USING INTELLIGENT TRANSPORTATION SYSTEMS DATA ARCHIVES FOR TRAFFIC SIMULATION APPLICATIONS
|
|
|
- Kathryn Carmella Scott
- 10 years ago
- Views:
Transcription
1 USING INTELLIGENT TRANSPORTATION SYSTEMS DATA ARCHIVES FOR TRAFFIC SIMULATION APPLICATIONS Patricio Alvarez, Universidad del Bío Bío, Mohammed Hadi, Florida International University, Chengun Zhan, Florida International University, ABSTRACT Collecting data for traffic simulation modeling applications is expensive. Data collected using traditional methods may not represent the variations in traffic demands and conditions throughout the year and may require additional efforts to compensate for missing and erroneous data. This paper discusses a series of data manipulation procedures for the utilization of ITS data archives to support simulation modeling. These procedures allow the extraction of collected volume data from ITS data archives, automatic identification of temporal patterns in the data, automatic segmentation of daily demands into dynamically captured sub-periods, resolving possible spatial inconsistencies in the data, and estimating missing volumes. Key words: microscopic simulation, traffic parameters, traffic data
2 Using intelligent transportation systems data archives for traffic simulation applications 2 1. INTRODUCTION Traditionally, traffic simulation applications have been developed using volume data collected using tube and/or manual turning volume counts. These applications are calibrated using data from travel time studies combined with volume data and field observations of queues and other traffic conditions. The collection of the required data, however, is expensive, particularly for large simulated systems. In addition, the data collected using traditional methods are normally for one or few days that may not represent the traffic demands and conditions throughout the year. Intelligent Transportation Systems (ITS) agencies have used devices as traffic detectors, closed circuit television cameras (CCTV), electronic toll readers, and license plate readers to collect traffic parameter measurements for operational purposes. In recent years, these agencies have started archiving the data collected by these devices (FHWA, 2004). Because ITS detectors and communicators are already in place to collect data for operational purposes, the extra cost to archive and manage the data is relatively low. As ITS data archives become more widely available, the utilization of such archives for the development and calibration of simulation applications will be an attractive option. This utilization will provide a significantly lower cost and a more efficient data collection method compared to traditional methods and will increase safety by reducing the need for personnel to go out to the field for data collection purposes. The additional details provided by the ITS data, both in time and space resolutions, will allow better representations of real-world environments in simulation applications. For example, the use of archived ITS data will allow the simulation of seasonal variations in traffic, special events, accidents, work zones, weather events, other types of incidents, and incident management strategies. This paper discusses the development of procedures and tools for the utilization of data from the ITS data archives to support the use of simulation models. 2. PREVIOUS EFFORTS Few studies have investigated the use of archived ITS data for simulation modeling applications. Gomez (Gomez et al, 2004) presented a procedure for constructing and calibrating a detailed model of a freeway, based on detector data using VISSIM. Field data used as input for the model was compiled from two separate sources: loop-detectors on the on-ramps and mainline, stored in a central database referred to as the Performance Measurement System (PeMS) and a manual survey of on-ramps and off-ramps. Gaps in both sources made it necessary to use both traffic detector data and manually collected data sets. A data processing algorithm was implemented to filter, aggregate, and correct the PeMS data. Barcelo (Barcelo et al, 2002 and Barcelo et al, 2003) described an implementation of a microscopic simulation tool (AIMSUN) to support traffic management strategies. The proect integrated an ITS data warehouse with the AIMSUN modeling environment. This integration allowed the analysis and fine-tuning of traffic management strategies. Xin (Xin et al, 2006) proposed a methodology for checking and correcting temporal errors integrated with an optimization-based algorithm for reconciling spatial inconsistencies in traffic counts collected using traffic detectors. First the data is filtered using a time-series model to
3 Alvarez, Hadi and Zhan 3 detect outliers. The time model is fitted based on a number of stations randomly selected from a freeway network. In a second step, volumes are corrected when the difference between adacent stations exceed a given threshold. The volume correction is achieved by minimizing the difference between the observed and corrected volumes for a set of spatially related stations. 3. PROVIDED FUNCTIONALITIES The use of ITS data that covers a long period of time provides the opportunity to classify the days throughout the year into different patterns. For example, on certain corridors, it may be important to differentiate between different seasons or to simulate days with special events. In addition, it is necessary to exclude days with unusual demands or congestion when simulating typical day patterns. Thus, a procedure was developed to categorize the demand data for different days into patterns based on the similarity of travel demands measured by the traffic detectors. ITS data can include inconsistent, non-balanced, and missing measurements. Thus, a procedure was developed to produce consistent and balanced traffic demands and to estimate missing traffic demands based on measured demands. Another provided functionality was the automatic segmentation of the time period for each identified patterns into sub-periods of similar demands. The details of the procedures developed in this study to implement the required functionalities are discussed in the following section. 4. DEVELOPED TOOL The section presents a discussion of the developed modules that deliver the functionalities identified in the previous section Identification and Selection of Simulated Patterns A module was developed to categorize the demand data for different days into patterns based on the similarity of the time series of volume counts of different days. The k-means clustering algorithm (Alpaydin, 2004) was used for the categorization. The analyst can specify all or a subset of the detector measurement to be used in the categorization. This is an iterative partitioning algorithm that minimizes the sum of time series distances to cluster centroids, summed overall clusters. In this study, the times series distance is measured by the Euclidian distance defined as follows: k i i k i 2 (1) 1 2 ck ( ti ) v ( ti ), n k k (2) XVI Congreso Chileno de Ingeniería de Transporte Santiago Octubre 2013
4 Using intelligent transportation systems data archives for traffic simulation applications 4 where v t ) = time series measurement at time interval i from STEWARD, ( i k ( t i c ) = centroid of cluster k at time interval i, and n k = total number of time series in cluster k. The optimization routine used in the clustering algorithm achieves a local optimal that can be different each time the algorithm is run depending on the starting point of the optimization. The starting point is a set of centroids that will be serve as initial centroids in the first iteration of the algorithm. This set is chosen randomly from the data available. The number of centroids in the set is equal to the number of clusters requested by the analyst. Thus, the analyst should run the algorithm for a number of replications to associate the measured daily demands with the clusters. The results presented in this paper are based on 10 replications of the algorithm. With the developed module, the analyst has the option of specifying the number of clusters that result from the analysis. Figure 1 shows the results of applying the data selection procedure to a set of 40 days using different number of clusters. Figure 1 contains 4 hours of data reported every 5 min. The initial dataset contains weekdays; weekends; and days with incidents, bad weather, special events, and detector malfunctions. Of course, the more clusters are used the more homogeneous each cluster will be. However, too many clusters will not be useful since the analyst s aim in most cases is to identify maor differences in the patterns to be able to simulate a limited number of patterns. Figure 1 shows the results of the clustering when specifying two, four, and ten as the number of patterns resulting from the clustering procedure. As can be seen from Figure 1-a, specifying two patterns is not sufficient, since the algorithm basically classifies the days into a weekday and a weekend pattern. Figure 1-b shows the results of requesting four patterns to be produced. The procedure was able to classify the patterns in two different weekday clusters. The first cluster from the left in Figure 1-b represents higher demand weekdays compared to those days represent by the second pattern from the left in the figure. The third pattern from the left represents incident days and the fourth pattern represents weekends. Figure 1-c shows the results of the analysis when ten patterns are specified. A visualization routine was also included in the developed tool to allow the analyst to associate each pattern with specific days. This allowed the determination of the reasons for the difference in the patterns such as different seasons, different weather, special events, different incident attributes, and so on. By examining the resulting patterns and the associated information, the analyst can determine what cluster to use in the analyses, which days should be excluded as outliers, and which clusters should be divided further into sub-clusters. For example, based on the data included in Figure 1, the analyst may decide to simulate two weekday patterns and one heavy weekend day pattern. In addition, the analyst may want to classify incident days further into different incident categories and use these days in calibrating simulation models for incident conditions. It is interesting to note that the second pattern from the left in Figure 1-c does not have any detector measurements. This pattern represents days with malfunction of the detection station at this location.
5 Alvarez, Hadi and Zhan 5 Figure 1: Results of clustering using different number of clusters. (a) Two clusters. (b) Four clusters. (b) Ten clusters. Vertical axis is traffic volume per 5 min and horizontal axis is time in minutes (a) (b) 4.2. Time Period Segmentation (c) Microscopic simulation requires segmenting the day into discrete time intervals. Traditionally, analysts have divided the day into intervals that represent different peak periods during the day (e.g., AM, PM, and midday). These periods are then simulated separately. The analysts can also subdivide the peak period into subintervals to account for the variation in demands within the XVI Congreso Chileno de Ingeniería de Transporte Santiago Octubre 2013
6 Using intelligent transportation systems data archives for traffic simulation applications 6 peak period. Most microscopic simulation tools allow coding sub-intervals to be ran in the same run. With more detailed data available from the ITS archives, it is useful to automate this segmentation of the time periods. A procedure was developed in this study to segment the 24 hour or peak period volumes based on the measurements from all or a subset of the detection stations. The segmentation was done using an algorithm referred to as the Bottom-Up algorithm that has been used in data mining for linear piece wise segmentation (Keogh et al, 2001). First, the Bottom-Up algorithm creates the finest possible approximation of the time series, therefore n segments are used to approximate the n-length time series. Next, the cost of merging each pair of adacent segments is calculated, and the algorithm begins to iteratively merge the lowest cost pair until a stopping criteria is met. The analyst should decide on the stopping criteria based on the number of segments appropriate for the purpose of the analysis, and the quality of the data. The number of segments to represent the time series can be selected by the user. There is a trade-off between the number of segments and the complexity of the developed simulation application. So, it is desirable to select the lowest number of segments that capture the main temporal variations in demands Spatial Conciliation and Estimation of Missing Demands Although most ITS databases implement data filtering and imputation methods, it was found that inconsistencies between adacent detector measurements still exist. In addition, in many cases, detectors are not placed on the ramps. Thus a procedure was developed to resolve inconsistencies and non-balanced traffic between upstream and downstream detectors and to estimate missing link measurements (on the ramps with no detectors) based on other link measurements. the following segment: where t = period of time, x = length of the section z, z q, = average flow at location i in section z during t, i z q, = average flow at in section z during t, z k z = average density in section z during t,
7 Alvarez, Hadi and Zhan 7 I k, z = average in-flow at ramp k in section z during t, and O l, z = average off-flow at ramp l in section z during t. The conservation equation results in the following equations: (3) With all variables are as defined above. This equation is applied between every two consecutive detection stations. Further, we introduce in the formulation error terms to account for errors in detector measurements of volume and occupancy resulting in the following formulation: (4) z z z z z i, z i, z, z, z k, z k, z l, z l, z (5) where x, z = flow correction at location x in section z, and z = density (occupancy) correction in section z during period X. For steady state conditions (where no queue occurs), the problem can be simplified assuming that the density in section z does not vary significantly during resulting in the following: z z i i (6) Thus the conservation equation becomes:, z (7) It is possible to formulate several optimization criteria to minimize the error values and z (t) (Hillier et al, 2004). Three different formulations of quadratic error summation minimization and linear programming optimization were investigated. The first summation minimizes the squares of all error corrections subect to complying with all conservation equations of the system and constraining all corrections to a reasonable maximum and minimum pre-defined values. The second formulation is similar to the first formulation but the error corrections are weighted by the original volumes. The third is a linear programming problem that minimizes the maximum correction. Testing revealed that the results from the first formulation results were as good or better than the other two formulations, thus it was used for the rest of this study. This formulation is as below: Minimize XVI Congreso Chileno de Ingeniería de Transporte Santiago Octubre 2013
8 Using intelligent transportation systems data archives for traffic simulation applications 8 i,, k, l 2 z, t 2 ( t) System ( given) (8) Subect to: q i z q z I k, z Ol, z t Occi ( t t) Occ ( t t) Occi ( t) Occ ( t) x z,, z 2( L C) i, lower i, z i, upper, lower, z, upper k, lower k, z k, upper l, lower l, z l, upper z, lower z z, upper z, t The above formulation was also extended to cases where additional information is available from other sources, which possibly have different levels of reliability than the ITS data. Such sources may include short term counts, previous corridor studies, or old tube counts. In these cases, the analysts will have the option to assign weights to different information to account for their different levels of reliabilities. During testing of the above model, it was determined that the results from the optimization should be examined to determine if there are large volume corrections due to measurements at one or two locations that are clearly not consistent with other measurements in the system. In this case, it is advised to take the measurements at these locations out of the optimization model. This will be illustrated using the case study presented later in this document. The correction of the inconsistencies and non-balanced volumes must account for recurrent bottleneck locations that prevent a portion of the demand from being served during a given time period. In these cases, the counts from the data archives may not actually represent the actual demands but volumes constrained by downstream bottleneck throughputs. A procedure was developed to approximate the demand for the ramps and mainline locations affected by the bottlenecks during the constrained demand periods. The procedure first detects the presence of bottleneck and the affected locations. In addition, it identifies the time period during which the demand is constrained (traffic is queuing) and the time period during which the queue is dissipating. The sum of the volumes during these periods represents the total demands. The challenge is to distribute these demands among the sub-periods (e.g., 15 minute intervals) during the queuing and queue dissipation periods. One of three options are given to the analysts: the assumption of linear increase and decrease in traffic flow (triangular pattern) during the period, as shown in Figure 2; inputting the distribution of demands as the proportions of demand for each sub-period during the queuing and queue dissipation periods; or allowing the model to automatically specify these proportions based on measurements at detector locations specified by the user.
9 Alvarez, Hadi and Zhan 9 Figure 2: Ramp volume correction Traffic Volume veh. RAMP VOLUME AS REPORTED BY STEWARD ESTIMATED RAMP DEMAND TIME DEPENDANT RAMP CORRECTION P Time CONSTRAINED OPERATION AND QUEUE DISSIPATION 5. CASE STUDY The feasibility of using ITS data to develop microscopic simulation applications was tested using a freeway corridor equipped with ITS devices including traffic detectors and CCTV cameras. The traffic corridor is the eastbound section of State Road (SR) 826, also known as the Palmetto Expressway, located in Miami, Florida. This corridor includes six interchanges and begins a quarter mile west of the NW 67th Avenue interchange and ends a quarter mile east of the NW 12th Avenue interchange with a total length of 6.5 miles. This study focus is on the AM period between 5:00 and 10:00 AM and the PM period between 4:00 and 6:00 PM Data Collection Volume, speed, and occupancy data were collected from the STEWARD ITS data warehouse. These parameters were measured by true presence microwave detectors located at mile intervals on the test section. In total, there are 21 detectors on the eastbound direction of SR 826. The data were downloaded at the 5 minute aggregation level Pattern Selection This section presents a comparison between four options to demonstrate the use of the pattern selection procedure. Figure 3 shows a comparison between four cases two consecutive hours during the PM peaks (4:00 PM to 6:00 PM). The first case uses the average of three consecutive day volume measurements collected in random from STEWARD. In the second case, the average of only two of these three days was used to exclude one day that seems to involve an incident conditions based on manual inspection of the data. The other two options utilize the pattern selection procedure with 22 days and 44 days, respectively. For these two options, the pattern selection procedure identified 16 days and 33 days belonging to a typical recurrent traffic pattern cluster. This indicates that for this corridor, the volumes on 30% of the days are non typical and should not be included when estimating the average typical demands on the corridor. XVI Congreso Chileno de Ingeniería de Transporte Santiago Octubre 2013
10 Using intelligent transportation systems data archives for traffic simulation applications 10 It can be seen that using a larger sample provide a more stable estimation of the average volumes. This stability helps in obtaining better data for the other procedures of this study. Figure 3: Average volumes based on different cases Average Volume PM Peak (16:00-18:00) at Detector CASE 4 CASE 3 CASE 2 CASE 1 Time Stamp 5.3. Period Segmentation The five consecutive hours during the AM peaks (5:00 AM to 10:00 AM) were segmented using the period segmentation procedure mentioned earlier in this paper. Figure 4 shows a comparison of using four, six, eight, twelve, and twenty segments in the segmentation procedure. Based on the results, the analyst can select the appropriate period segmentation based on the scope of the analysis. Figure 4: Time segmentation based on volumes Time Segmentation AM Peak (05:00-10:00) at Detector SEGMENTS 12 SEGMENTS 8 SEGMENTS 6 SEGMENTS 4 SEGMENTS Time Stamp It is interesting to quantify the difference in performance between the segmentation of a time series into different number of segments using the segmentation algorithm developed in this study versus a baseline segmentation, in which the length of each subinterval is fixed at 15 minutes without using the segmentation procedure. This performance was assessed using data for the two PM peak hours from one detector station on SR 826. Eight, six, and four segments
11 Alvarez, Hadi and Zhan 11 were requested for this data using the segmentation algorithm. The algorithm produced variable periods ranging from 10 min to 40 min. As a measure of the quality of the segmentation, the sum square error between the segmented series and the original STEWARD data is calculated as follows: where 2 i i i i (9) i v ( t i ) = time series volume value at time interval i from STEWARD, and r ( t i ) = average volume value for the resulting time segment that represent the volume of the segment that covers interval i. Figure 5 shows a comparison between different approximation strategies, particularly it is shown that using a higher number of periods improve the quality of the segmentation. Requesting eight segments in the segmentation algorithm produced significantly lower error compared to the other numbers of segments. It is interesting to see that using the four segments produced by the developed segmentation procedure was able to achieve the same error as that obtained using eight consecutive 15 minute period without using the segmentation procedure. The algorithm with eight segments produced a 34% reduction in the error compared to using eight segments with consecutive 15 minute period. Table 1 provides the Mean Square Error and the Correlation Factor f or each approximation. Figure 5: Square error comparisons for different approximation strategies Segmentation Error for Different Strategies Agg. 15min Segmt-8 Segmt-6 Segmt-4 Table 1: Mean Square Error and Correlation Factor Agg. 15 min Segmt-8 Segmt-6 Segmt-4 Mean Square Error Correlation Factor XVI Congreso Chileno de Ingeniería de Transporte Santiago Octubre 2013
12 Using intelligent transportation systems data archives for traffic simulation applications Spatial Conciliation and Missing Demand Estimation The spatial conciliation procedure was used to correct inconsistencies between traffic detector measurements and to estimate missing volumes. On SR 826, traffic detectors are available at 0.3 to 0.5 mile intervals on the mainline. However, there are a number of ramps that do not have detectors. At other ramps, the locations of the detectors do not allow accurate measurements of the volumes. Fortunately, the detection stations on the mainline were located such that each ramp volume can be calculated as the difference between the volumes of the upstream and downstream link volumes. The following cases were compared: In Case 1, volume measurements from both mainline and ramp locations (where available) were used. In Case 2, ramp count measurements were not used. Rather, these measurements were calculated based on upstream and downstream locations. Case 3 is an extension of Case 2, where main line detector station was removed from the optimization model, as discussed later in this section. Sensitivity analysis showed that data collected for only few days (e.g. three days) exhibits significant inconsistencies between detector locations and required significant corrections. Using longer periods of time (data from 30 and 60 days) reduced the inconstancies significantly and produced better results (see Figure 3). As can be seen from Figure 3, in cases 1 and 2 where two to three days were used, the data showed unrealistic peaks. These peaks were not observed when more days were used as cases 3 and 4. Thus, 60 day data was used in this study. Figure 6 shows the results of using only mainline detectors results, namely Case 2. From the results, it appears that the correction of the volumes on the mainline is less than 12% on the mainline in most cases. Also it can be seen that most corrections occurred in the second half of the corridor. Most of the corrections for the ramps occur for the last four on-ramps. The volumes for these ramps were reduced significantly during the correction process. Further examination indicates that this is due to the lower volume measurements than expected at the last mainline detector location. For this reason, the spatial conciliation algorithm decreased the volumes on the on-ramps to reduce the total upstream arrivals at this location. It also increased the volume significantly at this last detector location.
13 Alvarez, Hadi and Zhan 13 Figure 6: Mainline and ramp volume corrections for case Mainline Counts Original and Corrected (Case 2) SR-826 EB ORIGINAL MAINLINE CORRECTED MAINLINE 0 2 Detector Station On Ramps Volumes Original and Corrected (Case 2) SR-826 EB ORIGINAL ON RAMPS CORRECTED ON RAMPS Detector Station Figure 7 shows the results of Case 3, in which this last detector station which has significant inconsistency with the rest of the system was removed from the optimization. Notice how removing this detector station reduces the correction needed in adacent stations. Manual counts for a short period of time confirmed that the last detector had data quality problems. The above results indicate that it is useful for the analyst to examine the results and revise the inputs to the optimization process, if the results from the optimization show significant corrections due to one or two suspicious detection station measurements. Figure 7: Mainline and ramp volume corrections for case 3 Mainline Volumes Original and Corrected (Case 3) SR-826 EB ORIGINAL MAINLINE CORRECTED MAINLINE Detector Station XVI Congreso Chileno de Ingeniería de Transporte Santiago Octubre 2013
14 Using intelligent transportation systems data archives for traffic simulation applications 14 Off-Ramps VolumesOriginal and Corrected (Case 3) SR-826 EB ORIGINAL OFF RAMPS CORRECTED OFF RAMPS Detector Station On Ramps Volumes Original and Corrected (Case 3) SR-826 EB ORIGINAL ON RAMPS CORRECTED ON RAMPS 0 Detector Station The results presented above also provide additional insights regarding the impacts of data quality reported by the data warehouse. If significant errors remain in the data, the quality of the results will be affected. Further research is needed to determine the minimum data quality requirement to produce acceptable results. 6. CONCLUSIONS This paper has illustrated the development and application of a series of data manipulation procedures for the utilization of ITS data archives to support simulation modeling. The procedures allow the extraction of collected volume data from ITS data archives, automatic identification of temporal patterns in the data, automatic segmentation of daily demands into dynamically captured sub-periods to best fit the variations in the demands, resolving possible spatial inconsistencies in the data, and estimating missing volumes. The developed procedures have been implemented as an automated tool for simulation model generation. The tool provides a graphic interface for end users to download data from the STEWARD data warehouse, identify and select ideal traffic patterns, perform segmentation on traffic demands, conduct spatial conciliation to reconcile data inconsistency and estimate missing volumes, and generate new simulation model files based on the purified data. The procedures and the developed tool can easily be adapted by other traffic agencies to interface with their ITS data archives. Although the main obective of the developed procedures and the tool is to produce data for microscopic simulation applications, they can also be used to support other applications such as macroscopic, mesoscopic, and demand forecasting modeling applications.
15 Alvarez, Hadi and Zhan 15 Acknowledgement The work reported in this paper was conducted as part of a proect funded by the Florida Department of Transportation Research Center. The authors gratefully acknowledge the FDOT support of this effort. References Alpaydin, E. (2004) Introduction to Machine Learning. The MIT Press, Massachusetts. Barceló, J. García, D. and Kirschfink, H. (2002) Scenario Analysis a Simulation Based Tool for Regional Strategic Traffic Management. 9 th World Conference on Intelligent Transport Systems, Chicago. Barceló, J. Kirschfink, H. and Torday, A. (2003) An Integrated Software Platform to Assist Advanced Traffic Management Decisions. 10 th World Conference on ITS, Madrid. Federal Highway Administration (2004) Archived Data Management Systems - A Cross- Cutting Study. Publication FHWA-JPO FHWA, U.S. Department of Transportation. Gomez, G., Horowitz, R. and May A. (2004) Calibration of VISSIM for a Congested Freeway. Report UCB-ITS-PRR , University of California, Berkeley. Hillier, F., Frederick S., Gerald J. and Lieberman K. (2004) Introduction to Operations Research. McGraw-Hill, New York. Chu, S. Hart, D. Keogh, E. and Pazzani, M. (2001) An Online Algorithm for Segmenting Time Series, International Conference on Data Mining. Hourdos, J. Michalopoulos, P. and Xin, W. (2006) Preprocessing Volume Input Data for Improved Traffic Simulation. Transportation Research Record: Journal of the Transportation Research Board, No. 1965, Transportation Research Board of the National Academies, Washington D.C., pp XVI Congreso Chileno de Ingeniería de Transporte Santiago Octubre 2013
TIME-VARIANT TRAVEL TIME DISTRIBUTIONS AND RELIABILITY METRICS AND THEIR UTILITY IN RELIABILITY ASSESSMENTS
TIME-VARIANT TRAVEL TIME DISTRIBUTIONS AND RELIABILITY METRICS AND THEIR UTILITY IN RELIABILITY ASSESSMENTS Patricio Alvarez, Universidad del Bío Bío, [email protected] Mohammed Hadi, Florida International
FINAL REPORT DEVELOPMENT OF CONGESTION PERFORMANCE MEASURES USING ITS INFORMATION. Sarah B. Medley Graduate Research Assistant
FINAL REPORT DEVELOPMENT OF CONGESTION PERFORMANCE MEASURES USING ITS INFORMATION Sarah B. Medley Graduate Research Assistant Michael J. Demetsky, Ph.D., P.E. Faculty Research Scientist and Professor of
Integrated Data System Structure for Active Traffic Management - Planning and Operation
Integrated Data System Structure for Active Traffic Management - Planning and Operation NATMEC 2010 Dr. Xiao-Yun Lu, Research Engineer California PATH, U. C. Berkeley J. Palen, Caltrans DRI 1 Outlines
Demonstration of the Application of Traffic Management Center Decision Support Tools
Demonstration of the Application of Traffic Management Center Decision Support Tools Final Report Contract: BDK80 977-24 FIU Project: 800001644 Prepared for The Florida Department of Transportation by
Chapter 3 - GPS Data Collection Description and Validation
Chapter 3 - GPS Data Collection Description and Validation The first step toward the analysis of accuracy and reliability of AVI system was to identify a suitable benchmark for measuring AVI system performance.
TOPL: TOOLS FOR OPERATIONAL PLANNING OF TRANSPORTATION NETWORKS
TOPL: TOOLS FOR OPERATIONAL PLANNING OF TRANSPORTATION NETWORKS A. Chow, V. Dadok, G. Dervisoglu, G. Gomes, R. Horowitz, A. A. Kurzhanskiy, J. Kwon, X.-Y. Lu, A. Muralidharan, S. Norman, R. O. Sánchez,
SIMULATION AND EVALUATION OF THE ORLANDO- ORANGE COUNTY EXPRESSWAY AUTHORITY (OOCEA) ELECTRONIC TOLL COLLECTION PLAZAS USING TPSIM, PHASE II
Final Report SIMULATION AND EVALUATION OF THE ORLANDO- ORANGE COUNTY EXPRESSWAY AUTHORITY (OOCEA) ELECTRONIC TOLL COLLECTION PLAZAS USING TPSIM, PHASE II University of Central Florida Account No.: 494-16-21-722
Simulating Traffic for Incident Management and ITS Investment Decisions
1998 TRANSPORTATION CONFERENCE PROCEEDINGS 7 Simulating Traffic for Incident Management and ITS Investment Decisions MICHAEL D. ANDERSON AND REGINALD R. SOULEYRETTE UTPS-type models were designed to adequately
Traffic Monitoring Guide May 1, 2001. Traffic Volume Monitoring
Traffic Volume Monitoring SECTION 3 CONTENTS Section Page CHAPTER 1 INTRODUCTION...3-1 Traffic Volume Data Collection...3-1 Objectives of the Traffic Volume Monitoring Program...3-2 Organization of This
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca
Clustering Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 K-means 3 Hierarchical Clustering What is Datamining?
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
INDOT 2000-2025 Long Range Plan
Chapter 9 INDOT 2000-2025 Long Range Plan Highway Needs Analysis Overview The statewide transportation planning process provides for the identification of highway needs through a comprehensive process
Data Mining Project Report. Document Clustering. Meryem Uzun-Per
Data Mining Project Report Document Clustering Meryem Uzun-Per 504112506 Table of Content Table of Content... 2 1. Project Definition... 3 2. Literature Survey... 3 3. Methods... 4 3.1. K-means algorithm...
Short-Term Forecasting in Retail Energy Markets
Itron White Paper Energy Forecasting Short-Term Forecasting in Retail Energy Markets Frank A. Monforte, Ph.D Director, Itron Forecasting 2006, Itron Inc. All rights reserved. 1 Introduction 4 Forecasting
Comparing Arterial Speeds from Big-Data Sources in Southeast Florida (Bluetooth, HERE and INRIX)
Comparing Arterial Speeds from Big-Data Sources in Southeast Florida (Bluetooth, HERE and INRIX) Sujith Rapolu Ashutosh Kumar TRB National Transportation Planning Applications Conference (Atlantic City,
The Need for Traffic Incident Management
The Need for Traffic Incident Management With traffic incidents responsible for approximately 50-60% of the congestion delays motorists encounter on the nation s roadways every day, increased roadway capacity
Clustering UE 141 Spring 2013
Clustering UE 141 Spring 013 Jing Gao SUNY Buffalo 1 Definition of Clustering Finding groups of obects such that the obects in a group will be similar (or related) to one another and different from (or
Customer Analytics. Turn Big Data into Big Value
Turn Big Data into Big Value All Your Data Integrated in Just One Place BIRT Analytics lets you capture the value of Big Data that speeds right by most enterprises. It analyzes massive volumes of data
A Learning Based Method for Super-Resolution of Low Resolution Images
A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 [email protected] Abstract The main objective of this project is the study of a learning based method
On Correlating Performance Metrics
On Correlating Performance Metrics Yiping Ding and Chris Thornley BMC Software, Inc. Kenneth Newman BMC Software, Inc. University of Massachusetts, Boston Performance metrics and their measurements are
Roads Task Force - Technical Note 10 What is the capacity of the road network for private motorised traffic and how has this changed over time?
Roads Task Force - Technical Note 10 What is the capacity of the road network for private motorised traffic and how has this changed over time? Introduction This paper forms one of a series of thematic
Using Data Mining for Mobile Communication Clustering and Characterization
Using Data Mining for Mobile Communication Clustering and Characterization A. Bascacov *, C. Cernazanu ** and M. Marcu ** * Lasting Software, Timisoara, Romania ** Politehnica University of Timisoara/Computer
9988 REDWOOD AVENUE PROJECT TRAFFIC IMPACT ANALYSIS. April 24, 2015
9988 REDWOOD AVENUE PROJECT TRAFFIC IMPACT ANALYSIS April 24, 2015 Kunzman Associates, Inc. 9988 REDWOOD AVENUE PROJECT TRAFFIC IMPACT ANALYSIS April 24, 2015 Prepared by: Bryan Crawford Carl Ballard,
Anchorage Travel Model Calibration and Validation
Final Draft Anchorage Travel Model Calibration and Validation Prepared for Anchorage Metropolitan Transportation Solutions (AMATS) February 2005 301 West Northern Lights Boulevard Suite 601 Anchorage,
SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING
AAS 07-228 SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING INTRODUCTION James G. Miller * Two historical uncorrelated track (UCT) processing approaches have been employed using general perturbations
STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and
Clustering Techniques and STATISTICA Case Study: Defining Clusters of Shopping Center Patrons STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table
SHRP 2 Reliability Project L38C. Pilot Testing of SHRP 2 Reliability Data and Analytical Products: Florida
SHRP 2 Reliability Project L38C Pilot Testing of SHRP 2 Reliability Data and Analytical Products: Florida SHRP 2 Reliability Project L38C Pilot Testing of SHRP 2 Reliability Data and Analytical Products:
Traffic Volume Counts
Traffic Volume Counts Prepare 1. Communicate with other staff/departments 2. Review historical data trends 3. Review citizen input 4. Request traffic control Select Location 1. Select the proper location
Predicting the Risk of Heart Attacks using Neural Network and Decision Tree
Predicting the Risk of Heart Attacks using Neural Network and Decision Tree S.Florence 1, N.G.Bhuvaneswari Amma 2, G.Annapoorani 3, K.Malathi 4 PG Scholar, Indian Institute of Information Technology, Srirangam,
Illinois Tollway: Development of Incident Management Based Performance Measures. Jeff Hochmuth, PE, PTOE Wilbur Smith Associates
Illinois Tollway: Development of Incident Management Based Performance Measures Jeff Hochmuth, PE, PTOE Wilbur Smith Associates Tollways and Data Toll authorities have always been data heavy Need to verify
Constrained Clustering of Territories in the Context of Car Insurance
Constrained Clustering of Territories in the Context of Car Insurance Samuel Perreault Jean-Philippe Le Cavalier Laval University July 2014 Perreault & Le Cavalier (ULaval) Constrained Clustering July
LECTURE - 3 RESOURCE AND WORKFORCE SCHEDULING IN SERVICES
LECTURE - 3 RESOURCE AND WORKFORCE SCHEDULING IN SERVICES Learning objective To explain various work shift scheduling methods for service sector. 8.9 Workforce Management Workforce management deals in
Public Sector Solutions
Public Sector Solutions The New Jersey DOT Command Center uses INRIX real-time data and analytics to monitor congestion and deploy resources proactively to manage traffic flow and inform travelers. INRIX
Modeling Cooperative Lane-changing and Forced Merging Behavior
Modeling Cooperative Lane-changing and Forced Merging Behavior Charisma Choudhury, Anita Rao, Gunwoo Lee Advisors: Moshe Ben-Akiva, Tomer Toledo ITS Program February 10, 2006 Outline Motivation Model structure
TTI Research and Implementation
The University of Texas at El Paso Engineering In Practice Seminar TTI Research and Implementation in the El Paso Region April 2011 Agenda Overview of TTI and TTI s El Paso Presence TxDOT El Paso District
A SPECIAL APPLICATION OF A VIDEO-IMAGE SYSTEM FOR VEHICLE TRACKING AND SPEED MEASUREMENT
A SPECIAL APPLICATION OF A VIDEO-IMAGE SYSTEM FOR VEHICLE TRACKING AND SPEED MEASUREMENT Zong Tian (Corresponding Author) Texas Transportation Institute The Texas A&M University System College Station,
Auckland Motorways Network Performance Monitoring
Network Performance Monitoring Anita Lin & Hanford Cheung Page 0 Auckland Motorways Network Performance Monitoring Authors Anita Lin Auckland Motorways (Presenter) Traffic Optimisation Leader BE, ME GIPENZ
Building Energy Management: Using Data as a Tool
Building Energy Management: Using Data as a Tool Issue Brief Melissa Donnelly Program Analyst, Institute for Building Efficiency, Johnson Controls October 2012 1 http://www.energystar. gov/index.cfm?c=comm_
Available online at www.sciencedirect.com Available online at www.sciencedirect.com. Advanced in Control Engineering and Information Science
Available online at www.sciencedirect.com Available online at www.sciencedirect.com Procedia Procedia Engineering Engineering 00 (2011) 15 (2011) 000 000 1822 1826 Procedia Engineering www.elsevier.com/locate/procedia
The Economic Cost of Traffic Congestion in Florida. Final Document Contract FDOT BDK75 977-19 (UF # 00072256)
August 2010 The Economic Cost of Traffic Congestion in Florida Final Document Contract FDOT BDK75 977-19 (UF # 00072256) Prepared for: Florida Department of Transportation Project Manager J. Darryll Dockstader
COPYRIGHTED MATERIAL. Contents. List of Figures. Acknowledgments
Contents List of Figures Foreword Preface xxv xxiii xv Acknowledgments xxix Chapter 1 Fraud: Detection, Prevention, and Analytics! 1 Introduction 2 Fraud! 2 Fraud Detection and Prevention 10 Big Data for
Active Traffic Management (ATM) Feasibility Study
Active Traffic Management (ATM) Feasibility Study Submitted to: Washington State Department of Transportation Urban Corridors Office 401 Second Avenue S., Suite 560 Seattle, WA 98104-3850 Submitted by:
Estimation of Travel Demand and Network Simulators to Evaluate Traffic Management Schemes in Disaster
Estimation of Travel Demand and Network Simulators to Evaluate Traffic Management Schemes in Disaster Shinji Tanaka, Masao Kuwahara, Toshio Yoshii, Ryota Horiguchi and Hirokazu Akahane* Institute of Industrial
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
SECTION 16 TRAFFIC/SAFETY SECTIONS 16.1, 16.2 AND 16.3 ARE UNDER DEVELOPMENT
SECTION 16 TRAFFIC/SAFETY SECTIONS 16.1, 16.2 AND 16.3 ARE UNDER DEVELOPMENT 16.1-1 16.4 Intelligent Transportation Systems Introduction The ITS Engineering Unit is responsible for the design of all ITS
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
Accuracy of Pneumatic Road Tube Counters
Accuracy of Pneumatic Road Tube Counters By: Patrick McGowen and Michael Sanderson Abstract: Pneumatic road tube counters are a tool that is commonly used to conduct traffic counts on streets and roads.
Strategic Online Advertising: Modeling Internet User Behavior with
2 Strategic Online Advertising: Modeling Internet User Behavior with Patrick Johnston, Nicholas Kristoff, Heather McGinness, Phuong Vu, Nathaniel Wong, Jason Wright with William T. Scherer and Matthew
Section 6 Traffic Analysis
Section 6 Traffic Analysis Traffic Operations of the Preferred Network Alternative After the Preferred Network was identified and confirmed by local policy makers and area residents, detailed traffic analysis
Congestion (average speed during the weekday morning peak) on Local A Roads Methodology
Congestion (average speed during the weekday morning peak) on Local A Roads Methodology IMPORTANT NOTE This methodology document refers to the previous Congestion on local A road statistics, published
OVERVIEW TO SOME INCIDENT DETECTION ALGORITHMS: A COMPARATIVE EVALUATION WITH ISTANBUL FREEWAY DATA
Proceedings of the 12 th International Conference Reliability and Statistics in Transportation and Communication (RelStat 12), 17 20 October 2012, Riga, Latvia, p. 274 284. ISBN 978-9984-818-49-8 Transport
Cluster Analysis. Alison Merikangas Data Analysis Seminar 18 November 2009
Cluster Analysis Alison Merikangas Data Analysis Seminar 18 November 2009 Overview What is cluster analysis? Types of cluster Distance functions Clustering methods Agglomerative K-means Density-based Interpretation
Data Mining. Cluster Analysis: Advanced Concepts and Algorithms
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 More Clustering Methods Prototype-based clustering Density-based clustering Graph-based
The Impact of Rubbernecking on Urban Freeway Traffic
Journal of Transportation Technologies, 2014, 4, 116-125 Published Online January 2014 (http://www.scirp.org/journal/jtts) http://dx.doi.org/10.4236/jtts.2014.41012 The Impact of Rubbernecking on Urban
Medical Information Management & Mining. You Chen Jan,15, 2013 [email protected]
Medical Information Management & Mining You Chen Jan,15, 2013 [email protected] 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?
Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016
Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with
How To Cluster
Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main
APPLICATION OF DATA MINING TECHNIQUES FOR BUILDING SIMULATION PERFORMANCE PREDICTION ANALYSIS. email [email protected]
Eighth International IBPSA Conference Eindhoven, Netherlands August -4, 2003 APPLICATION OF DATA MINING TECHNIQUES FOR BUILDING SIMULATION PERFORMANCE PREDICTION Christoph Morbitzer, Paul Strachan 2 and
DHL Data Mining Project. Customer Segmentation with Clustering
DHL Data Mining Project Customer Segmentation with Clustering Timothy TAN Chee Yong Aditya Hridaya MISRA Jeffery JI Jun Yao 3/30/2010 DHL Data Mining Project Table of Contents Introduction to DHL and the
INVESTIGATION OF ASIM 29X, CANOGA, RTMS, SAS-1, SMARTSENSOR, TIRTL & OTHER SENSORS FOR AUTOMATIC VEHICLE CLASSIFICATION
INVESTIGATION OF ASIM 29X, CANOGA, RTMS, SAS-1, SMARTSENSOR, TIRTL & OTHER SENSORS FOR AUTOMATIC VEHICLE CLASSIFICATION RESEARCH NEED This research will add to the national and local state-of-the-art on
TIBCO Industry Analytics: Consumer Packaged Goods and Retail Solutions
TIBCO Industry Analytics: Consumer Packaged Goods and Retail Solutions TIBCO s robust, standardsbased infrastructure technologies are used by successful retailers around the world, including five of the
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - [email protected]
Overview to some existing incident detection algorithms: a comparative evaluation
Procedia - Social and Behavioral Sciences 00 (2011) 000 000 Procedia Social and Behavioral Sciences www.elsevier.com/locate/procedia 15 th EWGT Overview to some existing incident detection algorithms:
Collection and Use of MAC Address Data for the Travel Demand Model
Collection and Use of MAC Address Data for the Travel Demand Model Li Jin, Kittelson & Associates, Inc. (email: [email protected]) Matt Wiesenfeld, Kittelson & Associates, Inc. Karl Passetti, Kittelson
Predicting Flight Delays
Predicting Flight Delays Dieterich Lawson [email protected] William Castillo [email protected] Introduction Every year approximately 20% of airline flights are delayed or cancelled, costing
Qu, Parker, Cheng, Ran, Noyce 1. Large Scale Intelligent Transportation System Traffic Detector Data Archiving
Qu, Parker, Cheng, Ran, Noyce 0 0 0 0 Large Scale Intelligent Transportation System Traffic Detector Data Archiving Tao Qu, Graduate Research Assistant, Department of Civil and Environment Engineering,
CHARACTERISTICS IN FLIGHT DATA ESTIMATION WITH LOGISTIC REGRESSION AND SUPPORT VECTOR MACHINES
CHARACTERISTICS IN FLIGHT DATA ESTIMATION WITH LOGISTIC REGRESSION AND SUPPORT VECTOR MACHINES Claus Gwiggner, Ecole Polytechnique, LIX, Palaiseau, France Gert Lanckriet, University of Berkeley, EECS,
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,
Incident Detection via Commuter Cellular Phone Calls
Incident Detection via Commuter Cellular Phone Calls Bruce Hellinga Abstract Rapid and reliable incident detection is a critical component of a traffic management strategy. Traditional automatic incident
Ramp Metering. Index. Purpose. Description. Relevance for Large Scale Events. Options. Technologies. Impacts. Integration potential.
Ramp Metering Index Purpose Description Relevance for Large Scale Events Options Technologies Impacts Integration potential Implementation Best Cases and Examples 1 of 7 Purpose Ramp metering is a technique
TERMINAL 91 TRAFFIC MONITORING STUDY
REVISED DRAFT TERMINAL 9 TRAFFIC MONITORING STUDY Prepared for: Port of Seattle Prepared by: 6544 NE 6st Street, Seattle, WA 985 ph: (26) 523-3939 fx: (26) 523-4949 NOVEMBER 22, 2 TABLE OF CONTENTS. INTRODUCTION...
Web-Based Work Zone Traffic Analysis Tool Users Guide
Oregon Department of Transportation TECHNICAL SERVICES TRAFFIC - ROADWAY SECTION TRAFFIC CONTROL PLANS UNIT Web-Based Work Zone Traffic Analysis Tool Users Guide Fall 2010 DATE: April 2010 TO: FROM: Work
ITS Deployment Analysis System (IDAS) Version 2.2, developed by Cambridge Systematics under contract to the Federal Highway Administration, 2002.
Chapter 8: BENEFITS ANALYSIS 8.1 INTRODUCTION Historically, benefits associated with ITS have been reported based on results of previous ITS deployments either within the particular region or around the
Civica Health & Social Care
Civica Health & Social Care Focus on > SLAM for Healthcare Providers Improved communications with commissioners, leading to clarity and better relationships Civica Focus on> The solution SLAM is the ideal
Massachusetts Department of Transportation, Highway Division Ten Park Plaza, Boston, MA 02116-3973. A Guide on Traffic Analysis Tools
Massachusetts Department of Transportation, Highway Division Ten Park Plaza, Boston, MA 02116-3973 A Guide on Traffic Tools Revised October 5, 2012 1. PURPOSE The Massachusetts Department of Transportation,
TRAVEL TIME DATA COLLECTION AND SPATIAL INFORMATION TECHNOLOGIES FOR RELIABLE TRANSPORTATION SYSTEMS PLANNING
TRAVEL TIME DATA COLLECTION AND SPATIAL INFORMATION TECHNOLOGIES FOR RELIABLE TRANSPORTATION SYSTEMS PLANNING Srinivas S. Pulugurtha, Ph.D., P.E. Venkata R. Duddu, Ph.D., E.I. The University of North Carolina
Clarus Data into Data
The Integration of Multi-State Clarus Data into Data Visualization Tools www.its.dot.gov/index.htm Final Report December 9, 2011 FHWA-JPO-12-008 Produced by DTFH61-10-P-00122 ITS Research and Innovative
Use of Data Mining Techniques to Improve the Effectiveness of Sales and Marketing
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 4, April 2015,
Traffic Analysis Handbook
CORSIM Traffic Analysis Handbook A Reference for Planning and Operations Systems Planning Office 2014 F L O R I D A D E P A R T M E N T O F T R A N S P O R T A T I O N TRAFFIC ANALYSIS HANDBOOK Florida
VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR
VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR Andrew Goldstein Yale University 68 High Street New Haven, CT 06511 [email protected] Alexander Thornton Shawn Kerrigan Locus Energy 657 Mission St.
Statistical Forecasting of High-Way Traffic Jam at a Bottleneck
Metodološki zvezki, Vol. 9, No. 1, 2012, 81-93 Statistical Forecasting of High-Way Traffic Jam at a Bottleneck Igor Grabec and Franc Švegl 1 Abstract Maintenance works on high-ways usually require installation
Use of a Web-Based GIS for Real-Time Traffic Information Fusion and Presentation over the Internet
Use of a Web-Based GIS for Real-Time Traffic Information Fusion and Presentation over the Internet SUMMARY Dimitris Kotzinos 1, Poulicos Prastacos 2 1 Department of Computer Science, University of Crete
