Overview on Graph Datastores and Graph Computing Systems. -- Litao Deng (Cloud Computing Group)
|
|
|
- Milo Morrison
- 9 years ago
- Views:
Transcription
1 Overview on Graph Datastores and Graph Computing Systems -- Litao Deng (Cloud Computing Group)
2 Graph - Everywhere 1: Friendship Graph 2: Food Graph 3: Internet Graph Most of the relationships can be abstracted as graphs.
3 Graph Computing Everywhere Graph Algorithm: Max Flow (Min Cut). Web Page Integration: Page Rank. Social Network Application: Friendship Mining. Search the results from your social network
4 Graph - Bottleneck EX: Just like Bing s friendship search. If we want to know our friends friends friends idea (which is a 3 hops of neighborhood) The edges we would like to traverse are: ^ ^3 = 2.2M --- ORM can traverse 1,000 relationships in 1 second. Statistics: Huge!!! How to store and How to compute? Type Nodes Edges Size US Road Graph 2.4*10^7 6.0*10^7 788MB Web Graph 2.0*10^10 1.6*10^ GB Facebook Graph 8*10^8 1.0*10^11 787GB
5 Graph Datastore Basically, graph datastore is database (NoSQL DB) uses graph structures with nodes, edges, and properties to represent and store data, which is highly optimized in the data layout, indexes and query mechanisms. These datastores are more about online query processing, in which low latency is always the core part. (Respond to a web request) EX: HyperGraphDB, Neo4j, FlockDb, Trinity.
6 Graph Computing System Graph Computing System emphasizes more on the computation model and framework to solve large-scale graph algorithm. These systems are more about the offline analytics, which is aiming at the high throughput. (Graph mining) EX: Pregel, MapReduce, PEGASUS, Trinity.
7 Graph Datastore Trinity Trinity, a memory-based distributed database and computation platform that supports online query processing and offline analytics on graphs. + Cell based data model. + Global memory addressing. + High performance. - Low scalability.
8 Graph Datastore FlockDB FlockDB is a distributed graph database for storing adjancency lists. Open source, built upon MySQL, in Twitter. + Partitioned by user_id. + Edges stored in both directions, index by (src, dest). + Optimized query mechanism. (Written in scala) src_id dest_id other dest_id src_id other Forward Backward
9 Graph Datastore Others HyperGraphDB HyperGraphDB is a (hyper)graph database designed mostly for knowledge representation, AI and semantic web projects, it can also be used as an embedded object-oriented database for Java projects of all sizes. Neo4j Neo4j storing data in the nodes and relationships of a graph. Disk-based, a powerful traversal framework for high-speed in the node space. Provided APIs on the programming language level (double weight()). Not so good in terms of scalability.
10 Graph Computing System Vertex-based A computation task is expressed in multiple iterative super-steps and each vertex acts as an independent agent, the vertex-based computation model is a special BSP model. Disadvantage: - Memory limitation. - Network overhead. - Superlinear complexity.
11 Graph Computing System MR-based Use MapReduce computation framework to obtain scalability and simple programming. PEGASUS discover an important primitive for some graph algorithm. (Matrix-vector multiplication) Linear complexity. Disadvantage: - Totally rethinking for the graph algorithm. - High IO overhead (No global data structure). - Superlinear complexity. - EX: BC on Daytona
12 Challenge - Locality When traversing the graph, where to access the next node? - Network communication with another machine? - Random read on the disk? Solution in the graph datastore: + Distributed in memory architecture. + Index or inverted index for nodes. + Partition for nodes.
13 Challenge - Partition How to partition a graph, especially some dynamic graphs like social network? A B Potential solution: + Partition by their centrality. + Replication.
14 Challenge Network && IO Overhead Vertex-based approach + Machine-to-machine message passing. + Bipartite the graph. MapReduce-based approach + Partition the graph, enhance the locality. + Graph datastore upon the DFS.
15 Future Work Disk based graph computation model and approach. + Layout mechanism. -> Graph datastore. + Computation mechanism. -> Vertex-based. MR-based. Some systems like Hama, Giraph. + Build upon Hadoop and HDFS. + Adopt the pregel model.
16 Thanks -- Stay hungry, stay foolish.
Large-Scale Data Processing
Large-Scale Data Processing Eiko Yoneki [email protected] http://www.cl.cam.ac.uk/~ey204 Systems Research Group University of Cambridge Computer Laboratory 2010s: Big Data Why Big Data now? Increase
Big Graph Processing: Some Background
Big Graph Processing: Some Background Bo Wu Colorado School of Mines Part of slides from: Paul Burkhardt (National Security Agency) and Carlos Guestrin (Washington University) Mines CSCI-580, Bo Wu Graphs
Software tools for Complex Networks Analysis. Fabrice Huet, University of Nice Sophia- Antipolis SCALE (ex-oasis) Team
Software tools for Complex Networks Analysis Fabrice Huet, University of Nice Sophia- Antipolis SCALE (ex-oasis) Team MOTIVATION Why do we need tools? Source : nature.com Visualization Properties extraction
Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing
/35 Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing Zuhair Khayyat 1 Karim Awara 1 Amani Alonazi 1 Hani Jamjoom 2 Dan Williams 2 Panos Kalnis 1 1 King Abdullah University of
Graph Processing and Social Networks
Graph Processing and Social Networks Presented by Shu Jiayu, Yang Ji Department of Computer Science and Engineering The Hong Kong University of Science and Technology 2015/4/20 1 Outline Background Graph
Challenges for Data Driven Systems
Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2
Trinity: A Distributed Graph Engine on a Memory Cloud
Trinity: A Distributed Graph Engine on a Memory Cloud Bin Shao Microsoft Research Asia Beijing, China [email protected] Haixun Wang Microsoft Research Asia Beijing, China [email protected] Yatao
Apache Hama Design Document v0.6
Apache Hama Design Document v0.6 Introduction Hama Architecture BSPMaster GroomServer Zookeeper BSP Task Execution Job Submission Job and Task Scheduling Task Execution Lifecycle Synchronization Fault
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
LARGE-SCALE GRAPH PROCESSING IN THE BIG DATA WORLD. Dr. Buğra Gedik, Ph.D.
LARGE-SCALE GRAPH PROCESSING IN THE BIG DATA WORLD Dr. Buğra Gedik, Ph.D. MOTIVATION Graph data is everywhere Relationships between people, systems, and the nature Interactions between people, systems,
Using an In-Memory Data Grid for Near Real-Time Data Analysis
SCALEOUT SOFTWARE Using an In-Memory Data Grid for Near Real-Time Data Analysis by Dr. William Bain, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 IN today s competitive world, businesses
Spark: Cluster Computing with Working Sets
Spark: Cluster Computing with Working Sets Outline Why? Mesos Resilient Distributed Dataset Spark & Scala Examples Uses Why? MapReduce deficiencies: Standard Dataflows are Acyclic Prevents Iterative Jobs
The Power of Relationships
The Power of Relationships Opportunities and Challenges in Big Data Intel Labs Cluster Computing Architecture Legal Notices INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
A Comparison of Current Graph Database Models
A Comparison of Current Graph Database Models Renzo Angles Universidad de Talca (Chile) 3rd Int. Workshop on Graph Data Management: Techniques and applications (GDM 2012) 5 April, Washington DC, USA Outline
A1 and FARM scalable graph database on top of a transactional memory layer
A1 and FARM scalable graph database on top of a transactional memory layer Miguel Castro, Aleksandar Dragojević, Dushyanth Narayanan, Ed Nightingale, Alex Shamis Richie Khanna, Matt Renzelmann Chiranjeeb
Machine Learning over Big Data
Machine Learning over Big Presented by Fuhao Zou [email protected] Jue 16, 2014 Huazhong University of Science and Technology Contents 1 2 3 4 Role of Machine learning Challenge of Big Analysis Distributed
Evaluating partitioning of big graphs
Evaluating partitioning of big graphs Fredrik Hallberg, Joakim Candefors, Micke Soderqvist [email protected], [email protected], [email protected] Royal Institute of Technology, Stockholm, Sweden Abstract. Distributed
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, UC Berkeley, Nov 2012
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, UC Berkeley, Nov 2012 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics data 4
A Performance Evaluation of Open Source Graph Databases. Robert McColl David Ediger Jason Poovey Dan Campbell David A. Bader
A Performance Evaluation of Open Source Graph Databases Robert McColl David Ediger Jason Poovey Dan Campbell David A. Bader Overview Motivation Options Evaluation Results Lessons Learned Moving Forward
Adapting scientific computing problems to cloud computing frameworks Ph.D. Thesis. Pelle Jakovits
Adapting scientific computing problems to cloud computing frameworks Ph.D. Thesis Pelle Jakovits Outline Problem statement State of the art Approach Solutions and contributions Current work Conclusions
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, XLDB Conference at Stanford University, Sept 2012
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, XLDB Conference at Stanford University, Sept 2012 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP)
Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf
Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant
The Current State of Graph Databases
The Current State of Graph Databases Mike Buerli Department of Computer Science Cal Poly San Luis Obispo [email protected] December 2012 Abstract Graph Database Models is increasingly a topic of interest
Architectures for massive data management
Architectures for massive data management Apache Spark Albert Bifet [email protected] October 20, 2015 Spark Motivation Apache Spark Figure: IBM and Apache Spark What is Apache Spark Apache
Big Data Analytics. Lucas Rego Drumond
Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany MapReduce II MapReduce II 1 / 33 Outline 1. Introduction
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
CS54100: Database Systems
CS54100: Database Systems Cloud Databases: The Next Post- Relational World 18 April 2012 Prof. Chris Clifton Beyond RDBMS The Relational Model is too limiting! Simple data model doesn t capture semantics
Big Graph Analytics on Neo4j with Apache Spark. Michael Hunger Original work by Kenny Bastani Berlin Buzzwords, Open Stage
Big Graph Analytics on Neo4j with Apache Spark Michael Hunger Original work by Kenny Bastani Berlin Buzzwords, Open Stage My background I only make it to the Open Stages :) Probably because Apache Neo4j
Objectivity positions graph database as relational complement to InfiniteGraph 3.0
Objectivity positions graph database as relational complement to InfiniteGraph 3.0 Analyst: Matt Aslett 1 Oct, 2012 Objectivity Inc has launched version 3.0 of its InfiniteGraph graph database, improving
How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time
SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first
A scalable graph pattern matching engine on top of Apache Giraph
Vrije Universiteit, Amsterdam Faculty of Sciences, Computer Science Department Sînziana Maria Filip, student no. 2514775 A scalable graph pattern matching engine on top of Apache Giraph Master Thesis in
Mining Large Datasets: Case of Mining Graph Data in the Cloud
Mining Large Datasets: Case of Mining Graph Data in the Cloud Sabeur Aridhi PhD in Computer Science with Laurent d Orazio, Mondher Maddouri and Engelbert Mephu Nguifo 16/05/2014 Sabeur Aridhi Mining Large
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
GRAPH DATABASE SYSTEMS. h_da Prof. Dr. Uta Störl Big Data Technologies: Graph Database Systems - SoSe 2016 1
GRAPH DATABASE SYSTEMS h_da Prof. Dr. Uta Störl Big Data Technologies: Graph Database Systems - SoSe 2016 1 Use Case: Route Finding Source: Neo Technology, Inc. h_da Prof. Dr. Uta Störl Big Data Technologies:
Graph Mining on Big Data System. Presented by Hefu Chai, Rui Zhang, Jian Fang
Graph Mining on Big Data System Presented by Hefu Chai, Rui Zhang, Jian Fang Outline * Overview * Approaches & Environment * Results * Observations * Notes * Conclusion Overview * What we have done? *
Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing
: A System for Dynamic Load Balancing in Large-scale Graph Processing Zuhair Khayyat Karim Awara Amani Alonazi Hani Jamjoom Dan Williams Panos Kalnis King Abdullah University of Science and Technology,
Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics
Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold Reinwald, and Fatma Özcan IBM Research China IBM Almaden
WTF: The Who to Follow Service at Twitter
WTF: The Who to Follow Service at Twitter Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, Reza Zadeh Twitter, Inc. @pankaj @ashishgoel @lintool @aneeshs @dongwang218 @reza_zadeh ABSTRACT
This exam contains 13 pages (including this cover page) and 18 questions. Check to see if any pages are missing.
Big Data Processing 2013-2014 Q2 April 7, 2014 (Resit) Lecturer: Claudia Hauff Time Limit: 180 Minutes Name: Answer the questions in the spaces provided on this exam. If you run out of room for an answer,
This article is the second
This article is the second of a series by Pythian experts that will regularly be published as the Performance Corner column in the NoCOUG Journal. The main software components of Oracle Big Data Appliance
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing
Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti
Big Data and Scripting Systems build on top of Hadoop
Big Data and Scripting Systems build on top of Hadoop 1, 2, Pig/Latin high-level map reduce programming platform Pig is the name of the system Pig Latin is the provided programming language Pig Latin is
Unified Big Data Analytics Pipeline. 连 城 [email protected]
Unified Big Data Analytics Pipeline 连 城 [email protected] What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an
Analysis of Web Archives. Vinay Goel Senior Data Engineer
Analysis of Web Archives Vinay Goel Senior Data Engineer Internet Archive Established in 1996 501(c)(3) non profit organization 20+ PB (compressed) of publicly accessible archival material Technology partner
An NSA Big Graph experiment. Paul Burkhardt, Chris Waring. May 20, 2013
U.S. National Security Agency Research Directorate - R6 Technical Report NSA-RD-2013-056002v1 May 20, 2013 Graphs are everywhere! A graph is a collection of binary relationships, i.e. networks of pairwise
A Practical Approach to Process Streaming Data using Graph Database
A Practical Approach to Process Streaming Data using Graph Database Mukul Sharma Research Scholar Department of Computer Science & Engineering SBCET, Jaipur, Rajasthan, India ABSTRACT In today s information
Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料
Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料 美 國 13 歲 學 生 用 Big Data 找 出 霸 淩 熱 點 Puri 架 設 網 站 Bullyvention, 藉 由 分 析 Twitter 上 找 出 提 到 跟 霸 凌 相 關 的 詞, 搭 配 地 理 位 置
Systems and Algorithms for Big Data Analytics
Systems and Algorithms for Big Data Analytics YAN, Da Email: [email protected] My Research Graph Data Distributed Graph Processing Spatial Data Spatial Query Processing Uncertain Data Querying & Mining
Spark. Fast, Interactive, Language- Integrated Cluster Computing
Spark Fast, Interactive, Language- Integrated Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica UC
Convex Optimization for Big Data: Lecture 2: Frameworks for Big Data Analytics
Convex Optimization for Big Data: Lecture 2: Frameworks for Big Data Analytics Sabeur Aridhi Aalto University, Finland Sabeur Aridhi Frameworks for Big Data Analytics 1 / 59 Introduction Contents 1 Introduction
BIG DATA TOOLS. Top 10 open source technologies for Big Data
BIG DATA TOOLS Top 10 open source technologies for Big Data We are in an ever expanding marketplace!!! With shorter product lifecycles, evolving customer behavior and an economy that travels at the speed
Achieving Real-Time Business Solutions Using Graph Database Technology and High Performance Networks
WHITE PAPER July 2014 Achieving Real-Time Business Solutions Using Graph Database Technology and High Performance Networks Contents Executive Summary...2 Background...3 InfiniteGraph...3 High Performance
Search Engine Architecture
Search Engine Architecture 1. Introduction This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/
NoSQL: Going Beyond Structured Data and RDBMS
NoSQL: Going Beyond Structured Data and RDBMS Scenario Size of data >> disk or memory space on a single machine Store data across many machines Retrieve data from many machines Machine = Commodity machine
Using In-Memory Computing to Simplify Big Data Analytics
SCALEOUT SOFTWARE Using In-Memory Computing to Simplify Big Data Analytics by Dr. William Bain, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T he big data revolution is upon us, fed
MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research
MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
Big Data and Scripting Systems beyond Hadoop
Big Data and Scripting Systems beyond Hadoop 1, 2, ZooKeeper distributed coordination service many problems are shared among distributed systems ZooKeeper provides an implementation that solves these avoid
Large Scale Graph Processing with Apache Giraph
Large Scale Graph Processing with Apache Giraph Sebastian Schelter Invited talk at GameDuell Berlin 29th May 2012 the mandatory about me slide PhD student at the Database Systems and Information Management
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
NoSQL and Hadoop Technologies On Oracle Cloud
NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath
Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014
Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)
<Insert Picture Here> Oracle NoSQL Database A Distributed Key-Value Store
Oracle NoSQL Database A Distributed Key-Value Store Charles Lamb, Consulting MTS The following is intended to outline our general product direction. It is intended for information
BIG DATA TECHNOLOGY. Hadoop Ecosystem
BIG DATA TECHNOLOGY Hadoop Ecosystem Agenda Background What is Big Data Solution Objective Introduction to Hadoop Hadoop Ecosystem Hybrid EDW Model Predictive Analysis using Hadoop Conclusion What is Big
Big Data Technology CS 236620, Technion, Spring 2013
Big Data Technology CS 236620, Technion, Spring 2013 Structured Databases atop Map-Reduce Edward Bortnikov & Ronny Lempel Yahoo! Labs, Haifa Roadmap Previous class MR Implementation This class Query Languages
Managing large clusters resources
Managing large clusters resources ID2210 Gautier Berthou (SICS) Big Processing with No Locality Job( /crawler/bot/jd.io/1 ) submi t Workflow Manager Compute Grid Node Job This doesn t scale. Bandwidth
The Internet of Things and Big Data: Intro
The Internet of Things and Big Data: Intro John Berns, Solutions Architect, APAC - MapR Technologies April 22 nd, 2014 1 What This Is; What This Is Not It s not specific to IoT It s not about any specific
Databases 2 (VU) (707.030)
Databases 2 (VU) (707.030) Introduction to NoSQL Denis Helic KMI, TU Graz Oct 14, 2013 Denis Helic (KMI, TU Graz) NoSQL Oct 14, 2013 1 / 37 Outline 1 NoSQL Motivation 2 NoSQL Systems 3 NoSQL Examples 4
Spark and the Big Data Library
Spark and the Big Data Library Reza Zadeh Thanks to Matei Zaharia Problem Data growing faster than processing speeds Only solution is to parallelize on large clusters» Wide use in both enterprises and
Composite Data Virtualization Composite Data Virtualization And NOSQL Data Stores
Composite Data Virtualization Composite Data Virtualization And NOSQL Data Stores Composite Software October 2010 TABLE OF CONTENTS INTRODUCTION... 3 BUSINESS AND IT DRIVERS... 4 NOSQL DATA STORES LANDSCAPE...
Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1
Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
Use of Hadoop File System for Nuclear Physics Analyses in STAR
1 Use of Hadoop File System for Nuclear Physics Analyses in STAR EVAN SANGALINE UC DAVIS Motivations 2 Data storage a key component of analysis requirements Transmission and storage across diverse resources
Big Data looks Tiny from the Stratosphere
Volker Markl http://www.user.tu-berlin.de/marklv [email protected] Big Data looks Tiny from the Stratosphere Data and analyses are becoming increasingly complex! Size Freshness Format/Media Type
Using Data Mining and Machine Learning in Retail
Using Data Mining and Machine Learning in Retail Omeid Seide Senior Manager, Big Data Solutions Sears Holdings Bharat Prasad Big Data Solution Architect Sears Holdings Over a Century of Innovation A Fortune
InfiniteGraph: The Distributed Graph Database
A Performance and Distributed Performance Benchmark of InfiniteGraph and a Leading Open Source Graph Database Using Synthetic Data Objectivity, Inc. 640 West California Ave. Suite 240 Sunnyvale, CA 94086
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
From GWS to MapReduce: Google s Cloud Technology in the Early Days
Large-Scale Distributed Systems From GWS to MapReduce: Google s Cloud Technology in the Early Days Part II: MapReduce in a Datacenter COMP6511A Spring 2014 HKUST Lin Gu [email protected] MapReduce/Hadoop
Graph Database Proof of Concept Report
Objectivity, Inc. Graph Database Proof of Concept Report Managing The Internet of Things Table of Contents Executive Summary 3 Background 3 Proof of Concept 4 Dataset 4 Process 4 Query Catalog 4 Environment
Data Processing in the Era of Big Data
Department of Computer Science and Information Engineering National Taiwan University October 3, 2014 Big Data a New Jargon Importance Importance Big data is a collection of data sets so large and complex
Significantly Speed up real world big data Applications using Apache Spark
Significantly Speed up real world big data Applications using Apache Spark Mingfei Shi([email protected]) Grace Huang ( [email protected]) Intel/SSG/Big Data Technology 1 Agenda Who are we? Case
Report: Declarative Machine Learning on MapReduce (SystemML)
Report: Declarative Machine Learning on MapReduce (SystemML) Jessica Falk ETH-ID 11-947-512 May 28, 2014 1 Introduction SystemML is a system used to execute machine learning (ML) algorithms in HaDoop,
A Brief Study of Open Source Graph Databases
A Brief Study of Open Source Graph Databases Rob McColl David Ediger Jason Poovey Dan Campbell David Bader Georgia Tech Research Institute, Georgia Institute of Technology Abstract With the proliferation
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
Big Data Analytics. with EMC Greenplum and Hadoop. Big Data Analytics. Ofir Manor Pre Sales Technical Architect EMC Greenplum
Big Data Analytics with EMC Greenplum and Hadoop Big Data Analytics with EMC Greenplum and Hadoop Ofir Manor Pre Sales Technical Architect EMC Greenplum 1 Big Data and the Data Warehouse Potential All
HDB++: HIGH AVAILABILITY WITH. l TANGO Meeting l 20 May 2015 l Reynald Bourtembourg
HDB++: HIGH AVAILABILITY WITH Page 1 OVERVIEW What is Cassandra (C*)? Who is using C*? CQL C* architecture Request Coordination Consistency Monitoring tool HDB++ Page 2 OVERVIEW What is Cassandra (C*)?
Apache HBase. Crazy dances on the elephant back
Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage
BSPCloud: A Hybrid Programming Library for Cloud Computing *
BSPCloud: A Hybrid Programming Library for Cloud Computing * Xiaodong Liu, Weiqin Tong and Yan Hou Department of Computer Engineering and Science Shanghai University, Shanghai, China [email protected],
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
Accelerating Hadoop MapReduce Using an In-Memory Data Grid
Accelerating Hadoop MapReduce Using an In-Memory Data Grid By David L. Brinker and William L. Bain, ScaleOut Software, Inc. 2013 ScaleOut Software, Inc. 12/27/2012 H adoop has been widely embraced for
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Edward Bortnikov & Ronny Lempel Yahoo Labs, Haifa Indexing in Search Engines Information Retrieval s two main stages: Indexing process
