Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing

Size: px
Start display at page:

Download "Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing"

Transcription

1 /35 Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing Zuhair Khayyat 1 Karim Awara 1 Amani Alonazi 1 Hani Jamjoom 2 Dan Williams 2 Panos Kalnis 1 1 King Abdullah University of Science and Technology Thuwal, Saudi Arabia 2 IBM Watson Research Center Yorktown Heights, NY

2 /35 Importance of Graphs Graphs abstract application-specific algorithms into generic problems represented as interactions using vertices and edges Max flow in road network Diameter of WWW Ranking in social networks Simulating protein interactions Different applications vary in their computation requirements

3 3/35 How to Scale Graph Processing Pregel was introduced by Google as a scalable abstraction for graph processing Overcomes the limitations of processing graphs on MapReduce Based on vertex-centric computation Utilizes bulk synchronous parallel (BSP) System Programming Data Computations Abstraction Exchange map() Key-based MapReduce combine() grouping Disk-based reduce() compute() Message Pregel combine() passing In memory aggregate()

4 4/35 Pregel s BSP Graph Processing Superstep 1 Superstep 2 Superstep 3 Worker 1 Worker 1 Worker 1 Worker 2 Worker 2 Worker 2 Worker 3 Worker 3 Worker 3 BSP Barrier Balanced computation and communication is fundamental to Pregel s efficiency

5 5/35 Optimizing Graph Processing Existing work focus on optimizing for graph structure (static optimization): Optimize graph partitioning: Simple graph partitioning schemes (e.g., hash or range): Giraph User-defined partitioning function: Pregel Sophisticated partitioning techniques (e.g., min-cuts): GraphLab, PowerGraph, GoldenOrb and Surfer Optimize graph data access: Distributed data stores and graph indexing: GoldenOrb, Hama and Trinity

6 5/35 Optimizing Graph Processing Existing work focus on optimizing for graph structure (static optimization): Optimize graph partitioning: Simple graph partitioning schemes (e.g., hash or range): Giraph User-defined partitioning function: Pregel Sophisticated partitioning techniques (e.g., min-cuts): GraphLab, PowerGraph, GoldenOrb and Surfer Optimize graph data access: Distributed data stores and graph indexing: GoldenOrb, Hama and Trinity What about algorithm behavior? Pregel provides coarse-grained load balancing, is it enough?

7 6/35 Types of Algorithms Algorithms behaves differently, we classify algorithms in two categories depending on their behavior Algorithm Type In/Out Vertices Examples Messages State PageRank, Stationary Predictable Fixed Diameter estimation, WCC Distributed minimum spanning tree, Non-stationary Variable Variable Belief propagation, Graph queries, Ad propagation

8 7/35 Types of Algorithms First Superstep V2 V8 V2 V8 V4 V1 V6 V4 V1 V6 V7 V3 V5 V7 V3 V5 PageRank DMST

9 8/35 Types of Algorithms k Superstep V2 V8 V2 V8 V4 V1 V6 V4 V1 V6 V7 V3 V5 V7 V3 V5 PageRank DMST

10 9/35 Types of Algorithms k + m Superstep V2 V8 V2 V8 V4 V1 V6 V4 V1 V6 V7 V3 V5 V7 V3 V5 PageRank DMST

11 10/35 What Causes Computation Imbalance in Non-stationary Algorithms? Superstep 1 Superstep 2 Superstep 3 Worker 1 Worker 1 Worker 1 Worker 2 Worker 2 Worker 2 Worker 3 Worker 3 Worker 3 BSP Barrier -Vertex response time -Time to receive in messages -Time to send out messages

12 11/35 Why to Optimize for Algorithm Behavior? Difference between stationary and non-stationary algorithms In Messages (Millions) SuperSteps PageRank - Total PageRank - Max/W DMST - Total DMST - Max/W

13 12/35 What is Mizan? Open source BSP-based graph processing Provides runtime load balancing through fine grain vertex migrations Follows Pregel model

14 3/35 PageRank s compute() in Mizan void compute(messageiterator * messages, uservertexobject * data, messagemanager * comm) { double currval = data->getvertexvalue().getvalue(); double newval = 0; double c = 0.85; if (data->getcurrentss() > 1) { while (messages->hasnext()) { newval = newval + messages->getnext().getvalue(); } newval = newval * c + (1.0 - c) / ((double) vertextotal); data->setvertexvalue(mdouble(newval)); } else {newval = currval;} if (data->getcurrentss() <= maxsuperstep) { mdouble outval(newval / ((double) data->getoutedgecount())); for (int i = 0; i < data->getoutedgecount(); i++) { comm->sendmessage(data->getoutedgeid(i), outval); } } else {data->votetohalt();} }

15 14/35 Migration Planning Objectives Decentralized Simple Transparent No need to change Pregel s API Does not assume any a priori knowledge to graph structure or algorithm

16 15/35 Mizan s Migration Barrier Mizan performs both planning and migrations after all workers reach the BSP barrier Superstep 1 Superstep 2 Superstep 3 Worker 1 Worker 1 Worker 1 Worker 2 Worker 2 Worker 2 Worker 3 Worker 3 Worker 3 Migration Barrier BSP Barrier Migration Planner

17 16/35 Mizan s Migration Planning Steps 1 Identify the source of imbalance: By comparing the worker s execution time against a normal distribution and flagging outliers

18 16/35 Mizan s Migration Planning Steps 1 Identify the source of imbalance: By comparing the worker s execution time against a normal distribution and flagging outliers Mizan monitors for each vertex: Remote outgoing messages All incoming messages Response time High level summaries are broadcast to each worker Vertex Response Time Remote Outgoing Messages V4 V5 V6 V2 V3 V1 Mizan Worker 1 Local Incoming Messages Mizan Worker 2 Remote Incoming Messages

19 17/35 Mizan s Migration Planning Steps 1 Identify the source of imbalance 2 Select the migration objective: Mizan finds the strongest cause of workload imbalance by comparing statistics for outgoing messages and incoming messages of all workers with the worker s execution time

20 17/35 Mizan s Migration Planning Steps 1 Identify the source of imbalance 2 Select the migration objective: Mizan finds the strongest cause of workload imbalance by comparing statistics for outgoing messages and incoming messages of all workers with the worker s execution time The migration objective is either: Optimize for outgoing messages, or Optimize for incoming messages, or Optimize for response time

21 18/35 Mizan s Migration Planning Steps 1 Identify the source of imbalance 2 Select the migration objective 3 Pair over-utilized workers with under-utilized ones: All workers create and execute the migration plan in parallel without centralized coordination Each worker is paired with one other worker at most W7 W2 W1 W5 W8 W4 W0 W6 W9 W

22 19/35 Mizan s Migration Planning Steps 1 Identify the source of imbalance 2 Select the migration objective 3 Pair over-utilized workers with under-utilized ones 4 Select vertices to migrate: Depending on the migration objective

23 20/35 Mizan s Migration Planning Steps 1 Identify the source of imbalance 2 Select the migration objective 3 Pair over-utilized workers with under-utilized ones 4 Select vertices to migrate 5 Migrate vertices: How to migrate vertices freely across workers while maintaining vertex ownership and fast updates? How to minimize migration costs for large vertices?

24 21/35 Vertex Ownership Mizan uses distributed hash table (DHT) to implement a distributed lookup service: V s home worker ID = (hash(id) mod N) V can execute at any worker Workers ask the home worker of V for its current location The home worker is notified with the new location as V migrates Where is V5 & V8 Compute V1 V3 V2 V5 V8 V4 V2 V5 V6 V9 V7 V1 V3 V9 V8 DHT V1:W1 V4:W2 V7:W3 V2:W1 V5:W2 V8:W3 V3:W1 V6:W2 V9:W3 Worker 1 Worker 2 Worker 3

25 22/35 Migrating Vertices with Large Message Size Introduce delayed migration for very large vertices: At SS t: only ownership of vertex v is moved to worker new Superstep t Superstep t+1 Superstep t+2 Worker_old Worker_old Worker_old ' Worker_new 5 6 Worker_new 5 6 Worker_new

26 22/35 Migrating Vertices with Large Message Size Introduce delayed migration for very large vertices: At SS t: only ownership of vertex v is moved to worker new At SS t + 1: worker new receives vertex 7 messages worker old process vertex 7 Superstep t Superstep t+1 Worker_old Worker_old Worker_old ' Worker_new 5 6 Worker_new 5 6 Worker_new

27 22/35 Migrating Vertices with Large Message Size Introduce delayed migration for very large vertices: At SS t: only ownership of vertex v is moved to worker new At SS t + 1: worker new receives vertex 7 messages worker old process vertex 7 After SS t + 1: worker old moves state of vertex 7 to worker new Superstep t Superstep t+1 Superstep t+2 Worker_old Worker_old Worker_old ' Worker_new 5 6 Worker_new 5 6 Worker_new

28 23/35 Experimental Setup Mizan is implemented on C++ with MPI with three variations: Static Mizan: Emulates Giraph, disables dynamic migration Work stealing (WS): Emulates Pregel s coarse-grained dynamic load balancing Mizan: Activates dynamic migration Local cluster of 21 machines: Mix of i5 and i7 processors with 16GB RAM Each IBM Blue Gene/P supercomputer with 1024 compute nodes: Each is a 4 core PowerPC450 CPU at 850MHz with 4GB RAM

29 24/35 Datasets Experiments on public datasets: Stanford Network Analysis Project (SNAP) The Laboratory for Web Algorithmics (LAW) Kronecker generator name nodes edges kg1 (synthetic) 1,048,576 5,360,368 kg4m68m (synthetic) 4,194,304 68,671,566 web-google 875,713 5,105,039 LiveJournal1 4,847,571 68,993,773 hollywood ,180, ,985,632 arabic ,744, ,999,458

30 25/35 Giraph vs. Static Mizan Run Time (Min) Giraph Static Mizan kg1 web-google kg4m68m LiveJournal1 Run Time (Min) Giraph Static Mizan Vertex count (Millions) Figure : PageRank on social network and random graphs Figure : PageRank on regular random graphs, each has around 17M edge

31 26/35 Effectiveness of Dynamic Vertex Migration PageRank on a social graph (LiveJournal1) The shaded columns: algorithm runtime The unshaded columns: initial partitioning cost 30 Run Time (Min) Static WS Mizan Static WS Mizan Static WS Mizan Hash Range Metis

32 27/35 Effectiveness of Dynamic Vertex Migration Comparing the performance on highly variable messaging pattern algorithms, which are DMST and ad propagation simulation, on a metis partitioned social graph (LiveJournal1) Run Time (Min) Static Work Stealing Mizan 0 DMST Advertisment

33 28/35 Mizan s Overhead with Scaling Speedup 8 Mizan - hollywood Compute Nodes Figure : Speedup on Linux Cluster Speedup Mizan - Arabic Compute Nodes Figure : Speedup on IBM Blue Gene/P supercomputer 1024

34 29/35 Future Work Work with skewed graphs Improving Pregel s fault tolerance

35 30/35 Conclusion Mizan is a Pregel system that uses fine-grained vertex migration to load balance computation and communication across supersteps Mizan is an open source project developed within InfoCloud group in KAUST in collaboration with IBM, programmed in C++ with MPI Mizan scales up to thousands of workers Mizan improves the overall computation cost between 40% up to two order of magnitudes with less than 10% migration overhead Download it at: Try it on EC2 (ami-52ed743b)

36 31/35 Extra: Migration Details and Costs Run Time (Minutes) Superstep Runtime Average Workers Runtime Migration Cost Balance Outgoing Messages Balance Incoming Messages Balance Response Time Supersteps

37 32/35 Extra: Migrated Vertices per Superstep Migrated Vertices (x1000) Migration Cost Total Migrated Vertices Max Vertices Migrated by Single Worker Migration Cost (Minutes) Supersteps

38 33/35 Extra: Mizan s Migration Planning Compute() Migration Barrier No BSP Barrier Superstep Imbalanced? Yes Identify Source of Imbalance Pair with Underutilized Worker Select Vertices and Migrate No Worker Overutilized? Yes

39 34/35 Extra: Architecture of Mizan Mizan Worker Vertex Compute() Migration Planner BSP Processor Communicator - DHT Storage Manager IO HDFS/Local Disks

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing : A System for Dynamic Load Balancing in Large-scale Graph Processing Zuhair Khayyat Karim Awara Amani Alonazi Hani Jamjoom Dan Williams Panos Kalnis King Abdullah University of Science and Technology,

More information

Software tools for Complex Networks Analysis. Fabrice Huet, University of Nice Sophia- Antipolis SCALE (ex-oasis) Team

Software tools for Complex Networks Analysis. Fabrice Huet, University of Nice Sophia- Antipolis SCALE (ex-oasis) Team Software tools for Complex Networks Analysis Fabrice Huet, University of Nice Sophia- Antipolis SCALE (ex-oasis) Team MOTIVATION Why do we need tools? Source : nature.com Visualization Properties extraction

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany MapReduce II MapReduce II 1 / 33 Outline 1. Introduction

More information

Overview on Graph Datastores and Graph Computing Systems. -- Litao Deng (Cloud Computing Group) 06-08-2012

Overview on Graph Datastores and Graph Computing Systems. -- Litao Deng (Cloud Computing Group) 06-08-2012 Overview on Graph Datastores and Graph Computing Systems -- Litao Deng (Cloud Computing Group) 06-08-2012 Graph - Everywhere 1: Friendship Graph 2: Food Graph 3: Internet Graph Most of the relationships

More information

An Experimental Comparison of Pregel-like Graph Processing Systems

An Experimental Comparison of Pregel-like Graph Processing Systems An Experimental Comparison of Pregel-like Graph Processing Systems Minyang Han, Khuzaima Daudjee, Khaled Ammar, M. Tamer Özsu, Xingfang Wang, Tianqi Jin David R. Cheriton School of Computer Science, University

More information

Evaluating partitioning of big graphs

Evaluating partitioning of big graphs Evaluating partitioning of big graphs Fredrik Hallberg, Joakim Candefors, Micke Soderqvist fhallb@kth.se, candef@kth.se, mickeso@kth.se Royal Institute of Technology, Stockholm, Sweden Abstract. Distributed

More information

Adapting scientific computing problems to cloud computing frameworks Ph.D. Thesis. Pelle Jakovits

Adapting scientific computing problems to cloud computing frameworks Ph.D. Thesis. Pelle Jakovits Adapting scientific computing problems to cloud computing frameworks Ph.D. Thesis Pelle Jakovits Outline Problem statement State of the art Approach Solutions and contributions Current work Conclusions

More information

LARGE-SCALE GRAPH PROCESSING IN THE BIG DATA WORLD. Dr. Buğra Gedik, Ph.D.

LARGE-SCALE GRAPH PROCESSING IN THE BIG DATA WORLD. Dr. Buğra Gedik, Ph.D. LARGE-SCALE GRAPH PROCESSING IN THE BIG DATA WORLD Dr. Buğra Gedik, Ph.D. MOTIVATION Graph data is everywhere Relationships between people, systems, and the nature Interactions between people, systems,

More information

Systems and Algorithms for Big Data Analytics

Systems and Algorithms for Big Data Analytics Systems and Algorithms for Big Data Analytics YAN, Da Email: yanda@cse.cuhk.edu.hk My Research Graph Data Distributed Graph Processing Spatial Data Spatial Query Processing Uncertain Data Querying & Mining

More information

Apache Hama Design Document v0.6

Apache Hama Design Document v0.6 Apache Hama Design Document v0.6 Introduction Hama Architecture BSPMaster GroomServer Zookeeper BSP Task Execution Job Submission Job and Task Scheduling Task Execution Lifecycle Synchronization Fault

More information

Replication-based Fault-tolerance for Large-scale Graph Processing

Replication-based Fault-tolerance for Large-scale Graph Processing Replication-based Fault-tolerance for Large-scale Graph Processing Peng Wang Kaiyuan Zhang Rong Chen Haibo Chen Haibing Guan Shanghai Key Laboratory of Scalable Computing and Systems Institute of Parallel

More information

BSPCloud: A Hybrid Programming Library for Cloud Computing *

BSPCloud: A Hybrid Programming Library for Cloud Computing * BSPCloud: A Hybrid Programming Library for Cloud Computing * Xiaodong Liu, Weiqin Tong and Yan Hou Department of Computer Engineering and Science Shanghai University, Shanghai, China liuxiaodongxht@qq.com,

More information

Optimizations and Analysis of BSP Graph Processing Models on Public Clouds

Optimizations and Analysis of BSP Graph Processing Models on Public Clouds Optimizations and Analysis of BSP Graph Processing Models on Public Clouds Mark Redekopp, Yogesh Simmhan, and Viktor K. Prasanna University of Southern California, Los Angeles CA 989 {redekopp, simmhan,

More information

Fast Iterative Graph Computation with Resource Aware Graph Parallel Abstraction

Fast Iterative Graph Computation with Resource Aware Graph Parallel Abstraction Human connectome. Gerhard et al., Frontiers in Neuroinformatics 5(3), 2011 2 NA = 6.022 1023 mol 1 Paul Burkhardt, Chris Waring An NSA Big Graph experiment Fast Iterative Graph Computation with Resource

More information

Big Graph Processing: Some Background

Big Graph Processing: Some Background Big Graph Processing: Some Background Bo Wu Colorado School of Mines Part of slides from: Paul Burkhardt (National Security Agency) and Carlos Guestrin (Washington University) Mines CSCI-580, Bo Wu Graphs

More information

Graph Processing and Social Networks

Graph Processing and Social Networks Graph Processing and Social Networks Presented by Shu Jiayu, Yang Ji Department of Computer Science and Engineering The Hong Kong University of Science and Technology 2015/4/20 1 Outline Background Graph

More information

Machine Learning over Big Data

Machine Learning over Big Data Machine Learning over Big Presented by Fuhao Zou fuhao@hust.edu.cn Jue 16, 2014 Huazhong University of Science and Technology Contents 1 2 3 4 Role of Machine learning Challenge of Big Analysis Distributed

More information

MapReduce Algorithms. Sergei Vassilvitskii. Saturday, August 25, 12

MapReduce Algorithms. Sergei Vassilvitskii. Saturday, August 25, 12 MapReduce Algorithms A Sense of Scale At web scales... Mail: Billions of messages per day Search: Billions of searches per day Social: Billions of relationships 2 A Sense of Scale At web scales... Mail:

More information

Large-Scale Data Processing

Large-Scale Data Processing Large-Scale Data Processing Eiko Yoneki eiko.yoneki@cl.cam.ac.uk http://www.cl.cam.ac.uk/~ey204 Systems Research Group University of Cambridge Computer Laboratory 2010s: Big Data Why Big Data now? Increase

More information

Analysis of Web Archives. Vinay Goel Senior Data Engineer

Analysis of Web Archives. Vinay Goel Senior Data Engineer Analysis of Web Archives Vinay Goel Senior Data Engineer Internet Archive Established in 1996 501(c)(3) non profit organization 20+ PB (compressed) of publicly accessible archival material Technology partner

More information

Minimize Response Time Using Distance Based Load Balancer Selection Scheme

Minimize Response Time Using Distance Based Load Balancer Selection Scheme Minimize Response Time Using Distance Based Load Balancer Selection Scheme K. Durga Priyanka M.Tech CSE Dept., Institute of Aeronautical Engineering, HYD-500043, Andhra Pradesh, India. Dr.N. Chandra Sekhar

More information

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With

More information

Information Processing, Big Data, and the Cloud

Information Processing, Big Data, and the Cloud Information Processing, Big Data, and the Cloud James Horey Computational Sciences & Engineering Oak Ridge National Laboratory Fall Creek Falls 2010 Information Processing Systems Model Parameters Data-intensive

More information

Large Scale Graph Processing with Apache Giraph

Large Scale Graph Processing with Apache Giraph Large Scale Graph Processing with Apache Giraph Sebastian Schelter Invited talk at GameDuell Berlin 29th May 2012 the mandatory about me slide PhD student at the Database Systems and Information Management

More information

Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel

Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:

More information

Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf

Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant

More information

Convex Optimization for Big Data: Lecture 2: Frameworks for Big Data Analytics

Convex Optimization for Big Data: Lecture 2: Frameworks for Big Data Analytics Convex Optimization for Big Data: Lecture 2: Frameworks for Big Data Analytics Sabeur Aridhi Aalto University, Finland Sabeur Aridhi Frameworks for Big Data Analytics 1 / 59 Introduction Contents 1 Introduction

More information

Survey on Load Rebalancing for Distributed File System in Cloud

Survey on Load Rebalancing for Distributed File System in Cloud Survey on Load Rebalancing for Distributed File System in Cloud Prof. Pranalini S. Ketkar Ankita Bhimrao Patkure IT Department, DCOER, PG Scholar, Computer Department DCOER, Pune University Pune university

More information

MOSIX: High performance Linux farm

MOSIX: High performance Linux farm MOSIX: High performance Linux farm Paolo Mastroserio [mastroserio@na.infn.it] Francesco Maria Taurino [taurino@na.infn.it] Gennaro Tortone [tortone@na.infn.it] Napoli Index overview on Linux farm farm

More information

Presto/Blockus: Towards Scalable R Data Analysis

Presto/Blockus: Towards Scalable R Data Analysis /Blockus: Towards Scalable R Data Analysis Andrew A. Chien University of Chicago and Argonne ational Laboratory IRIA-UIUC-AL Joint Institute Potential Collaboration ovember 19, 2012 ovember 19, 2012 Andrew

More information

EFFICIENT SCHEDULING STRATEGY USING COMMUNICATION AWARE SCHEDULING FOR PARALLEL JOBS IN CLUSTERS

EFFICIENT SCHEDULING STRATEGY USING COMMUNICATION AWARE SCHEDULING FOR PARALLEL JOBS IN CLUSTERS EFFICIENT SCHEDULING STRATEGY USING COMMUNICATION AWARE SCHEDULING FOR PARALLEL JOBS IN CLUSTERS A.Neela madheswari 1 and R.S.D.Wahida Banu 2 1 Department of Information Technology, KMEA Engineering College,

More information

Big Data and Scripting Systems beyond Hadoop

Big Data and Scripting Systems beyond Hadoop Big Data and Scripting Systems beyond Hadoop 1, 2, ZooKeeper distributed coordination service many problems are shared among distributed systems ZooKeeper provides an implementation that solves these avoid

More information

Implementing Graph Pattern Mining for Big Data in the Cloud

Implementing Graph Pattern Mining for Big Data in the Cloud Implementing Graph Pattern Mining for Big Data in the Cloud Chandana Ojah M.Tech in Computer Science & Engineering Department of Computer Science & Engineering, PES College of Engineering, Mandya Ojah.chandana@gmail.com

More information

Mining Large Datasets: Case of Mining Graph Data in the Cloud

Mining Large Datasets: Case of Mining Graph Data in the Cloud Mining Large Datasets: Case of Mining Graph Data in the Cloud Sabeur Aridhi PhD in Computer Science with Laurent d Orazio, Mondher Maddouri and Engelbert Mephu Nguifo 16/05/2014 Sabeur Aridhi Mining Large

More information

Big Data and Scripting Systems build on top of Hadoop

Big Data and Scripting Systems build on top of Hadoop Big Data and Scripting Systems build on top of Hadoop 1, 2, Pig/Latin high-level map reduce programming platform Pig is the name of the system Pig Latin is the provided programming language Pig Latin is

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Big Data Analytics Big Data Analytics 1 / 33 Outline

More information

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014 Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)

More information

Big Systems, Big Data

Big Systems, Big Data Big Systems, Big Data When considering Big Distributed Systems, it can be noted that a major concern is dealing with data, and in particular, Big Data Have general data issues (such as latency, availability,

More information

Performance Evaluation of Improved Web Search Algorithms

Performance Evaluation of Improved Web Search Algorithms Performance Evaluation of Improved Web Search Algorithms Esteban Feuerstein 1, Veronica Gil-Costa 2, Michel Mizrahi 1, Mauricio Marin 3 1 Universidad de Buenos Aires, Buenos Aires, Argentina 2 Universidad

More information

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage Parallel Computing Benson Muite benson.muite@ut.ee http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework

More information

Outline. Motivation. Motivation. MapReduce & GraphLab: Programming Models for Large-Scale Parallel/Distributed Computing 2/28/2013

Outline. Motivation. Motivation. MapReduce & GraphLab: Programming Models for Large-Scale Parallel/Distributed Computing 2/28/2013 MapReduce & GraphLab: Programming Models for Large-Scale Parallel/Distributed Computing Iftekhar Naim Outline Motivation MapReduce Overview Design Issues & Abstractions Examples and Results Pros and Cons

More information

Graph Mining on Big Data System. Presented by Hefu Chai, Rui Zhang, Jian Fang

Graph Mining on Big Data System. Presented by Hefu Chai, Rui Zhang, Jian Fang Graph Mining on Big Data System Presented by Hefu Chai, Rui Zhang, Jian Fang Outline * Overview * Approaches & Environment * Results * Observations * Notes * Conclusion Overview * What we have done? *

More information

Overlapping Data Transfer With Application Execution on Clusters

Overlapping Data Transfer With Application Execution on Clusters Overlapping Data Transfer With Application Execution on Clusters Karen L. Reid and Michael Stumm reid@cs.toronto.edu stumm@eecg.toronto.edu Department of Computer Science Department of Electrical and Computer

More information

An NSA Big Graph experiment. Paul Burkhardt, Chris Waring. May 20, 2013

An NSA Big Graph experiment. Paul Burkhardt, Chris Waring. May 20, 2013 U.S. National Security Agency Research Directorate - R6 Technical Report NSA-RD-2013-056002v1 May 20, 2013 Graphs are everywhere! A graph is a collection of binary relationships, i.e. networks of pairwise

More information

- Behind The Cloud -

- Behind The Cloud - - Behind The Cloud - Infrastructure and Technologies used for Cloud Computing Alexander Huemer, 0025380 Johann Taferl, 0320039 Florian Landolt, 0420673 Seminar aus Informatik, University of Salzburg Overview

More information

Big Data Processing with Google s MapReduce. Alexandru Costan

Big Data Processing with Google s MapReduce. Alexandru Costan 1 Big Data Processing with Google s MapReduce Alexandru Costan Outline Motivation MapReduce programming model Examples MapReduce system architecture Limitations Extensions 2 Motivation Big Data @Google:

More information

Big Data Systems CS 5965/6965 FALL 2015

Big Data Systems CS 5965/6965 FALL 2015 Big Data Systems CS 5965/6965 FALL 2015 Today General course overview Expectations from this course Q&A Introduction to Big Data Assignment #1 General Course Information Course Web Page http://www.cs.utah.edu/~hari/teaching/fall2015.html

More information

Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms

Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,

More information

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical Identify a problem Review approaches to the problem Propose a novel approach to the problem Define, design, prototype an implementation to evaluate your approach Could be a real system, simulation and/or

More information

Efficient Parallel Execution of Sequence Similarity Analysis Via Dynamic Load Balancing

Efficient Parallel Execution of Sequence Similarity Analysis Via Dynamic Load Balancing Efficient Parallel Execution of Sequence Similarity Analysis Via Dynamic Load Balancing James D. Jackson Philip J. Hatcher Department of Computer Science Kingsbury Hall University of New Hampshire Durham,

More information

Energy Efficient MapReduce

Energy Efficient MapReduce Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing

More information

A Comparison of General Approaches to Multiprocessor Scheduling

A Comparison of General Approaches to Multiprocessor Scheduling A Comparison of General Approaches to Multiprocessor Scheduling Jing-Chiou Liou AT&T Laboratories Middletown, NJ 0778, USA jing@jolt.mt.att.com Michael A. Palis Department of Computer Science Rutgers University

More information

Mesos: A Platform for Fine- Grained Resource Sharing in Data Centers (II)

Mesos: A Platform for Fine- Grained Resource Sharing in Data Centers (II) UC BERKELEY Mesos: A Platform for Fine- Grained Resource Sharing in Data Centers (II) Anthony D. Joseph LASER Summer School September 2013 My Talks at LASER 2013 1. AMP Lab introduction 2. The Datacenter

More information

High Throughput Computing on P2P Networks. Carlos Pérez Miguel carlos.perezm@ehu.es

High Throughput Computing on P2P Networks. Carlos Pérez Miguel carlos.perezm@ehu.es High Throughput Computing on P2P Networks Carlos Pérez Miguel carlos.perezm@ehu.es Overview High Throughput Computing Motivation All things distributed: Peer-to-peer Non structured overlays Structured

More information

FPGA-based Multithreading for In-Memory Hash Joins

FPGA-based Multithreading for In-Memory Hash Joins FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded

More information

Performance Monitoring of Parallel Scientific Applications

Performance Monitoring of Parallel Scientific Applications Performance Monitoring of Parallel Scientific Applications Abstract. David Skinner National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory This paper introduces an infrastructure

More information

! E6893 Big Data Analytics Lecture 9:! Linked Big Data Graph Computing (I)

! E6893 Big Data Analytics Lecture 9:! Linked Big Data Graph Computing (I) ! E6893 Big Data Analytics Lecture 9:! Linked Big Data Graph Computing (I) Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Mgr., Dept. of Network Science and

More information

A Novel Cloud Based Elastic Framework for Big Data Preprocessing

A Novel Cloud Based Elastic Framework for Big Data Preprocessing School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview

More information

BlobSeer: Towards efficient data storage management on large-scale, distributed systems

BlobSeer: Towards efficient data storage management on large-scale, distributed systems : Towards efficient data storage management on large-scale, distributed systems Bogdan Nicolae University of Rennes 1, France KerData Team, INRIA Rennes Bretagne-Atlantique PhD Advisors: Gabriel Antoniu

More information

Distributed Computing over Communication Networks: Topology. (with an excursion to P2P)

Distributed Computing over Communication Networks: Topology. (with an excursion to P2P) Distributed Computing over Communication Networks: Topology (with an excursion to P2P) Some administrative comments... There will be a Skript for this part of the lecture. (Same as slides, except for today...

More information

IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications

IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications Open System Laboratory of University of Illinois at Urbana Champaign presents: Outline: IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications A Fine-Grained Adaptive

More information

A Brief Introduction to Apache Tez

A Brief Introduction to Apache Tez A Brief Introduction to Apache Tez Introduction It is a fact that data is basically the new currency of the modern business world. Companies that effectively maximize the value of their data (extract value

More information

Big Data looks Tiny from the Stratosphere

Big Data looks Tiny from the Stratosphere Volker Markl http://www.user.tu-berlin.de/marklv volker.markl@tu-berlin.de Big Data looks Tiny from the Stratosphere Data and analyses are becoming increasingly complex! Size Freshness Format/Media Type

More information

Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph Computing. October 29th, 2015

Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph Computing. October 29th, 2015 E6893 Big Data Analytics Lecture 8: Spark Streams and Graph Computing (I) Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph Computing

More information

Characterizing Task Usage Shapes in Google s Compute Clusters

Characterizing Task Usage Shapes in Google s Compute Clusters Characterizing Task Usage Shapes in Google s Compute Clusters Qi Zhang 1, Joseph L. Hellerstein 2, Raouf Boutaba 1 1 University of Waterloo, 2 Google Inc. Introduction Cloud computing is becoming a key

More information

Distributed Dynamic Load Balancing for Iterative-Stencil Applications

Distributed Dynamic Load Balancing for Iterative-Stencil Applications Distributed Dynamic Load Balancing for Iterative-Stencil Applications G. Dethier 1, P. Marchot 2 and P.A. de Marneffe 1 1 EECS Department, University of Liege, Belgium 2 Chemical Engineering Department,

More information

Layer Load Balancing and Flexibility

Layer Load Balancing and Flexibility Periodic Hierarchical Load Balancing for Large Supercomputers Gengbin Zheng, Abhinav Bhatelé, Esteban Meneses and Laxmikant V. Kalé Department of Computer Science University of Illinois at Urbana-Champaign,

More information

Challenges for Data Driven Systems

Challenges for Data Driven Systems Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2

More information

Reducer Load Balancing and Lazy Initialization in Map Reduce Environment S.Mohanapriya, P.Natesan

Reducer Load Balancing and Lazy Initialization in Map Reduce Environment S.Mohanapriya, P.Natesan Reducer Load Balancing and Lazy Initialization in Map Reduce Environment S.Mohanapriya, P.Natesan Abstract Big Data is revolutionizing 21st-century with increasingly huge amounts of data to store and be

More information

Performance And Scalability In Oracle9i And SQL Server 2000

Performance And Scalability In Oracle9i And SQL Server 2000 Performance And Scalability In Oracle9i And SQL Server 2000 Presented By : Phathisile Sibanda Supervisor : John Ebden 1 Presentation Overview Project Objectives Motivation -Why performance & Scalability

More information

ORACLE DATABASE 10G ENTERPRISE EDITION

ORACLE DATABASE 10G ENTERPRISE EDITION ORACLE DATABASE 10G ENTERPRISE EDITION OVERVIEW Oracle Database 10g Enterprise Edition is ideal for enterprises that ENTERPRISE EDITION For enterprises of any size For databases up to 8 Exabytes in size.

More information

Architectures for Big Data Analytics A database perspective

Architectures for Big Data Analytics A database perspective Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum

More information

GraySort on Apache Spark by Databricks

GraySort on Apache Spark by Databricks GraySort on Apache Spark by Databricks Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, Matei Zaharia Databricks Inc. Apache Spark Sorting in Spark Overview Sorting Within a Partition Range Partitioner

More information

General purpose Distributed Computing using a High level Language. Michael Isard

General purpose Distributed Computing using a High level Language. Michael Isard Dryad and DryadLINQ General purpose Distributed Computing using a High level Language Michael Isard Microsoft Research Silicon Valley Distributed Data Parallel Computing Workloads beyond standard SQL,

More information

MapGraph. A High Level API for Fast Development of High Performance Graphic Analytics on GPUs. http://mapgraph.io

MapGraph. A High Level API for Fast Development of High Performance Graphic Analytics on GPUs. http://mapgraph.io MapGraph A High Level API for Fast Development of High Performance Graphic Analytics on GPUs http://mapgraph.io Zhisong Fu, Michael Personick and Bryan Thompson SYSTAP, LLC Outline Motivations MapGraph

More information

Graph Analytics in Big Data. John Feo Pacific Northwest National Laboratory

Graph Analytics in Big Data. John Feo Pacific Northwest National Laboratory Graph Analytics in Big Data John Feo Pacific Northwest National Laboratory 1 A changing World The breadth of problems requiring graph analytics is growing rapidly Large Network Systems Social Networks

More information

Efficient Monitoring in Actor-based Mobile Hybrid Cloud Framework. Kirill Mechitov, Reza Shiftehfar, and Gul Agha

Efficient Monitoring in Actor-based Mobile Hybrid Cloud Framework. Kirill Mechitov, Reza Shiftehfar, and Gul Agha Efficient Monitoring in Actor-based Mobile Hybrid Cloud Framework Kirill Mechitov, Reza Shiftehfar, and Gul Agha Motivation: mobile cloud Mobile apps Huge variety Many developers/organizations Increasingly

More information

SIGMOD RWE Review Towards Proximity Pattern Mining in Large Graphs

SIGMOD RWE Review Towards Proximity Pattern Mining in Large Graphs SIGMOD RWE Review Towards Proximity Pattern Mining in Large Graphs Fabian Hueske, TU Berlin June 26, 21 1 Review This document is a review report on the paper Towards Proximity Pattern Mining in Large

More information

Big Fast Data Hadoop acceleration with Flash. June 2013

Big Fast Data Hadoop acceleration with Flash. June 2013 Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional

More information

A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment

A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment Panagiotis D. Michailidis and Konstantinos G. Margaritis Parallel and Distributed

More information

Spark and the Big Data Library

Spark and the Big Data Library Spark and the Big Data Library Reza Zadeh Thanks to Matei Zaharia Problem Data growing faster than processing speeds Only solution is to parallelize on large clusters» Wide use in both enterprises and

More information

Data Processing in the Era of Big Data

Data Processing in the Era of Big Data Department of Computer Science and Information Engineering National Taiwan University October 3, 2014 Big Data a New Jargon Importance Importance Big data is a collection of data sets so large and complex

More information

Unified Big Data Analytics Pipeline. 连 城 lian@databricks.com

Unified Big Data Analytics Pipeline. 连 城 lian@databricks.com Unified Big Data Analytics Pipeline 连 城 lian@databricks.com What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an

More information

Group Based Load Balancing Algorithm in Cloud Computing Virtualization

Group Based Load Balancing Algorithm in Cloud Computing Virtualization Group Based Load Balancing Algorithm in Cloud Computing Virtualization Rishi Bhardwaj, 2 Sangeeta Mittal, Student, 2 Assistant Professor, Department of Computer Science, Jaypee Institute of Information

More information

Using Map-Reduce for Large Scale Analysis of Graph-Based Data

Using Map-Reduce for Large Scale Analysis of Graph-Based Data Using Map-Reduce for Large Scale Analysis of Graph-Based Data NAN GONG KTH Information and Communication Technology Master of Science Thesis Stockholm, Sweden 2011 TRITA-ICT-EX-2011:218 Using Map-Reduce

More information

Distributed communication-aware load balancing with TreeMatch in Charm++

Distributed communication-aware load balancing with TreeMatch in Charm++ Distributed communication-aware load balancing with TreeMatch in Charm++ The 9th Scheduling for Large Scale Systems Workshop, Lyon, France Emmanuel Jeannot Guillaume Mercier Francois Tessier In collaboration

More information

Dynamic Load Balancing of Virtual Machines using QEMU-KVM

Dynamic Load Balancing of Virtual Machines using QEMU-KVM Dynamic Load Balancing of Virtual Machines using QEMU-KVM Akshay Chandak Krishnakant Jaju Technology, College of Engineering, Pune. Maharashtra, India. Akshay Kanfade Pushkar Lohiya Technology, College

More information

Graph Databases. Prad Nelluru, Bharat Naik, Evan Liu, Bon Koo

Graph Databases. Prad Nelluru, Bharat Naik, Evan Liu, Bon Koo Graph Databases Prad Nelluru, Bharat Naik, Evan Liu, Bon Koo 1 Why are graphs important? Modeling chemical and biological data Social networks The web Hierarchical data 2 What is a graph database? A database

More information

A Comparison of Approaches to Large-Scale Data Analysis

A Comparison of Approaches to Large-Scale Data Analysis A Comparison of Approaches to Large-Scale Data Analysis Sam Madden MIT CSAIL with Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, and Michael Stonebraker In SIGMOD 2009 MapReduce

More information

1. Comments on reviews a. Need to avoid just summarizing web page asks you for:

1. Comments on reviews a. Need to avoid just summarizing web page asks you for: 1. Comments on reviews a. Need to avoid just summarizing web page asks you for: i. A one or two sentence summary of the paper ii. A description of the problem they were trying to solve iii. A summary of

More information

Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia

Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing

More information

InfiniteGraph: The Distributed Graph Database

InfiniteGraph: The Distributed Graph Database A Performance and Distributed Performance Benchmark of InfiniteGraph and a Leading Open Source Graph Database Using Synthetic Data Objectivity, Inc. 640 West California Ave. Suite 240 Sunnyvale, CA 94086

More information

From GWS to MapReduce: Google s Cloud Technology in the Early Days

From GWS to MapReduce: Google s Cloud Technology in the Early Days Large-Scale Distributed Systems From GWS to MapReduce: Google s Cloud Technology in the Early Days Part II: MapReduce in a Datacenter COMP6511A Spring 2014 HKUST Lin Gu lingu@ieee.org MapReduce/Hadoop

More information

Map-Reduce for Machine Learning on Multicore

Map-Reduce for Machine Learning on Multicore Map-Reduce for Machine Learning on Multicore Chu, et al. Problem The world is going multicore New computers - dual core to 12+-core Shift to more concurrent programming paradigms and languages Erlang,

More information

Dependency Free Distributed Database Caching for Web Applications and Web Services

Dependency Free Distributed Database Caching for Web Applications and Web Services Dependency Free Distributed Database Caching for Web Applications and Web Services Hemant Kumar Mehta School of Computer Science and IT, Devi Ahilya University Indore, India Priyesh Kanungo Patel College

More information

A Performance Analysis of Distributed Indexing using Terrier

A Performance Analysis of Distributed Indexing using Terrier A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search

More information

The Power of Relationships

The Power of Relationships The Power of Relationships Opportunities and Challenges in Big Data Intel Labs Cluster Computing Architecture Legal Notices INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

More information

Introduction to DISC and Hadoop

Introduction to DISC and Hadoop Introduction to DISC and Hadoop Alice E. Fischer April 24, 2009 Alice E. Fischer DISC... 1/20 1 2 History Hadoop provides a three-layer paradigm Alice E. Fischer DISC... 2/20 Parallel Computing Past and

More information

A Performance Evaluation of Open Source Graph Databases. Robert McColl David Ediger Jason Poovey Dan Campbell David A. Bader

A Performance Evaluation of Open Source Graph Databases. Robert McColl David Ediger Jason Poovey Dan Campbell David A. Bader A Performance Evaluation of Open Source Graph Databases Robert McColl David Ediger Jason Poovey Dan Campbell David A. Bader Overview Motivation Options Evaluation Results Lessons Learned Moving Forward

More information