Designing instructional tools by Flash MX ActionScript some examples to teach basic geometric concepts Yuan, Yuan Lee, Chun-Yi
|
|
|
- Norman Brown
- 10 years ago
- Views:
Transcription
1 Designing instructional tools by Flash MX ActionScript some examples to teach basic geometric concepts Yuan, Yuan Lee, Chun-Yi It is believed that technology will transform how we view teaching, and it is not destined to serve simply as supplementary resources. Kent and McNergney (1998) argue that Good ideas, not necessarily new technological developments, guide the way. (p.50). Olive (1994) also suggested the consideration of supports embodied in the computer microworlds, so teachers can save time and apply them easily. The development of technology-based instructional tools should focus on the transition from concrete experience to abstract mathematical ideas, the exploration and discovery of new mathematical concepts, problem solving processes and the motivation of student learning. And moreover, they must be appropriate for teachers to present in class and with interactive characteristics so that students have the opportunity to feel the beauty of mathematics. As we all know, Flash has been a useful tool to create animation pictures. However, integrating these functions into mathematical learning was little. With its strong functions, Flash MX ActionScript could be used to create highly interactive activities to motivate students mathematics learning. Based on the van Hiele theory and ICON principles, we developed a series of instructional tools on the web ( to teach junior high school students basic geometric concepts. In this article, we will propose two instructional tools to help students explore exterior angles of polygons and interior angles of a 1
2 triangle. Each instructional model includes a discussion of the object and designing ideas of the tool, questions to explore, an on line test, electronic tools, and media illustrations for the applications of the electronic tools. Rationale to develop these electronic tools Jonassen (2000) claims that the relationship between computer and learning are learning from computer, learning about computer, and learning with computer. What Jonassen called learning with computer is the stage of technology implementation. In this stage by his opinion, teachers use computers as mindtools to motivate students engage in critical and high level thinking. What roles should computer play are supporting knowledge construction, explorations, learning by doing, learning by conversing and learning by reflection. Based on this, three kinds of electric instruction tools can be developed; they are tools for presentation, for interaction, and for construction. But, how can Jonassen s concept of mindtools be carried out in designing school mathematics learning activities? Black and McClintock (1996) proposed an interpretation construction design model (ICON) to design science instruction. This model includes eight designing principles for instruction. They are observations in authentic activities, interpretation construction, contextualizing prior knowledge, cognitive conflict, cognitive apprenticeship, collaboration, interpretations and manifestations. We consider these principles are also useful in designing mathematic learning activities. When talking about teaching of school geometry, van Hiele s theory has been the most influential factor in geometry curriculum all over the world. The van Hielel couple also commended a five-stage teaching model to teach geometric concepts in school. The five teaching stages in this model include information, guided orientation, exploration, free orientation, and integration in sequence. We then integrate van Hiele five-stage learning model and ICON model to design mindtools to teach junior high school students basic geometric concepts. An example shows the design of exploring sum of exterior angles of a triangle will be discussed in detail as following: Van Hielel five-stage teaching model Information ICON model Contextualizing prior knowledge. Main activity A thief run away from point P on a triangle park but was caught by a policeman on point Q. If A = 60 what is the angle size the thief turn from P to Q?, 2
3 Guided orientation Observations in authentic activities, cognitive conflict, and cognitive apprenticeship. Introduce the concepts of interior angles and exterior angles of a triangle. Guided orientation and exploration Interpretation construction and interpretations. Posing question: Ask students to guess what is the sum of three exterior angles of a triangle? And encourage students to guess the answer. (Student activity) Based on students discussion results, teacher can propose different strategies to solve the problem. They represent interpretations to help students construct the concept. Strategy 1: Strategy 2: 3
4 Strategy 3: Free exploration Collaboration, interpretations and manifestations. Posing questions: What is the sum of the exterior angles of a quadrilateral, or a pentagon, or a hexagon? Students can collaborate with each other to explore the question and verify their answers from the computer. Integration Collaboration, interpretations and manifestations. Students present their findings and discuss them in class. Teacher can have an integrating discussion with students. 4
5 Introduction of the electronic tools 1. Exploring exterior angles of polygons Step1: Choose any polygon from the menu Polygon chooser Step2: Use a protractor to measure the exterior angles Angle measurer 5
6 Step3: Open the move function to move the protractor to each vertex Move or stop Redo 2. Exploring sum of the interior angles of a triangle Step1: Drag vertexes to change the size of the triangle. Sum of interior angles Drag vertexes to change the size of the triangle 6
7 Step2: Drag the vertex of the angle to meet the point on the button line and rotate it to an appropriate position so that the three angles will be combined to be a flat angle. Step3: Press the angle measurement button and input the name of the angle to show the size of the angle. Click the X sign to hide the measurement of the angle. Angle measurement 7
8 Step4: Show the three exterior angles. It can be used to explore the relationship between interior angles and exterior angles. Show or hide the exterior angles Step5: Show the parallel line through point C. Drag and combine the there angles to be a flat angle. Show or hide the parallel line Conclusion In our study, we have also conducted a quasi-experimental design to study the effect of the applications of these electronic tools on students learning of basic geometric concepts. It was found that students in the experimental group performed better on questions of the basic concept level. And higher ability students seem to benefit from these learning activities. Seventy percent of the students agreed that 8
9 integrating these FLASH tools into instruction help their mathematics learning, and eighty-six percent of them like to have similar curriculum in the future. We hope our efforts to be a beginning. If we hope teachers to integrate technology in teaching, we should develop abundant resources that are useful in their teaching. Then teachers would like to use them in their classes and finally they will share experiences in supporting this development. Reference Black, J. B. & McClintock, R. O. (1996). An interpretation construction approach to constructivist design. In Wilson, B. (Ed.), Constructivist Learning Environments. Educational Technology Publications, Englewood Cliffs, NJ, pp Jonassen, D. H. (2000). Computers as mindtools for schools: Engaging Critical thinking(2 nd ed). Upper Saddle River, N. J. Prentice Hall. Kent, T. W. & McNergney, R. F. (1998).Will technology really change education? Thousand Oaks, CA: Corwin Press. 9
Exploring Geometric Figures Using Cabri Geometry II
Exploring Geometric Figures Using Cabri Geometry II Regular Polygons Developed by: Charles Bannister. Chambly County High School Linda Carre.. Chambly County High School Manon Charlebois Vaudreuil Catholic
Grade Level: High School
Lesson I: Triangles- Exterior Angle Theorem KEY WORDS: Triangles, exterior-angle theorem, and remote interior angles. Grade Level: High School SUMMARY: With this investigation students will discover the
Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University
Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University Overview The GeoGebra documents allow exploration of four geometric transformations taught
Preparation Prepare a set of standard triangle shapes for each student. The shapes are found in the Guess My Rule Cards handout.
Classifying Triangles Student Probe How are triangles A, B, and C alike? How are triangles A, B, and C different? A B C Answer: They are alike because they each have 3 sides and 3 angles. They are different
GeoGebra. 10 lessons. Gerrit Stols
GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter
Tessellating with Regular Polygons
Tessellating with Regular Polygons You ve probably seen a floor tiled with square tiles. Squares make good tiles because they can cover a surface without any gaps or overlapping. This kind of tiling is
Which shapes make floor tilings?
Which shapes make floor tilings? Suppose you are trying to tile your bathroom floor. You are allowed to pick only one shape and size of tile. The tile has to be a regular polygon (meaning all the same
3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs
SUGGESTED LEARNING STRATEGIES: Think/Pair/Share, Use Manipulatives Two rays with a common endpoint form an angle. The common endpoint is called the vertex. You can use a protractor to draw and measure
UNIT H1 Angles and Symmetry Activities
UNIT H1 Angles and Symmetry Activities Activities H1.1 Lines of Symmetry H1.2 Rotational and Line Symmetry H1.3 Symmetry of Regular Polygons H1.4 Interior Angles in Polygons Notes and Solutions (1 page)
Intermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
Investigating Relationships of Area and Perimeter in Similar Polygons
Investigating Relationships of Area and Perimeter in Similar Polygons Lesson Summary: This lesson investigates the relationships between the area and perimeter of similar polygons using geometry software.
Estimating Angle Measures
1 Estimating Angle Measures Compare and estimate angle measures. You will need a protractor. 1. Estimate the size of each angle. a) c) You can estimate the size of an angle by comparing it to an angle
Creating Your Own 3D Models
14 Creating Your Own 3D Models DAZ 3D has an extensive growing library of 3D models, but there are times that you may not find what you want or you may just want to create your own model. In either case
A Correlation of Pearson Texas Geometry Digital, 2015
A Correlation of Pearson Texas Geometry Digital, 2015 To the Texas Essential Knowledge and Skills (TEKS) for Geometry, High School, and the Texas English Language Proficiency Standards (ELPS) Correlations
Problem of the Month: Cutting a Cube
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
Geometry Progress Ladder
Geometry Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes
Integrating Technology in Teaching and Teacher Education: Implications for Policy and Curriculum Reform Dr. Charalambos Vrasidas Dr. Marina S.
Vrasidas & McIsaac 1 Integrating Technology in Teaching and Teacher Education: Implications for Policy and Curriculum Reform Dr. Charalambos Vrasidas Dr. Marina S. McIsaac About the Authors Dr. Charalambos
To analyze students geometric thinking, use both formative and summative assessments and move students along the van Hiele model of thought.
van Hiele Rev To analyze students geometric thinking, use both formative and summative assessments and move students along the van Hiele model of thought. M. Lynn Breyfogle and Courtney M. Lynch When you
11.3 Curves, Polygons and Symmetry
11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon
Critical Thinking Paper: Technology in the Classroom. There have been predictions that by the year 2013, a supercomputer that is more
1 Critical Thinking Paper: Technology in the Classroom There have been predictions that by the year 2013, a supercomputer that is more advanced in computation capability than the human brain will be made
OTTAWA ONLINE MAT-26043 College Geometry
OTTAWA ONLINE MAT-26043 College Geometry Course Description College Geometry gradually introduces the student of mathematics to formal proof using geometric properties. The course explores problem solving
Quickstart for Desktop Version
Quickstart for Desktop Version What is GeoGebra? Dynamic Mathematics Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
3D shapes. Level A. 1. Which of the following is a 3-D shape? A) Cylinder B) Octagon C) Kite. 2. What is another name for 3-D shapes?
Level A 1. Which of the following is a 3-D shape? A) Cylinder B) Octagon C) Kite 2. What is another name for 3-D shapes? A) Polygon B) Polyhedron C) Point 3. A 3-D shape has four sides and a triangular
(Least Squares Investigation)
(Least Squares Investigation) o Open a new sketch. Select Preferences under the Edit menu. Select the Text Tab at the top. Uncheck both boxes under the title Show Labels Automatically o Create two points
http://school-maths.com Gerrit Stols
For more info and downloads go to: http://school-maths.com Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It
Angles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
Target To know the properties of a rectangle
Target To know the properties of a rectangle (1) A rectangle is a 3-D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles
3. Relationship between this Unit and the Principles and Standards for School Mathematics (NCTM 2000). This Unit
4 th Grade Mathematics Lesson Plan April 16-18, 2002 Brewer Island School, San Mateo, CA Instructor: Akihiko Takahashi 1. Title of Unit: Finding the Area of Shapes 2. Goal: a. To deepen students understanding
NEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
Algebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
Discovering Math: Exploring Geometry Teacher s Guide
Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional
Geometry Arcs And Central Angles Practice Key
Arcs And Central Angles Practice Key Free PDF ebook Download: Arcs And Central Angles Practice Key Download or Read Online ebook geometry arcs and central angles practice key in PDF Format From The Best
Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
Grade 8 Mathematics Geometry: Lesson 2
Grade 8 Mathematics Geometry: Lesson 2 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside
GeoGebra Transformation Activities
GeoGebra Transformation Activities Move New Point Line Between Two Points Perpendicular Line Circle w/ Center Through Point If needed: Go to www.geogebra.org Click on Download Click on GeoGebra WebStart
Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems
Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
Geometer s Sketchpad. Discovering the incenter of a triangle
Geometer s Sketchpad Discovering the incenter of a triangle Name: Date: 1.) Open Geometer s Sketchpad (GSP 4.02) by double clicking the icon in the Start menu. The icon looks like this: 2.) Once the program
Geometry 8-1 Angles of Polygons
. Sum of Measures of Interior ngles Geometry 8-1 ngles of Polygons 1. Interior angles - The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
MI314 History of Mathematics: Episodes in Non-Euclidean Geometry
MI314 History of Mathematics: Episodes in Non-Euclidean Geometry Giovanni Saccheri, Euclides ab omni naevo vindicatus In 1733, Saccheri published Euclides ab omni naevo vindicatus (Euclid vindicated om
Lession: 2 Animation Tool: Synfig Card or Page based Icon and Event based Time based Pencil: Synfig Studio: Getting Started: Toolbox Canvas Panels
Lession: 2 Animation Tool: Synfig In previous chapter we learn Multimedia and basic building block of multimedia. To create a multimedia presentation using these building blocks we need application programs
Building a Bridge to Academic Vocabulary in Mathematics
Building a Bridge to Academic Vocabulary in Mathematics AISD Elementary Mathematics Department How Students Develop a Repertoire of Academic English in Mathematics Developed and researched by the AISD
Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes
Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical
2.1. Inductive Reasoning EXAMPLE A
CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers
Problem of the Month: William s Polygons
Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
Constructivism: A Holistic Approach to Teaching and Learning
Constructivism: A Holistic Approach to Teaching and Learning Janet Giesen Faculty Development and Instructional Design Center Northern Illinois University Introductions Your name Your department or unit
Area Formulas TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System
Math Objectives Students will be able to describe how the area of a parallelogram relates to the area of a rectangle with the same base and height. Students will be able to describe how the area of a triangle
Similar Triangles Grade Seven
Ohio Standards Connection Geometry and Spatial Sense Benchmark E Use proportions to express relationships among corresponding parts of similar figures. Indicator 1 Use proportional reasoning to describe
Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will
Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will discover and prove the relationship between the triangles
Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade)
Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade) Teacher: School Phone: Email: Kim Schnakenberg 402-443- 3101 [email protected] Course Descriptions: Both Concept and Application
Understand the Sketcher workbench of CATIA V5.
Chapter 1 Drawing Sketches in Learning Objectives the Sketcher Workbench-I After completing this chapter you will be able to: Understand the Sketcher workbench of CATIA V5. Start a new file in the Part
Lesson 18: Looking More Carefully at Parallel Lines
Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using
Teaching Guidelines. Knowledge and Skills: Can specify defining characteristics of common polygons
CIRCLE FOLDING Teaching Guidelines Subject: Mathematics Topics: Geometry (Circles, Polygons) Grades: 4-6 Concepts: Property Diameter Radius Chord Perimeter Area Knowledge and Skills: Can specify defining
Grade 3 FCAT 2.0 Mathematics Sample Answers
Grade FCAT 2.0 Mathematics Sample Answers This booklet contains the answers to the FCAT 2.0 Mathematics sample questions, as well as explanations for the answers. It also gives the Next Generation Sunshine
Pro/E Design Animation Tutorial*
MAE 377 Product Design in CAD Environment Pro/E Design Animation Tutorial* For Pro/Engineer Wildfire 3.0 Leng-Feng Lee 08 OVERVIEW: Pro/ENGINEER Design Animation provides engineers with a simple yet powerful
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
Grade 3 Core Standard III Assessment
Grade 3 Core Standard III Assessment Geometry and Measurement Name: Date: 3.3.1 Identify right angles in two-dimensional shapes and determine if angles are greater than or less than a right angle (obtuse
Shapes & Designs Notes
Problem 1.1 Definitions: regular polygons - polygons in which all the side lengths and angles have the same measure edge - also referred to as the side of a figure tiling - covering a flat surface with
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
Mathematics Georgia Performance Standards
Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by
Star and convex regular polyhedra by Origami.
Star and convex regular polyhedra by Origami. Build polyhedra by Origami.] Marcel Morales Alice Morales 2009 E D I T I O N M O R A L E S Polyhedron by Origami I) Table of convex regular Polyhedra... 4
WORK SCHEDULE: MATHEMATICS 2007
, K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check
For example, estimate the population of the United States as 3 times 10⁸ and the
CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number
Dear Grade 4 Families,
Dear Grade 4 Families, During the next few weeks, our class will be exploring geometry. Through daily activities, we will explore the relationship between flat, two-dimensional figures and solid, three-dimensional
GEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
Natural Disaster Recovery and Quadrilaterals
Natural Disaster Recovery and Quadrilaterals I. UNIT OVERVIEW & PURPOSE: In this unit, students will apply their knowledge of quadrilaterals to solve mathematics problems concerning a tornado that struck
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms.
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game
How does one make and support a reasonable conclusion regarding a problem? How does what I measure influence how I measure?
Middletown Public Schools Mathematics Unit Planning Organizer Subject Mathematics Grade/Course Grade 7 Unit 3 Two and Three Dimensional Geometry Duration 23 instructional days (+4 days reteaching/enrichment)
LEARNER-CENTERED PARADIGMS FOR ON-LINE EDUCATION: IMPLICATIONS FOR INSTRUCTIONAL DESIGN MODELS. Yvonne M. Johnson. Abstract
LEARNER-CENTERED PARADIGMS FOR ON-LINE EDUCATION: IMPLICATIONS FOR INSTRUCTIONAL DESIGN MODELS Yvonne M. Johnson Abstract The number of distance education programs delivered in higher education in the
Assessment Anchors and Eligible Content
M07.A-N The Number System M07.A-N.1 M07.A-N.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings
The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations
The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology
Creating a Guided Tour with Google Earth
Creating a Guided Tour with Google Earth Before creating a tour, first orient yourself to basic Google Earth functions. To start, download Google Earth to your desktop. This is free through earth.google.com.
A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:
summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment
Kindergarten to Grade 3. Geometry and Spatial Sense
Kindergarten to Grade 3 Geometry and Spatial Sense Every effort has been made in this publication to identify mathematics resources and tools (e.g., manipulatives) in generic terms. In cases where a particular
Such As Statements, Kindergarten Grade 8
Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential
SYLLABUS. OFFICE AND HOURS: Karnoutsos 536 (Access through K506) M 12, T 1, R 10, 12, 2 or by appointment. I am available by e-mail at all times.
SYLLABUS COURSE TITLE: PreCalculus COURSE NUMBER: MATH0165 REFERENCE NUMBER: 1980 PREREQUISITE: MATH0112 Intermediate Algebra or equivalent INSTRUCTOR: Dr. Riggs OFFICE AND HOURS: Karnoutsos 536 (Access
Circles in Triangles. This problem gives you the chance to: use algebra to explore a geometric situation
Circles in Triangles This problem gives you the chance to: use algebra to explore a geometric situation A This diagram shows a circle that just touches the sides of a right triangle whose sides are 3 units,
Tutorial 1: The Freehand Tools
UNC Charlotte Tutorial 1: The Freehand Tools In this tutorial you ll learn how to draw and construct geometric figures using Sketchpad s freehand construction tools. You ll also learn how to undo your
Conjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical
Third Grade Shapes Up! Grade Level: Third Grade Written by: Jill Pisman, St. Mary s School East Moline, Illinois Length of Unit: Eight Lessons
Third Grade Shapes Up! Grade Level: Third Grade Written by: Jill Pisman, St. Mary s School East Moline, Illinois Length of Unit: Eight Lessons I. ABSTRACT This unit contains lessons that focus on geometric
Running head: PERSONAL STATEMENT ON LEARNING AND INSTRUCTION 1. Personal Statement on Learning and Instruction. Jay A. Bostwick
Running head: PERSONAL STATEMENT ON LEARNING AND INSTRUCTION 1 Personal Statement on Learning and Instruction Jay A. Bostwick IP&T 620 Principles of Learning PERSONAL STATEMENT ON LEARNING AND INSTRUCTION
with functions, expressions and equations which follow in units 3 and 4.
Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model
1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
LESSON 4 Missing Numbers in Multiplication Missing Numbers in Division LESSON 5 Order of Operations, Part 1 LESSON 6 Fractional Parts LESSON 7 Lines,
Saxon Math 7/6 Class Description: Saxon mathematics is based on the principle of developing math skills incrementally and reviewing past skills daily. It also incorporates regular and cumulative assessments.
Striving for Success: Teacher Perspectives of a Vertical Team Initiative
VOLUME 16 NUMBER 3, 2006 Striving for Success: Teacher Perspectives of a Vertical Team Initiative Dr. Lisa Bertrand Educational Administration and Counseling Southeast Missouri State University Dr. Ruth
Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
Chapter 8 Geometry We will discuss following concepts in this chapter.
Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles
Ira Fine and Thomas J. Osler Department of Mathematics Rowan University Glassboro, NJ 08028. [email protected]. 1. Introduction
1 08/0/00 THE REMARKABLE INCIRCLE OF A TRIANGLE Ira Fine and Thomas J. Osler Department of Mathematics Rowan University Glassboro, NJ 0808 [email protected] 1. Introduction The incircle of a triangle is
Geometry Enduring Understandings Students will understand 1. that all circles are similar.
High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
GEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
Grade 5 Math Content 1
Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.
Performance Assessment Task Which Shape? Grade 3. Common Core State Standards Math - Content Standards
Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to
KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007
KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and
Parking Lot Mathematics
Parking Lot Mathematics Jayson Rigsby Pike High School Introduction Each year, mathematics teachers across the nation plan their lessons for the school year. As teachers progress in their careers, they
