Scaling Up HBase, Hive, Pegasus
|
|
|
- Marvin Hart
- 10 years ago
- Views:
Transcription
1 CSE 6242 A / CS 4803 DVA Mar 7, 2013 Scaling Up HBase, Hive, Pegasus Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Le Song
2 Lecture based on these two books
3 Last Time... Introduction to Pig Showed you a simple example run using Grunt (interactive shell) Find maximum temperature by year Easy to program, understand and maintain You write a few lines of Pig Latin, Pig turns them into MapReduce jobs Illustrate command creates sample dataset (from your full data) Helps you debug your Pig Latin Started with HBase 3
4 Built on top of HDFS Supports real-time read/write random access Scale to very large datasets, many machines Not relational, does NOT support SQL ( NoSQL = not only SQL ) Supports billions of rows, millions of columns Written in Java; can work with many languages Where does HBase come from? 4
5 HBase s history Hadoop & HDFS based on... Not designed for random access 2003 Google File System (GFS) paper 2004 Google MapReduce paper HBase based on Google Bigtable paper This fixes that 5
6 How does HBase work? Column-oriented Column is the most basic unit (instead of row) Columns form a row A column can have multiple versions, each version stored in a cell Rows form a table Row key locates a row Rows sorted by row key lexicographically 6
7 Row key is unique Think of row key as the index of the table You look up a row using its row key Only one index per table (via row key) HBase does not have built-in support for multiple indices; support enabled via extensions 7
8 Rows sorted lexicographically (=alphabetically) hbase(main):001:0> scan 'table1' ROW COLUMN+CELL row-1 column=cf1:, timestamp= row-10 column=cf1:, timestamp= row-11 column=cf1:, timestamp= row-2 column=cf1:, timestamp= row-22 column=cf1:, timestamp= row-3 column=cf1:, timestamp= row-abc column=cf1:, timestamp= row(s) in seconds row-10 comes before row-2. How to fix? 8
9 Rows sorted lexicographically (=alphabetically) hbase(main):001:0> scan 'table1' ROW COLUMN+CELL row-1 column=cf1:, timestamp= row-10 column=cf1:, timestamp= row-11 column=cf1:, timestamp= row-2 column=cf1:, timestamp= row-22 column=cf1:, timestamp= row-3 column=cf1:, timestamp= row-abc column=cf1:, timestamp= row(s) in seconds row-10 comes before row-2. How to fix? Pad row-2 with a 0. i.e., row-02 8
10 Columns grouped into column families Column family is a new concept from HBase Why? Helps with organization, understanding, optimization, etc. In details... Columns in the same family stored in same file called HFile (inspired by Google s SSTable = large map whose keys are sorted) Apply compression on the whole family... 9
11 More on column family, column Column family Each table only supports a few families (e.g., <10) Due to shortcomings in implementation Family name must be printable Should be defined when table is created Shouldn t be changed often Each column referenced as family:qualifier Can have millions of columns Values can be anything that s arbitrarily long 10
12 Cell Value Timestamped Implicitly by system Or set explicitly by user Let you store multiple versions of a value = values over time Values stored in decreasing time order Most recent value can be read first 11
13 Time-oriented view of a row 12
14 Concise way to describe all these? HBase data model (= Bigtable s model) Sparse, distributed, persistent, multidimensional map Indexed by row key + column key + timestamp (Table, RowKey, Family, Column, Timestamp)! Value 13
15 ... and the geeky way SortedMap<RowKey, List<SortedMap<Column, List<Value, Timestamp>>>> (Table, RowKey, Family, Column, Timestamp)! Value 14
16 An exercise How would you use HBase to create a webtable store snapshots of every webpage on the planet, over time? Also want to store each webpage s incoming and outgoing links, metadata (e.g., language), etc. 15
17 Details: How does HBase scale up storage & balance load? Automatically divide contiguous ranges of rows into regions Start with one region, split into two when getting too large 16
18 Details: How does HBase scale up storage & balance load? 17
19 How to use HBase Interactive shell Will show you an example, locally (on your computer, without using HDFS) Programmatically e.g., via Java, C++, Python, etc. 18
20 Example, using interactive shell Start HBase Start Interactive Shell Check HBase is running 19
21 Example: Create table, add values 20
22 Example: Scan (show all cell values) 21
23 Example: Get (look up a row) Can also look up a particular cell value, with a certain timestamp, etc. 22
24 Example: Delete a value 23
25 Example: Disable & drop table 24
26 RDBMS vs HBase RDBMS (=Relational Database Management System) MySQL, Oracle, SQLite, Teradata, etc. Really great for many applications Ensure strong data consistency, integrity Supports transactions (ACID guarantees)... 25
27 RDBMS vs HBase How are they different? Hbase when you don t know the structure/schema HBase supports sparse data (many columns, most values are not there) Use hbase if you only work with a small number of columns Relational databases good for getting whole rows HBase: Multiple versions of data RDBMS support multiple indices, minimize duplications Generally a lot cheaper to deploy HBase, for same size of data (petabytes) 26
28 Advanced topics to learn about Other ways to get, put, delete... (e.g., programmatically via Java) Doing them in batch Maintaining your cluster Configurations, specs for master and slaves? Administrating cluster Monitoring cluster s health Key design bad keys can decrease performance Integrating with MapReduce More... 27
29 Hive Use SQL to run queries on large datasets Developed at Facebook Similar to Pig, Hive runs on your computer You write HiveQL (Hive s query language), which gets converted into MapReduce jobs 28
30 Example: starting Hive 29
31 Example: create table, load data Specify that data file is tab-separated Overwrite old file This data file will be copied to Hive s internal data directory 30
32 Example: Query So simple and boring! Or is it? 31
33 Same thing done with Pig records = LOAD 'input/ ncdc/ micro-tab/ sample.txt' AS (year:chararray, temperature:int, quality:int); filtered_records = FILTER records BY temperature!= 9999 AND (quality = = 0 OR quality = = 1 OR quality = = 4 OR quality = = 5 OR quality = = 9); grouped_records = GROUP filtered_records BY year; max_temp = FOREACH grouped_records GENERATE group, MAX( filtered_records.temperature); DUMP max_temp; 32
34 Graph Mining using Hadoop 33
35
36 Generalized Iterated Matrix Vector Multiplication (GIM-V) PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations. U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. ICDM 2009, Miami, Florida, USA. Best Application Paper (runner-up). 35
37 Generalized Iterated Matrix Vector Multiplication (GIMV) details PageRank proximity (RWR) Diameter Connected components Matrix vector Multiplication (iterated) (eigenvectors, Belief Prop. ) 36
38 Example: GIM-V At Work Connected Components 4 observations: Count Size 37
39 Example: GIM-V At Work Connected Components Count 1) 10K x larger than next Size 38
40 Example: GIM-V At Work Connected Components Count 2) ~0.7B singleton nodes Size 39
41 Example: GIM-V At Work Connected Components Count 3) SLOPE! Size 40
42 Example: GIM-V At Work Connected Components Count 300-size cmpt X size cmpt Why? X 65. Why? 4) Spikes! Size 41
43 Example: GIM-V At Work Connected Components Count 4) Spikes! Size 41
44 Example: GIM-V At Work Connected Components Count suspicious financial-advice sites (not existing now) Size 42
45 Example: GIM-V At Work Connected Components Count Size 42
46 GIM-V At Work Connected Components over Time LinkedIn: 7.5M nodes and 58M edges Stable tail slope after the gelling point 43
Scaling Up 2 CSE 6242 / CX 4242. Duen Horng (Polo) Chau Georgia Tech. HBase, Hive
CSE 6242 / CX 4242 Scaling Up 2 HBase, Hive Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Le
Lecture 10: HBase! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 10: HBase!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind the
Big Data Analytics Process & Building Blocks
Big Data Analytics Process & Building Blocks Duen Horng (Polo) Chau Georgia Tech CSE 6242 A / CS 4803 DVA Jan 10, 2013 Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Comparing SQL and NOSQL databases
COSC 6397 Big Data Analytics Data Formats (II) HBase Edgar Gabriel Spring 2015 Comparing SQL and NOSQL databases Types Development History Data Storage Model SQL One type (SQL database) with minor variations
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe
HBase A Comprehensive Introduction. James Chin, Zikai Wang Monday, March 14, 2011 CS 227 (Topics in Database Management) CIT 367
HBase A Comprehensive Introduction James Chin, Zikai Wang Monday, March 14, 2011 CS 227 (Topics in Database Management) CIT 367 Overview Overview: History Began as project by Powerset to process massive
Big Data and Scripting Systems build on top of Hadoop
Big Data and Scripting Systems build on top of Hadoop 1, 2, Pig/Latin high-level map reduce programming platform interactive execution of map reduce jobs Pig is the name of the system Pig Latin is the
Big Data. Donald Kossmann & Nesime Tatbul Systems Group ETH Zurich
Big Data Donald Kossmann & Nesime Tatbul Systems Group ETH Zurich MapReduce & Hadoop The new world of Big Data (programming model) Overview of this Lecture Module Background Google MapReduce The Hadoop
Big Data and Scripting Systems build on top of Hadoop
Big Data and Scripting Systems build on top of Hadoop 1, 2, Pig/Latin high-level map reduce programming platform Pig is the name of the system Pig Latin is the provided programming language Pig Latin is
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
Xiaoming Gao Hui Li Thilina Gunarathne
Xiaoming Gao Hui Li Thilina Gunarathne Outline HBase and Bigtable Storage HBase Use Cases HBase vs RDBMS Hands-on: Load CSV file to Hbase table with MapReduce Motivation Lots of Semi structured data Horizontal
Big Data Too Big To Ignore
Big Data Too Big To Ignore Geert! Big Data Consultant and Manager! Currently finishing a 3 rd Big Data project! IBM & Cloudera Certified! IBM & Microsoft Big Data Partner 2 Agenda! Defining Big Data! Introduction
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Hadoop for MySQL DBAs. Copyright 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.
Hadoop for MySQL DBAs + 1 About me Sarah Sproehnle, Director of Educational Services @ Cloudera Spent 5 years at MySQL At Cloudera for the past 2 years [email protected] 2 What is Hadoop? An open-source
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Qsoft Inc www.qsoft-inc.com
Big Data & Hadoop Qsoft Inc www.qsoft-inc.com Course Topics 1 2 3 4 5 6 Week 1: Introduction to Big Data, Hadoop Architecture and HDFS Week 2: Setting up Hadoop Cluster Week 3: MapReduce Part 1 Week 4:
Introduction to Hbase Gkavresis Giorgos 1470
Introduction to Hbase Gkavresis Giorgos 1470 Agenda What is Hbase Installation About RDBMS Overview of Hbase Why Hbase instead of RDBMS Architecture of Hbase Hbase interface Summarise What is Hbase Hbase
Hadoop Job Oriented Training Agenda
1 Hadoop Job Oriented Training Agenda Kapil CK [email protected] Module 1 M o d u l e 1 Understanding Hadoop This module covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 1.1 Module
CMU SCS Large Graph Mining Patterns, Tools and Cascade analysis
Large Graph Mining Patterns, Tools and Cascade analysis Christos Faloutsos CMU Roadmap Introduction Motivation Why big data Why (big) graphs? Patterns in graphs Tools: fraud detection on e-bay Conclusions
Storage of Structured Data: BigTable and HBase. New Trends In Distributed Systems MSc Software and Systems
Storage of Structured Data: BigTable and HBase 1 HBase and BigTable HBase is Hadoop's counterpart of Google's BigTable BigTable meets the need for a highly scalable storage system for structured data Provides
Text Analytics (Text Mining)
CSE 6242 / CX 4242 Apr 3, 2014 Text Analytics (Text Mining) LSI (uses SVD), Visualization Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey
Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.
Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
ITG Software Engineering
Introduction to Apache Hadoop Course ID: Page 1 Last Updated 12/15/2014 Introduction to Apache Hadoop Course Overview: This 5 day course introduces the student to the Hadoop architecture, file system,
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
COSC 6397 Big Data Analytics. 2 nd homework assignment Pig and Hive. Edgar Gabriel Spring 2015
COSC 6397 Big Data Analytics 2 nd homework assignment Pig and Hive Edgar Gabriel Spring 2015 2 nd Homework Rules Each student should deliver Source code (.java files) Documentation (.pdf,.doc,.tex or.txt
Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2012/13
Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2012/13 Hadoop Ecosystem Overview of this Lecture Module Background Google MapReduce The Hadoop Ecosystem Core components: Hadoop
Integration of Apache Hive and HBase
Integration of Apache Hive and HBase Enis Soztutar enis [at] apache [dot] org @enissoz Page 1 About Me User and committer of Hadoop since 2007 Contributor to Apache Hadoop, HBase, Hive and Gora Joined
Big Data Analytics Building Blocks; Simple Data Storage (SQLite)
Big Data Analytics Building Blocks; Simple Data Storage (SQLite) Duen Horng (Polo) Chau Georgia Tech CSE6242 / CX4242 Jan 9, 2014 Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani Technical Architect - Big Data Syntel Agenda Welcome to the Zoo! Evolution Timeline Traditional BI/DW Architecture Where Hadoop Fits In 2 Welcome to
Similarity Search in a Very Large Scale Using Hadoop and HBase
Similarity Search in a Very Large Scale Using Hadoop and HBase Stanislav Barton, Vlastislav Dohnal, Philippe Rigaux LAMSADE - Universite Paris Dauphine, France Internet Memory Foundation, Paris, France
Graph Processing and Social Networks
Graph Processing and Social Networks Presented by Shu Jiayu, Yang Ji Department of Computer Science and Engineering The Hong Kong University of Science and Technology 2015/4/20 1 Outline Background Graph
How To Improve Performance In A Database
Some issues on Conceptual Modeling and NoSQL/Big Data Tok Wang Ling National University of Singapore 1 Database Models File system - field, record, fixed length record Hierarchical Model (IMS) - fixed
Big Data Analytics Building Blocks. Simple Data Storage (SQLite)
http://poloclub.gatech.edu/cse6242 CSE6242 / CX4242: Data & Visual Analytics Big Data Analytics Building Blocks. Simple Data Storage (SQLite) Duen Horng (Polo) Chau Georgia Tech Partly based on materials
Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP
Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools
Big Data Analytics Building Blocks. Simple Data Storage (SQLite)
http://poloclub.gatech.edu/cse6242 CSE6242 / CX4242: Data & Visual Analytics Big Data Analytics Building Blocks. Simple Data Storage (SQLite) Duen Horng (Polo) Chau Georgia Tech Partly based on materials
HOW TO LIVE WITH THE ELEPHANT IN THE SERVER ROOM APACHE HADOOP WORKSHOP
HOW TO LIVE WITH THE ELEPHANT IN THE SERVER ROOM APACHE HADOOP WORKSHOP AGENDA Introduction What is Hadoop and the rationale behind it Hadoop Distributed File System (HDFS) and MapReduce Common Hadoop
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES
THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES Vincent Garonne, Mario Lassnig, Martin Barisits, Thomas Beermann, Ralph Vigne, Cedric Serfon [email protected] [email protected] XLDB
COURSE CONTENT Big Data and Hadoop Training
COURSE CONTENT Big Data and Hadoop Training 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems RDBMS Grid Computing Volunteer Computing A Brief History of Hadoop Apache Hadoop
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
American International Journal of Research in Science, Technology, Engineering & Mathematics
American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629
Internals of Hadoop Application Framework and Distributed File System
International Journal of Scientific and Research Publications, Volume 5, Issue 7, July 2015 1 Internals of Hadoop Application Framework and Distributed File System Saminath.V, Sangeetha.M.S Abstract- Hadoop
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Integrating Big Data into the Computing Curricula
Integrating Big Data into the Computing Curricula Yasin Silva, Suzanne Dietrich, Jason Reed, Lisa Tsosie Arizona State University http://www.public.asu.edu/~ynsilva/ibigdata/ 1 Overview Motivation Big
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive
Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive E. Laxmi Lydia 1,Dr. M.Ben Swarup 2 1 Associate Professor, Department of Computer Science and Engineering, Vignan's Institute
MySQL and Hadoop. Percona Live 2014 Chris Schneider
MySQL and Hadoop Percona Live 2014 Chris Schneider About Me Chris Schneider, Database Architect @ Groupon Spent the last 10 years building MySQL architecture for multiple companies Worked with Hadoop for
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
Cloudera Certified Developer for Apache Hadoop
Cloudera CCD-333 Cloudera Certified Developer for Apache Hadoop Version: 5.6 QUESTION NO: 1 Cloudera CCD-333 Exam What is a SequenceFile? A. A SequenceFile contains a binary encoding of an arbitrary number
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
A programming model in Cloud: MapReduce
A programming model in Cloud: MapReduce Programming model and implementation developed by Google for processing large data sets Users specify a map function to generate a set of intermediate key/value
Map Reduce & Hadoop Recommended Text:
Big Data Map Reduce & Hadoop Recommended Text:! Large datasets are becoming more common The New York Stock Exchange generates about one terabyte of new trade data per day. Facebook hosts approximately
Apache HBase. Crazy dances on the elephant back
Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage
The Hadoop Eco System Shanghai Data Science Meetup
The Hadoop Eco System Shanghai Data Science Meetup Karthik Rajasethupathy, Christian Kuka 03.11.2015 @Agora Space Overview What is this talk about? Giving an overview of the Hadoop Ecosystem and related
Deploying Hadoop with Manager
Deploying Hadoop with Manager SUSE Big Data Made Easier Peter Linnell / Sales Engineer [email protected] Alejandro Bonilla / Sales Engineer [email protected] 2 Hadoop Core Components 3 Typical Hadoop Distribution
Hadoop Introduction. Olivier Renault Solution Engineer - Hortonworks
Hadoop Introduction Olivier Renault Solution Engineer - Hortonworks Hortonworks A Brief History of Apache Hadoop Apache Project Established Yahoo! begins to Operate at scale Hortonworks Data Platform 2013
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
Problem Solving Hands-on Labware for Teaching Big Data Cybersecurity Analysis
, 22-24 October, 2014, San Francisco, USA Problem Solving Hands-on Labware for Teaching Big Data Cybersecurity Analysis Teng Zhao, Kai Qian, Dan Lo, Minzhe Guo, Prabir Bhattacharya, Wei Chen, and Ying
Big Table A Distributed Storage System For Data
Big Table A Distributed Storage System For Data OSDI 2006 Fay Chang, Jeffrey Dean, Sanjay Ghemawat et.al. Presented by Rahul Malviya Why BigTable? Lots of (semi-)structured data at Google - - URLs: Contents,
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
Online Content Optimization Using Hadoop. Jyoti Ahuja Dec 20 2011
Online Content Optimization Using Hadoop Jyoti Ahuja Dec 20 2011 What do we do? Deliver right CONTENT to the right USER at the right TIME o Effectively and pro-actively learn from user interactions with
Apache HBase: the Hadoop Database
Apache HBase: the Hadoop Database Yuanru Qian, Andrew Sharp, Jiuling Wang Today we will discuss Apache HBase, the Hadoop Database. HBase is designed specifically for use by Hadoop, and we will define Hadoop
HDFS. Hadoop Distributed File System
HDFS Kevin Swingler Hadoop Distributed File System File system designed to store VERY large files Streaming data access Running across clusters of commodity hardware Resilient to node failure 1 Large files
Distributed Calculus with Hadoop MapReduce inside Orange Search Engine. mardi 3 juillet 12
Distributed Calculus with Hadoop MapReduce inside Orange Search Engine What is Big Data? $ 5 billions (2012) to $ 50 billions (by 2017) Forbes «Big Data is the new definitive source of competitive advantage
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
Move Data from Oracle to Hadoop and Gain New Business Insights
Move Data from Oracle to Hadoop and Gain New Business Insights Written by Lenka Vanek, senior director of engineering, Dell Software Abstract Today, the majority of data for transaction processing resides
Introduction to NoSQL Databases and MapReduce. Tore Risch Information Technology Uppsala University 2014-05-12
Introduction to NoSQL Databases and MapReduce Tore Risch Information Technology Uppsala University 2014-05-12 What is a NoSQL Database? 1. A key/value store Basic index manager, no complete query language
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required.
What is this course about? This course is an overview of Big Data tools and technologies. It establishes a strong working knowledge of the concepts, techniques, and products associated with Big Data. Attendees
An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics
An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,
Peers Techno log ies Pv t. L td. HADOOP
Page 1 Peers Techno log ies Pv t. L td. Course Brochure Overview Hadoop is a Open Source from Apache, which provides reliable storage and faster process by using the Hadoop distibution file system and
NoSQL and Hadoop Technologies On Oracle Cloud
NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath
Cloud Scale Distributed Data Storage. Jürmo Mehine
Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented
Hadoop: The Definitive Guide
FOURTH EDITION Hadoop: The Definitive Guide Tom White Beijing Cambridge Famham Koln Sebastopol Tokyo O'REILLY Table of Contents Foreword Preface xvii xix Part I. Hadoop Fundamentals 1. Meet Hadoop 3 Data!
Data storing and data access
Data storing and data access Plan Basic Java API for HBase demo Bulk data loading Hands-on Distributed storage for user files SQL on nosql Summary Basic Java API for HBase import org.apache.hadoop.hbase.*
Estimating PageRank Values of Wikipedia Articles using MapReduce
Estimating PageRank Values of Wikipedia Articles using MapReduce Due: Sept. 30 Wednesday 5:00PM Submission: via Canvas, individual submission Instructor: Sangmi Pallickara Web page: http://www.cs.colostate.edu/~cs535/assignments.html
Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software. 22 nd October 2013 10:00 Sesión B - DB2 LUW
Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software 22 nd October 2013 10:00 Sesión B - DB2 LUW 1 Agenda Big Data The Technical Challenges Architecture of Hadoop
Big Data and Data Science: Behind the Buzz Words
Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing
Hadoop Parallel Data Processing
MapReduce and Implementation Hadoop Parallel Data Processing Kai Shen A programming interface (two stage Map and Reduce) and system support such that: the interface is easy to program, and suitable for
Pro Apache Hadoop. Second Edition. Sameer Wadkar. Madhu Siddalingaiah
Pro Apache Hadoop Second Edition Sameer Wadkar Madhu Siddalingaiah Contents J About the Authors About the Technical Reviewer Acknowledgments Introduction xix xxi xxiii xxv Chapter 1: Motivation for Big
BIG DATA HANDS-ON WORKSHOP Data Manipulation with Hive and Pig
BIG DATA HANDS-ON WORKSHOP Data Manipulation with Hive and Pig Contents Acknowledgements... 1 Introduction to Hive and Pig... 2 Setup... 2 Exercise 1 Load Avro data into HDFS... 2 Exercise 2 Define an
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Sentimental Analysis using Hadoop Phase 2: Week 2
Sentimental Analysis using Hadoop Phase 2: Week 2 MARKET / INDUSTRY, FUTURE SCOPE BY ANKUR UPRIT The key value type basically, uses a hash table in which there exists a unique key and a pointer to a particular
