discriminant Analysis and Decision Trees
Statistical Data Mining Practical Assignment 3 Discriminant Analysis and Decision Trees In this practical we discuss linear and quadratic discriminant analysis and tree-based classification techniques.
Data Mining Using SAS Enterprise Miner Randall Matignon, Piedmont, CA
Data Mining Using SAS Enterprise Miner Randall Matignon, Piedmont, CA An Overview of SAS Enterprise Miner The following article is in regards to Enterprise Miner v.4.3 that is available in SAS v9.1.3.
Random Forests for Scientific Discovery. Leo Breiman, UC Berkeley Adele Cutler, Utah State University
Random Forests for Scientific Discovery Leo Breiman, UC Berkeley Adele Cutler, Utah State University Contact Information [email protected] Outline 8:3 - :5 Part :5 - :3 Refreshment Break :3-2: Part 2
Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang
Classifying Large Data Sets Using SVMs with Hierarchical Clusters Presented by :Limou Wang Overview SVM Overview Motivation Hierarchical micro-clustering algorithm Clustering-Based SVM (CB-SVM) Experimental
How To Cluster
Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main
Chapter 6. The stacking ensemble approach
82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described
Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News
Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News Sushilkumar Kalmegh Associate Professor, Department of Computer Science, Sant Gadge Baba Amravati
MHI3000 Big Data Analytics for Health Care Final Project Report
MHI3000 Big Data Analytics for Health Care Final Project Report Zhongtian Fred Qiu (1002274530) http://gallery.azureml.net/details/81ddb2ab137046d4925584b5095ec7aa 1. Data pre-processing The data given
ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA
ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA D.Lavanya 1 and Dr.K.Usha Rani 2 1 Research Scholar, Department of Computer Science, Sree Padmavathi Mahila Visvavidyalayam, Tirupati, Andhra Pradesh,
HUAWEI Advanced Data Science with Spark Streaming. Albert Bifet (@abifet)
HUAWEI Advanced Data Science with Spark Streaming Albert Bifet (@abifet) Huawei Noah s Ark Lab Focus Intelligent Mobile Devices Data Mining & Artificial Intelligence Intelligent Telecommunication Networks
Package trimtrees. February 20, 2015
Package trimtrees February 20, 2015 Type Package Title Trimmed opinion pools of trees in a random forest Version 1.2 Date 2014-08-1 Depends R (>= 2.5.0),stats,randomForest,mlbench Author Yael Grushka-Cockayne,
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris
Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines
Monday Morning Data Mining
Monday Morning Data Mining Tim Ruhe Statistische Methoden der Datenanalyse Outline: - data mining - IceCube - Data mining in IceCube Computer Scientists are different... Fakultät Physik Fakultät Physik
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/8/2004 Hierarchical
Medical Information Management & Mining. You Chen Jan,15, 2013 [email protected]
Medical Information Management & Mining You Chen Jan,15, 2013 [email protected] 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016
Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with
Fast Analytics on Big Data with H20
Fast Analytics on Big Data with H20 0xdata.com, h2o.ai Tomas Nykodym, Petr Maj Team About H2O and 0xdata H2O is a platform for distributed in memory predictive analytics and machine learning Pure Java,
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
REVIEW OF ENSEMBLE CLASSIFICATION
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IJCSMC, Vol. 2, Issue.
Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca
Clustering Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 K-means 3 Hierarchical Clustering What is Datamining?
Course Syllabus. Purposes of Course:
Course Syllabus Eco 5385.701 Predictive Analytics for Economists Summer 2014 TTh 6:00 8:50 pm and Sat. 12:00 2:50 pm First Day of Class: Tuesday, June 3 Last Day of Class: Tuesday, July 1 251 Maguire Building
An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015
An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content
Knowledge Discovery and Data Mining
Knowledge Discovery and Data Mining Unit # 10 Sajjad Haider Fall 2012 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
Predicting Flight Delays
Predicting Flight Delays Dieterich Lawson [email protected] William Castillo [email protected] Introduction Every year approximately 20% of airline flights are delayed or cancelled, costing
BIDM Project. Predicting the contract type for IT/ITES outsourcing contracts
BIDM Project Predicting the contract type for IT/ITES outsourcing contracts N a n d i n i G o v i n d a r a j a n ( 6 1 2 1 0 5 5 6 ) The authors believe that data modelling can be used to predict if an
User Authentication/Identification From Web Browsing Behavior
User Authentication/Identification From Web Browsing Behavior US Naval Research Laboratory PI: Myriam Abramson, Code 5584 Shantanu Gore, SEAP Student, Code 5584 David Aha, Code 5514 Steve Russell, Code
Data Mining - Evaluation of Classifiers
Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010
Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD
Predictive Analytics Techniques: What to Use For Your Big Data March 26, 2014 Fern Halper, PhD Presenter Proven Performance Since 1995 TDWI helps business and IT professionals gain insight about data warehousing,
Data Mining Clustering (2) Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining
Data Mining Clustering (2) Toon Calders Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining Outline Partitional Clustering Distance-based K-means, K-medoids,
Class Imbalance Learning in Software Defect Prediction
Class Imbalance Learning in Software Defect Prediction Dr. Shuo Wang [email protected] University of Birmingham Research keywords: ensemble learning, class imbalance learning, online learning Shuo Wang
Homework Assignment 7
Homework Assignment 7 36-350, Data Mining Solutions 1. Base rates (10 points) (a) What fraction of the e-mails are actually spam? Answer: 39%. > sum(spam$spam=="spam") [1] 1813 > 1813/nrow(spam) [1] 0.3940448
DATA MINING - 1DL360
DATA MINING - 1DL360 Fall 2013" An introductory class in data mining http://www.it.uu.se/edu/course/homepage/infoutv/per1ht13 Kjell Orsborn Uppsala Database Laboratory Department of Information Technology,
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and
Clustering Techniques and STATISTICA Case Study: Defining Clusters of Shopping Center Patrons STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table
Classification and Prediction
Classification and Prediction Slides for Data Mining: Concepts and Techniques Chapter 7 Jiawei Han and Micheline Kamber Intelligent Database Systems Research Lab School of Computing Science Simon Fraser
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
Standardization and Its Effects on K-Means Clustering Algorithm
Research Journal of Applied Sciences, Engineering and Technology 6(7): 399-3303, 03 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 03 Submitted: January 3, 03 Accepted: February 5, 03
OUTLIER ANALYSIS. Data Mining 1
OUTLIER ANALYSIS Data Mining 1 What Are Outliers? Outlier: A data object that deviates significantly from the normal objects as if it were generated by a different mechanism Ex.: Unusual credit card purchase,
Benchmarking Open-Source Tree Learners in R/RWeka
Benchmarking Open-Source Tree Learners in R/RWeka Michael Schauerhuber 1, Achim Zeileis 1, David Meyer 2, Kurt Hornik 1 Department of Statistics and Mathematics 1 Institute for Management Information Systems
Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning
Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning SAMSI 10 May 2013 Outline Introduction to NMF Applications Motivations NMF as a middle step
New Ensemble Combination Scheme
New Ensemble Combination Scheme Namhyoung Kim, Youngdoo Son, and Jaewook Lee, Member, IEEE Abstract Recently many statistical learning techniques are successfully developed and used in several areas However,
life science data mining
life science data mining - '.)'-. < } ti» (>.:>,u» c ~'editors Stephen Wong Harvard Medical School, USA Chung-Sheng Li /BM Thomas J Watson Research Center World Scientific NEW JERSEY LONDON SINGAPORE.
Data Mining: Overview. What is Data Mining?
Data Mining: Overview What is Data Mining? Recently * coined term for confluence of ideas from statistics and computer science (machine learning and database methods) applied to large databases in science,
Applied Multivariate Analysis - Big data analytics
Applied Multivariate Analysis - Big data analytics Nathalie Villa-Vialaneix [email protected] http://www.nathalievilla.org M1 in Economics and Economics and Statistics Toulouse School of
Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
