Big Data Technologies
|
|
|
- Erin Cannon
- 10 years ago
- Views:
Transcription
1 Big Data Technologies Hadoop and its Ecosystem Hala El-Ali EMIS/CSE 8331 SMU
2 Agenda Introduction Hadoop Core Demo Hadoop Ecosystem Demo QA
3 Big Data Big data is the term for a collection of structured and unstructured data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications. Big Data 3 Vs Volume: large amount of data Velocity: needs to be analyzed quickly Variety : structured and unstructured
4 Scale of Big Data Bytes (8 Bits) Kilobyte (1000 Bytes) Megabyte ( Bytes) Gigabyte ( Bytes) Terabyte ( Bytes) Traditional tech. Petabyte ( Bytes) Hadoop Exabyte ( Bytes) Zettabyte ( Bytes) Yottabyte ( Bytes)
5 The Perfect Storm (2000 s) Data is growing at exponential rates: Generated in many ways (social media, consumer transactions, scientific data, etc.) Acquired in many ways (GPS, sensors, scanners, etc.) The demand for knowledge is growing at the same rate. IN EVERY ASPECT!!! Need to process data in real-time Hardware performance growth slowed: CPU performance growth hit a wall Storage density continues to grow, but linearly Networks continue to be a bottleneck Hitting technical limits created a big push to parallel process and distribute
6 What is Hadoop and Why it Matters? A programming framework for Big Data that is: Distributed (runs on master-slave cluster) Scalable (1000 s of nodes) Fault-Tolerant (built-in redundancy) Cost-efficient (commodity hardware) Open-Source (Apache projects) Free (Apache License 2.0) Used and supported by major corporation (Google, Yahoo!, IBM, ebay, facebook, etc.) Commercial distributions from companies like Cloudera and Hortonworks. The World s de facto enterprise-viable Big Data solution.
7 How it does it? Distribute: Scale-out compute and storage using clusters of inexpensive commodity hardware. Provide a platform for highly-available distributed storage (Hadoop Distributed File System) Provide a platform for highly-available distributed compute (MapReduce). Localize (reduce reliance on networks) Reduce network traffic by moving process where the data is.
8 Brief History First the web was invented, then searching the web became an idea. The web crawlers were invented and automated search (search engines). Nutch project: crawl and index on multi-machines. Google was working on the same idea. Nutch split into crawler (Nutch) and distributed computing and processing (Hadoop) Google published white papers on Google File System, Map-Reduce, and Big Table. Hadoop is an implementation of all three.
9 Really Brief History
10 Hadoop Core HDFS Hadoop Distributed File System (follows Google File System) Hadoop MapReduce: an implementation of MapReduce programming model Yarn (Hadoop 2.0) A framework for job scheduling and cluster resource management. Yarn can be used for other than MapReduce jobs.
11 HDFS Hadoop Distributed File System that runs of file systems Large files are split into blocks or partitions Default is to store 3 copies of each partition. Two local copies and 1 remote copy (rack or subnet aware). Master-slave architecture Name Node (Master): manages files and blocks and runs on master node. Stores the metadata of the HDFS. One Name Node per cluster. Data Node (Slave): stores blocks and runs on slave nodes. There can be thousands of those. Hadoop 2 added Backup Node and Checkpoint Node (replaces Secondary Node). Clients access HDFS via API or command line.
12 HDFS
13 HDFS Commands [-appendtofile <localsrc>... <dst>] [-cat [-ignorecrc] <src>...] [-checksum <src>...] [-chgrp [-R] GROUP PATH...] [-chmod [-R] <MODE[,MODE]... OCTALMODE> PATH...] [-chown [-R] [OWNER][:[GROUP]] PATH...] [-copyfromlocal [-f] [-p] <localsrc>... <dst>] [-copytolocal [-p] [-ignorecrc] [-crc] <src>... <localdst>] [-count [-q] <path>...] [-cp [-f] [-p] <src>... <dst>] [-createsnapshot <snapshotdir> [<snapshotname>]] [-deletesnapshot <snapshotdir> <snapshotname>] [-df [-h] [<path>...]] [-du [-s] [-h] <path>...] [-expunge] [-get [-p] [-ignorecrc] [-crc] <src>... <localdst>] [-getfacl [-R] <path>] [-help [cmd...]] [-ls [-d] [-h] [-R] [<path>...]] [-mkdir [-p] <path>...] [-movefromlocal <localsrc>... <dst>] [-movetolocal <src> <localdst>] [-mv <src>... <dst>] [-put [-f] [-p] <localsrc>... <dst>] [-renamesnapshot <snapshotdir> <oldname> <newname>] [-rm [-f] [-r -R] [-skiptrash] <src>...] [-rmdir [--ignore-fail-on-non-empty] <dir>...] [-setfacl [-R] [{-b -k} {-m -x <acl_spec>} <path>] [--set <acl_spec> <path>]] [-setrep [-R] [-w] <rep> <path>...] [-stat [format] <path>...] [-tail [-f] <file>] [-test -[defsz] <path>] [-text [-ignorecrc] <src>...] [-touchz <path>...] [-usage [cmd...]]
14 MapReduce Programming model for distributed processing. MapReduce engine consists of JobTracker and TaskTracker JobTracker runs on master node, client submit jobs to it. It pushes work to TaskTracker. Rack aware, tries to assign tasks to node that contains the data or a node near it. TaskTracker: runs on slave node, spawns a JVM for each task, holds available slots where tasks are pushed by the JobTracker. Speculative scheduling for slow running TaskTracker. Scheduling: Default is FIFO. Fair and Capacity Scheduling was added as options.
15 MapReduce
16 MapReduce
17 Yarn MapReduce V2 split the JobTracker into two daemons: scheduling/monitoring and resource management. Yarn addresses issues with MapReduce V1. Yarn enables fine grained memory allocation. Enables larger clusters Yarn enables running jobs other than MapReduce on the cluster.
18 demo MapReduce demo
19 What Hadoop is Not Apache Hadoop is not a substitute for a database No ACID No SQL No real-time MapReduce is not always the best algorithm No shared states No shared memory No flow, locks, dependency HDFS is not a complete POSIX filesystem No seek to the middle and write into file
20
21 Transfer Flume Service for efficiently collecting, aggregating, and moving large amounts of log data (flume.apache.org) Runs in its own cluster Simple architecture: Source-Channel-Sink Supported sources are: file, logs, syslog, stdout, user-defined (events) Supported sinks are: HDFS, files system, user-defined (Hbase). Agents collect data from source computers. Data is processed (encrypted, compressed,..). Agent can perform more pre-persist processing (cleaned, enriched, transformed) then parallel stored in any format (text, binary,..).
22 Transfer Flume
23 Transfer Sqoop A tool designed for efficiently transferring bulk data between Apache Hadoop and structured datastores such as relational databases (sqoop.apache.org). It is capable of transferring the data in both directions. Supports incremental imports. Supports any database that supports JDBC and allows for custom connectors. Free but not open source.
24 Transfer
25 Persist Hbase (Hadoop Database) Built on top of HDFS to provide real-time, random read/write access to the data. Modeled after Google Bigtable, suitable for massive sparse data. Column-Family based, schema consists of column-families definitions. A column-family is like a table except columns can be added without schema change. Column families are stored together on HDFS Access is via a primary key (row key) only, no indexes. Data sorted by row key and partitioned (sharded) into regions by rowkey range. Cells are versioned usually timestamped. New data is held in memory, flushed to disk in files, compaction is run to remove expired and deleted cells.
26 Persist Hbase Diagram
27 Hbase Vs. RDBMS
28 Data Interactions - Hive Data warehouse software facilitates querying and managing large datasets residing in distributed storage (hive.apache.org) Initially developed by Facebook. Provides a SQL-like language called HiveQL Command line interface, web and JDBC/ODBC. Runs on your computer. It creates MapReduce jobs in the background to execute the queries. Leverage SQL skills Reduce programming and testing time.
29 Data Interactions - Hive
30 Data Interactions Pig Apache Pig is a platform for analyzing large data sets that consists of a high-level language for expressing data analysis programs, coupled with infrastructure for evaluating these programs. The salient property of Pig programs is that their structure is amenable to substantial parallelization, which in turns enables them to handle very large data sets. (pig.apache.org) Components are: A compiler that generates MapReduce jobs. A dataflow, script-like language for transforming large datasets called PigLatin. Interfaces are command line and Java API PigServer
31 PigLatin Scripting-like language Defines data types like primitive datatype, tuple, sets and bags. Provides a list of commands for transforming data. Each command is executed as a MapReduce job (newer version would optimize the execution of a block of commands). Runs on your computer but submits the execution to a hadoop cluster Extendible (users can define their own processing UDF) (See Piggybank for community UDF)
32 PigLatin
33 PigLatin PigLatin demo (using grunt interactive shell).
34 Mahout Per Mahout supports four main data science use cases: Collaborative filtering mines user behavior and makes product recommendations (e.g. Amazon recommendations) Clustering takes items in a particular class (such as web pages or newspaper articles) and organizes them into naturally occurring groups, such that items belonging to the same group are similar to each other Classification learns from existing categorizations and then assigns unclassified items to the best category Frequent itemset mining analyzes items in a group (e.g. items in a shopping cart or terms in a query session) and then identifies which items typically appear together
35 Mahout
36 QA
37 References White, Tom. Hadoop The Definitive Guide. 3rd ed. O'Reilly, Print. Rathbone, Matthew. "A Beginners Guide to Hadoop." Blog RSS. 17 Apr Web. 30 Mar Allouche, Gil. "Hadoop 101: An Explanation of the Hadoop Ecosystem." Hadoop 101: An Explanation of the Hadoop Ecosystem. DZone, 17 Dec Web. 30 Mar < Garment, Victoria. "Hadoop 101: The Most Important Terms, Explained." Plotting Success. 27 Mar Web. 30 Mar < Jobke, Morris. "Hadoop - NameNode, Checkpoint Node and Backup Node - Morris Jobke." 11 Dec Web. 30 Mar < NameNode-and-siblings/>. Li, Heifeng. "Distributed NoSQL: HBase and Accumulo." Dataconomy. 18 Aug Web. 30 Mar < "The Zettabyte Era-Trends and Analysis." Cisco. Web. 30 Mar < Sutter, Herb. "The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software." The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software. 30 Mar Web. 30 Mar <
38 References "Apache Mahout." Hortonworks. Web. 30 Mar < "Introduction to Apache Pig." - Online Hadoop Training Video. 4 Oct Web. 30 Mar < "Cloudera Essentials for Apache Hadoop." Hadoop Essentials Training. Web. 30 Mar < Ghai, Sachin. "HadoopSphere." Apache Hadoop Ecosystem. Web. 30 Mar < "Hadoop Tutorial: Map-Reduce on YARN Part 1 -- Overview and Installati..." Hadoop Tutorial: Map-Reduce on YARN Part 1 -- Overview and Installati... Web. 30 Mar < "Cheat Sheet Hive for SQL Users." Web. 30 Mar < "Welcome to Apache Pig!" Welcome to Apache Pig! Web. 30 Mar < "General." Apache Hive TM. Web. 30 Mar < "Welcome to Apache Flume." Welcome to Apache Flume Apache Flume. Web. 30 Mar < "Sqoop -." Sqoop -. Web. 30 Mar <
CS242 PROJECT. Presented by Moloud Shahbazi Spring 2015
CS242 PROJECT Presented by Moloud Shahbazi Spring 2015 AGENDA Project Overview Data Collection Indexing Big Data Processing PROJECT- PART1 1.1 Data Collection: 5G < data size < 10G Deliverables: Document
HDFS File System Shell Guide
Table of contents 1 Overview...3 1.1 cat... 3 1.2 chgrp... 3 1.3 chmod... 3 1.4 chown... 4 1.5 copyfromlocal...4 1.6 copytolocal...4 1.7 count... 4 1.8 cp... 4 1.9 du... 5 1.10 dus...5 1.11 expunge...5
Hadoop Shell Commands
Table of contents 1 DFShell... 3 2 cat...3 3 chgrp...3 4 chmod...3 5 chown...4 6 copyfromlocal... 4 7 copytolocal... 4 8 cp...4 9 du...4 10 dus... 5 11 expunge... 5 12 get... 5 13 getmerge... 5 14 ls...
Hadoop Shell Commands
Table of contents 1 FS Shell...3 1.1 cat... 3 1.2 chgrp... 3 1.3 chmod... 3 1.4 chown... 4 1.5 copyfromlocal...4 1.6 copytolocal...4 1.7 cp... 4 1.8 du... 4 1.9 dus...5 1.10 expunge...5 1.11 get...5 1.12
File System Shell Guide
Table of contents 1 Overview...3 1.1 cat... 3 1.2 chgrp... 3 1.3 chmod... 3 1.4 chown... 4 1.5 copyfromlocal...4 1.6 copytolocal...4 1.7 count... 4 1.8 cp... 5 1.9 du... 5 1.10 dus...5 1.11 expunge...6
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Getting Started with Hadoop. Raanan Dagan Paul Tibaldi
Getting Started with Hadoop Raanan Dagan Paul Tibaldi What is Apache Hadoop? Hadoop is a platform for data storage and processing that is Scalable Fault tolerant Open source CORE HADOOP COMPONENTS Hadoop
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe
Qsoft Inc www.qsoft-inc.com
Big Data & Hadoop Qsoft Inc www.qsoft-inc.com Course Topics 1 2 3 4 5 6 Week 1: Introduction to Big Data, Hadoop Architecture and HDFS Week 2: Setting up Hadoop Cluster Week 3: MapReduce Part 1 Week 4:
Lecture 10: HBase! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 10: HBase!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind the
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware.
Hadoop Source Alessandro Rezzani, Big Data - Architettura, tecnologie e metodi per l utilizzo di grandi basi di dati, Apogeo Education, ottobre 2013 wikipedia Hadoop Apache Hadoop is an open-source software
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
Big Data Too Big To Ignore
Big Data Too Big To Ignore Geert! Big Data Consultant and Manager! Currently finishing a 3 rd Big Data project! IBM & Cloudera Certified! IBM & Microsoft Big Data Partner 2 Agenda! Defining Big Data! Introduction
HDFS. Hadoop Distributed File System
HDFS Kevin Swingler Hadoop Distributed File System File system designed to store VERY large files Streaming data access Running across clusters of commodity hardware Resilient to node failure 1 Large files
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software. 22 nd October 2013 10:00 Sesión B - DB2 LUW
Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software 22 nd October 2013 10:00 Sesión B - DB2 LUW 1 Agenda Big Data The Technical Challenges Architecture of Hadoop
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP
Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
Complete Java Classes Hadoop Syllabus Contact No: 8888022204
1) Introduction to BigData & Hadoop What is Big Data? Why all industries are talking about Big Data? What are the issues in Big Data? Storage What are the challenges for storing big data? Processing What
Data-Intensive Computing with Map-Reduce and Hadoop
Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan [email protected] Abstract Every day, we create 2.5 quintillion
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
MapReduce with Apache Hadoop Analysing Big Data
MapReduce with Apache Hadoop Analysing Big Data April 2010 Gavin Heavyside [email protected] About Journey Dynamics Founded in 2006 to develop software technology to address the issues
and HDFS for Big Data Applications Serge Blazhievsky Nice Systems
Introduction PRESENTATION to Hadoop, TITLE GOES MapReduce HERE and HDFS for Big Data Applications Serge Blazhievsky Nice Systems SNIA Legal Notice The material contained in this tutorial is copyrighted
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
COURSE CONTENT Big Data and Hadoop Training
COURSE CONTENT Big Data and Hadoop Training 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems RDBMS Grid Computing Volunteer Computing A Brief History of Hadoop Apache Hadoop
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed
Cloudera Certified Developer for Apache Hadoop
Cloudera CCD-333 Cloudera Certified Developer for Apache Hadoop Version: 5.6 QUESTION NO: 1 Cloudera CCD-333 Exam What is a SequenceFile? A. A SequenceFile contains a binary encoding of an arbitrary number
Xiaoming Gao Hui Li Thilina Gunarathne
Xiaoming Gao Hui Li Thilina Gunarathne Outline HBase and Bigtable Storage HBase Use Cases HBase vs RDBMS Hands-on: Load CSV file to Hbase table with MapReduce Motivation Lots of Semi structured data Horizontal
Hadoop for MySQL DBAs. Copyright 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.
Hadoop for MySQL DBAs + 1 About me Sarah Sproehnle, Director of Educational Services @ Cloudera Spent 5 years at MySQL At Cloudera for the past 2 years [email protected] 2 What is Hadoop? An open-source
A very short Intro to Hadoop
4 Overview A very short Intro to Hadoop photo by: exfordy, flickr 5 How to Crunch a Petabyte? Lots of disks, spinning all the time Redundancy, since disks die Lots of CPU cores, working all the time Retry,
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
RDMA for Apache Hadoop 0.9.9 User Guide
0.9.9 User Guide HIGH-PERFORMANCE BIG DATA TEAM http://hibd.cse.ohio-state.edu NETWORK-BASED COMPUTING LABORATORY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING THE OHIO STATE UNIVERSITY Copyright (c)
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected]
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected] Hadoop, Why? Need to process huge datasets on large clusters of computers
BIG DATA TECHNOLOGY. Hadoop Ecosystem
BIG DATA TECHNOLOGY Hadoop Ecosystem Agenda Background What is Big Data Solution Objective Introduction to Hadoop Hadoop Ecosystem Hybrid EDW Model Predictive Analysis using Hadoop Conclusion What is Big
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing
HOW TO LIVE WITH THE ELEPHANT IN THE SERVER ROOM APACHE HADOOP WORKSHOP
HOW TO LIVE WITH THE ELEPHANT IN THE SERVER ROOM APACHE HADOOP WORKSHOP AGENDA Introduction What is Hadoop and the rationale behind it Hadoop Distributed File System (HDFS) and MapReduce Common Hadoop
MySQL and Hadoop. Percona Live 2014 Chris Schneider
MySQL and Hadoop Percona Live 2014 Chris Schneider About Me Chris Schneider, Database Architect @ Groupon Spent the last 10 years building MySQL architecture for multiple companies Worked with Hadoop for
Hadoop Job Oriented Training Agenda
1 Hadoop Job Oriented Training Agenda Kapil CK [email protected] Module 1 M o d u l e 1 Understanding Hadoop This module covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 1.1 Module
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Apache HBase. Crazy dances on the elephant back
Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage
Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science
A Seminar report On Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Certified Big Data and Apache Hadoop Developer VS-1221
Certified Big Data and Apache Hadoop Developer VS-1221 Certified Big Data and Apache Hadoop Developer Certification Code VS-1221 Vskills certification for Big Data and Apache Hadoop Developer Certification
Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo
Sensor Network Messaging Service Hive/Hadoop Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo Contents 1 Introduction 2 What & Why Sensor Network
Lecture 2 (08/31, 09/02, 09/09): Hadoop. Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015
Lecture 2 (08/31, 09/02, 09/09): Hadoop Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015 K. Zhang BUDT 758 What we ll cover Overview Architecture o Hadoop
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction
You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required.
What is this course about? This course is an overview of Big Data tools and technologies. It establishes a strong working knowledge of the concepts, techniques, and products associated with Big Data. Attendees
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Constructing a Data Lake: Hadoop and Oracle Database United!
Constructing a Data Lake: Hadoop and Oracle Database United! Sharon Sophia Stephen Big Data PreSales Consultant February 21, 2015 Safe Harbor The following is intended to outline our general product direction.
Deploying Hadoop with Manager
Deploying Hadoop with Manager SUSE Big Data Made Easier Peter Linnell / Sales Engineer [email protected] Alejandro Bonilla / Sales Engineer [email protected] 2 Hadoop Core Components 3 Typical Hadoop Distribution
Pro Apache Hadoop. Second Edition. Sameer Wadkar. Madhu Siddalingaiah
Pro Apache Hadoop Second Edition Sameer Wadkar Madhu Siddalingaiah Contents J About the Authors About the Technical Reviewer Acknowledgments Introduction xix xxi xxiii xxv Chapter 1: Motivation for Big
Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.
Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in
Scaling Up 2 CSE 6242 / CX 4242. Duen Horng (Polo) Chau Georgia Tech. HBase, Hive
CSE 6242 / CX 4242 Scaling Up 2 HBase, Hive Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Le
Microsoft SQL Server 2012 with Hadoop
Microsoft SQL Server 2012 with Hadoop Debarchan Sarkar Chapter No. 1 "Introduction to Big Data and Hadoop" In this package, you will find: A Biography of the author of the book A preview chapter from the
How to Hadoop Without the Worry: Protecting Big Data at Scale
How to Hadoop Without the Worry: Protecting Big Data at Scale SESSION ID: CDS-W06 Davi Ottenheimer Senior Director of Trust EMC Corporation @daviottenheimer Big Data Trust. Redefined Transparency Relevance
Linux Clusters Ins.tute: Turning HPC cluster into a Big Data Cluster. A Partnership for an Advanced Compu@ng Environment (PACE) OIT/ART, Georgia Tech
Linux Clusters Ins.tute: Turning HPC cluster into a Big Data Cluster Fang (Cherry) Liu, PhD [email protected] A Partnership for an Advanced Compu@ng Environment (PACE) OIT/ART, Georgia Tech Targets
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the The Israeli Association of Grid Technologies July 15, 2009 Outline Architecture
AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW
AGENDA What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story Hadoop PDW Our BIG DATA Roadmap BIG DATA? Volume 59% growth in annual WW information 1.2M Zetabytes (10 21 bytes) this
Internals of Hadoop Application Framework and Distributed File System
International Journal of Scientific and Research Publications, Volume 5, Issue 7, July 2015 1 Internals of Hadoop Application Framework and Distributed File System Saminath.V, Sangeetha.M.S Abstract- Hadoop
Apache Hadoop FileSystem and its Usage in Facebook
Apache Hadoop FileSystem and its Usage in Facebook Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System [email protected] Presented at Indian Institute of Technology November, 2010 http://www.facebook.com/hadoopfs
THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES
THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES Vincent Garonne, Mario Lassnig, Martin Barisits, Thomas Beermann, Ralph Vigne, Cedric Serfon [email protected] [email protected] XLDB
Tap into Hadoop and Other No SQL Sources
Tap into Hadoop and Other No SQL Sources Presented by: Trishla Maru What is Big Data really? The Three Vs of Big Data According to Gartner Volume Volume Orders of magnitude bigger than conventional data
Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive
Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive E. Laxmi Lydia 1,Dr. M.Ben Swarup 2 1 Associate Professor, Department of Computer Science and Engineering, Vignan's Institute
Big Data and Scripting Systems build on top of Hadoop
Big Data and Scripting Systems build on top of Hadoop 1, 2, Pig/Latin high-level map reduce programming platform interactive execution of map reduce jobs Pig is the name of the system Pig Latin is the
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
Scaling Up HBase, Hive, Pegasus
CSE 6242 A / CS 4803 DVA Mar 7, 2013 Scaling Up HBase, Hive, Pegasus Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko,
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
From Relational to Hadoop Part 1: Introduction to Hadoop. Gwen Shapira, Cloudera and Danil Zburivsky, Pythian
From Relational to Hadoop Part 1: Introduction to Hadoop Gwen Shapira, Cloudera and Danil Zburivsky, Pythian Tutorial Logistics 2 Got VM? 3 Grab a USB USB contains: Cloudera QuickStart VM Slides Exercises
Hadoop 101. Lars George. NoSQL- Ma4ers, Cologne April 26, 2013
Hadoop 101 Lars George NoSQL- Ma4ers, Cologne April 26, 2013 1 What s Ahead? Overview of Apache Hadoop (and related tools) What it is Why it s relevant How it works No prior experience needed Feel free
<Insert Picture Here> Big Data
Big Data Kevin Kalmbach Principal Sales Consultant, Public Sector Engineered Systems Program Agenda What is Big Data and why it is important? What is your Big
Big data for the Masses The Unique Challenge of Big Data Integration
Big data for the Masses The Unique Challenge of Big Data Integration White Paper Table of contents Executive Summary... 4 1. Big Data: a Big Term... 4 1.1. The Big Data... 4 1.2. The Big Technology...
Hadoop Introduction. 2012 coreservlets.com and Dima May. 2012 coreservlets.com and Dima May
2012 coreservlets.com and Dima May Hadoop Introduction Originals of slides and source code for examples: http://www.coreservlets.com/hadoop-tutorial/ Also see the customized Hadoop training courses (onsite
Dominik Wagenknecht Accenture
Dominik Wagenknecht Accenture Improving Mainframe Performance with Hadoop October 17, 2014 Organizers General Partner Top Media Partner Media Partner Supporters About me Dominik Wagenknecht Accenture Vienna
Peers Techno log ies Pv t. L td. HADOOP
Page 1 Peers Techno log ies Pv t. L td. Course Brochure Overview Hadoop is a Open Source from Apache, which provides reliable storage and faster process by using the Hadoop distibution file system and
Data Science Analytics & Research Centre
Data Science Analytics & Research Centre Data Science Analytics & Research Centre 1 Big Data Big Data Overview Characteristics Applications & Use Case HDFS Hadoop Distributed File System (HDFS) Overview
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
Distributed Filesystems
Distributed Filesystems Amir H. Payberah Swedish Institute of Computer Science [email protected] April 8, 2014 Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 1 / 32 What is Filesystem? Controls
Hadoop Introduction. Olivier Renault Solution Engineer - Hortonworks
Hadoop Introduction Olivier Renault Solution Engineer - Hortonworks Hortonworks A Brief History of Apache Hadoop Apache Project Established Yahoo! begins to Operate at scale Hortonworks Data Platform 2013
