Challenges, Tools and Examples for Big Data Inference
|
|
|
- Loreen French
- 10 years ago
- Views:
Transcription
1 Challenges, Tools and Examples for Big Data Inference Jean-François Plante, HEC Montréal Closing Conference: Statistical and Computational Analytics for Big Data June 12 th, 2015
2 What is Big Data? Dan Ariely from Duke Univeristy : 1
3 What is Big Data? 2
4 Overview of the Opening Conference and Bootcamp Held at Fields January 12 to January scientific talks. Covering all themes of the Big Data program, one theme per day. An overview paper is being prepared by the postdoctoral fellows and longer term visitors at the Fields institute. 3
5 Themes of the Program Week one: Introductory Lectures and Overview Inference Environmental Science Optimization Week two: Visualization Social Policy Health Policy Deep Learning Networks and Machine Learning 4
6 Why Do We Talk About Big Data? Because we can! (techonology makes it possible). Because Big Data allows to observe and measure behaviours or events about humans. Because we can measure new things that are otherwise hard or impossible to evaluate. Because imperfect, large, unstructured or hard to handle data may still contain valuable information that we should not dismiss. 5
7 Example #1: Measuring the Effect of Nutrition David Buckeridge, McGill University, with INSPQ Diet is known as an important factor in the study of disabilities, but very little is known about people s nutritional behaviour. Nielsen: Information about all products sold by groceries and corner stores (from about 10% of all outlets) at the 3-digit postal code level. Match with UPC for nutrition. Loyalty programs: Purchases at the household level. Can be combined to medical records of disabilities (eg. diabetes). 6
8 Example #2: Predicting Insurgencies Shane Reese, Bringham Young University Insurgencies and riots are frequent in South America: 100s or 1000s in each country every year. 4 years of Twitter messages from South America. The massive database is stored on a Hadoop file system. Gold standard for insurgencies: GSR. Occurrence of an insurgency predicted by the volume of tweets, the presence of some keywords, and an increase in the use of The Onion Router (TOR), an online service to anonymize tweets. 7
9 Challenges from Volume Methods fail on available computers they do not scale well Exploratory Data Analysis is still crucial, but it is harder and more complex to perform Special infrastructure may be needed (eg. cluster for distributed data) using languages we are not typically trained for. Asymptotics fail: The relative link between n and p is different (eg. n/p k < as n ). 8
10 Challenges from Variety New types of data are available and must be included in the analysis: o Text o Images o Sound o Video o Networks Data may be heterogeneous : o Patrick Brown, UofT: spatial data with postal codes and census areas: do not match and vary through time. o Bo Li, U. of Illinois: Reconstructing temperature data from many proxies that vary through time (tree rings, pollen, ice cores, etc.) 9
11 Challenges Related to Veracity Data were collected for a purpose other than the one we want to use them for. They are observational, thus typically not from the population of interest Bias Data quality is hard to maintain in large administrative databases. o Lisa Lix, U. Manitoba: Models to improve the quality. Bias may be induced by model selection o Richard Lockhart, SFU: Inference from the LASSO. o Ejaz Ahmed, Brock U.: Bias from small signals forced to 0. 10
12 Challenges from Velocity Velocity is often a challenge when real-time decision or predictions must be made. Inference appears to be often done on fixed data and velocity is not the main issue. As a notable exception: models that are designed to make online predictions have to be able to produce those predictions fast. 11
13 Solution #1: Building More Complex Models With more data available, there is the possibility of fitting a much more complex model. Deep learning is a very successful example of the power of more complex models (eg. talk of Ruslan Salakhutdinov, UofT). Many layers of latent variables. Generates features automatically. Demo: o Finding similar images. o Generating captions for images. 12
14 Solution #2: Assuming Sparsity High dimensional data may have a lower dimensional underlying structure. Sometimes, the dimension of a model may even exceed the sample size! Assuming sparsity (ie. that most coefficients are 0) is a possible solution. The LASSO assumes that only some variables contribute to the signal. A penalty controls the number of null parameters (indirectly by controlling their magnitude). Regularization (penalty to control the coefficients) is used for other models as well, including deep learning models. Random projections maps a high dimensional space to a smaller space where distances are (almost) preserved. 13
15 Solution #3: Non-Convex Optimization Regularization with convex functions is easy to optimize, but non-convex penalties offer better behaviour of the estimates. Statistical problems do not tend to be adversary and it is possible to give guarantees of convergence. Martin Wainwright, UC Berkeley: No point in optimizing beyond statistical precision. Local maximum within a range of the global solution are acceptable. Optimization for distributed data (and infrastructure). 14
16 Solution #4: Developing New Visualization Tools Two examples: 1. Papillio: Sheelagh Carpendale, U. of Calgary. 15
17 2. Sofia Olhede, UCL: Network histogram 16
18 Solution #5: Developing New Asymptotics The assumption that n while p is fixed is often violated. Classical results may not apply. New asymptotic results are not only useful to develop methodology, but they help understand better the structure and behaviour of large dimensional problems. 17
19 Big Data as a Game Changer Sallie Keller s analogy with Hubble: Big Data allows us to observe phenomenon that were always there, but that we could not observe with previous technologies. Applied sciences: the cost of research is shifting from data acquisition to data storage and analysis. Data as a resource: In Business or in Urban Analytics, data are a resource that you must exploit to remain competitive. Multidisciplinarity gives a big boost. 18
20 Statistics vs Computer Science The Computer Science community has developed infrastructure and tools that make Big Data possible. What can the statisticians bring? A bigger focus on inference. A good intuition on potential sources of bias. A good understanding of stochasticity. Strategies to deal with noise (vs signal). From Steeve Scott, Google: Statistician talk to human and the brain needs very low-dimensional input for interpretation, Computer scientists talk to computers for whom such low dimensional input is not a requirement. 19
21 Conclusion: A Few Words of Wisdom Knowledge and wisdom about inference is still valid. We should not dismiss what we already know because of the promises of Big Data. Big Data traps according to David Buckeridge: Hubris: Seeing big data as a solution in isolation, rather than as potential added value to existing methods and theory. Dazzle: Starting with the data and looking for problems, rather than defining a problem then finding the data. The hype around the term Big Data will probably fade, but the new challenges will remain. 20
Statistical Inference, Learning and Models for Big Data
Statistical Inference, Learning and Models for Big Data Nancy Reid University of Toronto P.R. Krishnaiah Memorial Lecture 2015 Rao Prize Conference Penn State University May 15, 2015 P. R. Krishnaiah 1932
Statistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
A Visualization is Worth a Thousand Tables: How IBM Business Analytics Lets Users See Big Data
White Paper A Visualization is Worth a Thousand Tables: How IBM Business Analytics Lets Users See Big Data Contents Executive Summary....2 Introduction....3 Too much data, not enough information....3 Only
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
General overview, and sources and uses of Big Data for urban and regional analysis
General overview, and sources and uses of Big Data for urban and regional analysis Carson Farmer! @carsonfarmer " carsonfarmer.com # [email protected] TRB Executive Committee Policy Session,
ICT Perspectives on Big Data: Well Sorted Materials
ICT Perspectives on Big Data: Well Sorted Materials 3 March 2015 Contents Introduction 1 Dendrogram 2 Tree Map 3 Heat Map 4 Raw Group Data 5 For an online, interactive version of the visualisations in
How To Make Sense Of Data With Altilia
HOW TO MAKE SENSE OF BIG DATA TO BETTER DRIVE BUSINESS PROCESSES, IMPROVE DECISION-MAKING, AND SUCCESSFULLY COMPETE IN TODAY S MARKETS. ALTILIA turns Big Data into Smart Data and enables businesses to
Collaborations between Official Statistics and Academia in the Era of Big Data
Collaborations between Official Statistics and Academia in the Era of Big Data World Statistics Day October 20-21, 2015 Budapest Vijay Nair University of Michigan Past-President of ISI [email protected] What
Big Data, Official Statistics and Social Science Research: Emerging Data Challenges
Big Data, Official Statistics and Social Science Research: Emerging Data Challenges Professor Paul Cheung Director, United Nations Statistics Division Building the Global Information System Elements of
Of all the data in recorded human history, 90 percent has been created in the last two years. - Mark van Rijmenam, Think Bigger, 2014
What is Big Data? Of all the data in recorded human history, 90 percent has been created in the last two years. - Mark van Rijmenam, Think Bigger, 2014 Data in the Twentieth Century and before In 1663,
Research of Postal Data mining system based on big data
3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015) Research of Postal Data mining system based on big data Xia Hu 1, Yanfeng Jin 1, Fan Wang 1 1 Shi Jiazhuang Post & Telecommunication
Machine Learning for Data Science (CS4786) Lecture 1
Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:
Let the data speak to you. Look Who s Peeking at Your Paycheck. Big Data. What is Big Data? The Artemis project: Saving preemies using Big Data
CS535 Big Data W1.A.1 CS535 BIG DATA W1.A.2 Let the data speak to you Medication Adherence Score How likely people are to take their medication, based on: How long people have lived at the same address
Mobile Monetization Scenario Design & Big Data. Arther Wu Senior Director of Monetization and Business Operation
Mobile Monetization Scenario Design & Big Data Arther Wu Senior Director of Monetization and Business Operation Agenda Quick update of Cheetah Mobile Ad Scenario Design Big Data / Relation with Advertising
International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 ISSN 2278-7763. BIG DATA: A New Technology
International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 BIG DATA: A New Technology Farah DeebaHasan Student, M.Tech.(IT) Anshul Kumar Sharma Student, M.Tech.(IT)
Big Data & Analytics: Your concise guide (note the irony) Wednesday 27th November 2013
Big Data & Analytics: Your concise guide (note the irony) Wednesday 27th November 2013 Housekeeping 1. Any questions coming out of today s presentation can be discussed in the bar this evening 2. OCF is
The Big Picture on Big Data. Princeton Section 307 Dinner Meeting December 11, 2013 Richard Herczeg
The Big Picture on Big Data Princeton Section 307 Dinner Meeting December 11, 2013 Richard Herczeg Objective of Talk 1. Deliver a Primer on Big Data. 2. How does this emerging topic apply to Quality? 3.
Statistical Challenges with Big Data in Management Science
Statistical Challenges with Big Data in Management Science Arnab Kumar Laha Indian Institute of Management Ahmedabad Analytics vs Reporting Competitive Advantage Reporting Prescriptive Analytics (Decision
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# So What is Data Science?" Doing Data Science" Data Preparation" Roles" This Lecture" What is Data Science?" Data Science aims to derive knowledge!
Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank
Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank Agenda» Overview» What is Big Data?» Accelerates advances in computer & technologies» Revolutionizes data measurement»
"BIG DATA A PROLIFIC USE OF INFORMATION"
Ojulari Moshood Cameron University - IT4444 Capstone 2013 "BIG DATA A PROLIFIC USE OF INFORMATION" Abstract: The idea of big data is to better use the information generated by individual to remake and
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
Understanding Your Customer Journey by Extending Adobe Analytics with Big Data
SOLUTION BRIEF Understanding Your Customer Journey by Extending Adobe Analytics with Big Data Business Challenge Today s digital marketing teams are overwhelmed by the volume and variety of customer interaction
Towards a Domain-Specific Framework for Predictive Analytics in Manufacturing. David Lechevalier Anantha Narayanan Sudarsan Rachuri
Towards a Framework for Predictive Analytics in Manufacturing David Lechevalier Anantha Narayanan Sudarsan Rachuri Outline 2 1. Motivation 1. Why Big in Manufacturing? 2. What is needed to apply Big in
Chapter 6. The stacking ensemble approach
82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described
TECHNIQUES FOR OPTIMIZING THE RELATIONSHIP BETWEEN DATA STORAGE SPACE AND DATA RETRIEVAL TIME FOR LARGE DATABASES
Techniques For Optimizing The Relationship Between Data Storage Space And Data Retrieval Time For Large Databases TECHNIQUES FOR OPTIMIZING THE RELATIONSHIP BETWEEN DATA STORAGE SPACE AND DATA RETRIEVAL
Big Data and Marketing
Big Data and Marketing Professor Venky Shankar Coleman Chair in Marketing Director, Center for Retailing Studies Mays Business School Texas A&M University http://www.venkyshankar.com [email protected]
Big Data Analytics. Prof. Dr. Lars Schmidt-Thieme
Big Data Analytics Prof. Dr. Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany 33. Sitzung des Arbeitskreises Informationstechnologie,
Big Data and Data Science: Behind the Buzz Words
Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing
IDC MaturityScape Benchmark: Big Data and Analytics in Government. Adelaide O Brien Research Director IDC Government Insights June 20, 2014
IDC MaturityScape Benchmark: Big Data and Analytics in Government Adelaide O Brien Research Director IDC Government Insights June 20, 2014 IDC MaturityScape Benchmark: Big Data and Analytics in Government
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
How is Big Data Different? A Paradigm Shift
How is Big Data Different? A Paradigm Shift Jennifer Clarke, Ph.D. Associate Professor Department of Statistics Department of Food Science and Technology University of Nebraska Lincoln ASA Snake River
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
USING BIG DATA FOR INTELLIGENT BUSINESSES
HENRI COANDA AIR FORCE ACADEMY ROMANIA INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2015 Brasov, 28-30 May 2015 GENERAL M.R. STEFANIK ARMED FORCES ACADEMY SLOVAK REPUBLIC USING BIG DATA FOR INTELLIGENT
Big Data for Development: What May Determine Success or failure?
Big Data for Development: What May Determine Success or failure? Emmanuel Letouzé [email protected] OECD Technology Foresight 2012 Paris, October 22 Swimming in Ocean of data Data deluge Algorithms
IDC MaturityScape Benchmark: Big Data and Analytics in Government
IDC MaturityScape Benchmark: Big Data and Analytics in Government Adelaide O Brien Research Director, IDC [email protected] Presentation to ACT-IAC Emerging Technology SIG July, 2014 IDC MaturityScape Benchmark:
Customer Centric Banking. June 2014, IBU Banking, SAP
Customer Centric Banking June 2014, IBU Banking, SAP EMPOWERED CUSTOMERS ARE 79% 53% 59% Digitally Connected of customers spend at least 50% of total shopping time researching brands online. Socially Networked
REFLECTIONS ON THE USE OF BIG DATA FOR STATISTICAL PRODUCTION
REFLECTIONS ON THE USE OF BIG DATA FOR STATISTICAL PRODUCTION Pilar Rey del Castillo May 2013 Introduction The exploitation of the vast amount of data originated from ICT tools and referring to a big variety
A Strategic Approach to Unlock the Opportunities from Big Data
A Strategic Approach to Unlock the Opportunities from Big Data Yue Pan, Chief Scientist for Information Management and Healthcare IBM Research - China [contacts: [email protected] ] Big Data or Big Illusion?
CSC590: Selected Topics BIG DATA & DATA MINING. Lecture 2 Feb 12, 2014 Dr. Esam A. Alwagait
CSC590: Selected Topics BIG DATA & DATA MINING Lecture 2 Feb 12, 2014 Dr. Esam A. Alwagait Agenda Introduction What is Big Data Why Big Data? Characteristics of Big Data Applications of Big Data Problems
BIG DATA: BIG BOOST TO BIG TECH
BIG DATA: BIG BOOST TO BIG TECH Ms. Tosha Joshi Department of Computer Applications, Christ College, Rajkot, Gujarat (India) ABSTRACT Data formation is occurring at a record rate. A staggering 2.9 billion
BIG DATA: IT MAY BE BIG BUT IS IT SMART?
BIG DATA: IT MAY BE BIG BUT IS IT SMART? Turning Big Data into winning strategies A GfK Point-of-view 1 Big Data is complex Typical Big Data characteristics?#! %& Variety (data in many forms) Data in different
The? Data: Introduction and Future
The? Data: Introduction and Future Husnu Sensoy Global Maksimum Data & Information Technologies Global Maksimum Data & Information Technologies The Data Company Massive Data Unstructured Data Insight Information
COM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3
COMP 5318 Data Exploration and Analysis Chapter 3 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping
Big Data and New Paradigms in Information Management. Vladimir Videnovic Institute for Information Management
Big Data and New Paradigms in Information Management Vladimir Videnovic Institute for Information Management 2 "I am certainly not an advocate for frequent and untried changes laws and institutions must
BIG DATA CHALLENGES AND PERSPECTIVES
BIG DATA CHALLENGES AND PERSPECTIVES Meenakshi Sharma 1, Keshav Kishore 2 1 Student of Master of Technology, 2 Head of Department, Department of Computer Science and Engineering, A P Goyal Shimla University,
Data Analytics in Organisations and Business
Data Analytics in Organisations and Business Dr. Isabelle E-mail: [email protected] 1 Data Analytics in Organisations and Business Some organisational information: Tutorship: Gian Thanei:
BIG DATA: BIG CHALLENGE FOR SOFTWARE TESTERS
BIG DATA: BIG CHALLENGE FOR SOFTWARE TESTERS Megha Joshi Assistant Professor, ASM s Institute of Computer Studies, Pune, India Abstract: Industry is struggling to handle voluminous, complex, unstructured
SURVEY REPORT DATA SCIENCE SOCIETY 2014
SURVEY REPORT DATA SCIENCE SOCIETY 2014 TABLE OF CONTENTS Contents About the Initiative 1 Report Summary 2 Participants Info 3 Participants Expertise 6 Suggested Discussion Topics 7 Selected Responses
Big Health Data the challenges and connections
Big Data Big Health Data the challenges and connections Dr Trish Williams ehealth Research Group, School of Computer and Security Science, What are we looking at? Context Where to from here? Big Data Sources
Big Data. Donald Kossmann & Nesime Tatbul Systems Group ETH Zurich
Big Data Donald Kossmann & Nesime Tatbul Systems Group ETH Zurich Goal of Today What is Big Data? introduce all major buzz words What is not Big Data? get a feeling for opportunities & limitations Answering
Data Refinery with Big Data Aspects
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 655-662 International Research Publications House http://www. irphouse.com /ijict.htm Data
Big Analytics: A Next Generation Roadmap
Big Analytics: A Next Generation Roadmap Cloud Developers Summit & Expo: October 1, 2014 Neil Fox, CTO: SoftServe, Inc. 2014 SoftServe, Inc. Remember Life Before The Web? 1994 Even Revolutions Take Time
Statistics, Data Mining and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. and Alex Gray
Statistics, Data Mining and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas University of Washington and Alex
Big Data in Pictures: Data Visualization
Big Data in Pictures: Data Visualization Huamin Qu Hong Kong University of Science and Technology What is data visualization? Data visualization is the creation and study of the visual representation of
Big Data in Healthcare: Myth, Hype, and Hope
Big Data in Healthcare: Myth, Hype, and Hope Woojin Kim, MD Insert Organization Logo Here or Remove Disclosure Co-founder/Shareholder Montage Healthcare Solutions, Inc Consultant Infiniti Medical, LLC
Predicting & Preventing Banking Customer Churn by Unlocking Big Data
Predicting & Preventing Banking Customer Churn by Unlocking Big Data Making Sense of Big Data http://www.ngdata.com Predicting & Preventing Banking Customer Churn by Unlocking Big Data 1 Predicting & Preventing
IMAV: An Intelligent Multi-Agent Model Based on Cloud Computing for Resource Virtualization
2011 International Conference on Information and Electronics Engineering IPCSIT vol.6 (2011) (2011) IACSIT Press, Singapore IMAV: An Intelligent Multi-Agent Model Based on Cloud Computing for Resource
Modern (Computational) Approaches to Big Data Analytics. CSC 576 Computer Science, University of Rochester Instructor: Ji Liu
Modern (Computational) Approaches to Big Data Analytics CSC 576 Computer Science, University of Rochester Instructor: Ji Liu Big Data in Academy SIGKDD 2014 (program page, found 14 big data, 50+ large
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Siva Ravada Senior Director of Development Oracle Spatial and MapViewer 2 Evolving Technology Platforms
Spatio-Temporal Networks:
Spatio-Temporal Networks: Analyzing Change Across Time and Place WHITE PAPER By: Jeremy Peters, Principal Consultant, Digital Commerce Professional Services, Pitney Bowes ABSTRACT ORGANIZATIONS ARE GENERATING
How To Learn To Use Big Data
Information Technologies Programs Big Data Specialized Studies Accelerate Your Career extension.uci.edu/bigdata Offered in partnership with University of California, Irvine Extension s professional certificate
The 3 questions to ask yourself about BIG DATA
The 3 questions to ask yourself about BIG DATA Do you have a big data problem? Companies looking to tackle big data problems are embarking on a journey that is full of hype, buzz, confusion, and misinformation.
Data Mining and Exploration. Data Mining and Exploration: Introduction. Relationships between courses. Overview. Course Introduction
Data Mining and Exploration Data Mining and Exploration: Introduction Amos Storkey, School of Informatics January 10, 2006 http://www.inf.ed.ac.uk/teaching/courses/dme/ Course Introduction Welcome Administration
Predicting & Preventing Banking Customer Churn by Unlocking Big Data
Predicting & Preventing Banking Customer Churn by Unlocking Big Data Customer Churn: A Key Performance Indicator for Banks In 2012, 50% of customers, globally, either changed their banks or were planning
BIG DATA: CONVENTIONAL METHODS MEET UNCONVENTIONAL DATA
BIG DATA: CONVENTIONAL METHODS MEET UNCONVENTIONAL DATA Harvard Medical School & Harvard School of Public Health [email protected] October 14, 2014 1 / 7 THE SETTING Unprecedented advances in
Five Questions to Ask Your Mobile Ad Platform Provider. Whitepaper
June 2014 Whitepaper Five Questions to Ask Your Mobile Ad Platform Provider Use this easy, fool-proof method to evaluate whether your mobile ad platform provider s targeting and measurement are capable
Big Data & Security. Aljosa Pasic 12/02/2015
Big Data & Security Aljosa Pasic 12/02/2015 Welcome to Madrid!!! Big Data AND security: what is there on our minds? Big Data tools and technologies Big Data T&T chain and security/privacy concern mappings
The 4 Pillars of Technosoft s Big Data Practice
beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed
Rebecca Yates Coley, Ph.D.
Rebecca Yates Coley, Ph.D. Department of Biostatistics Johns Hopkins University Baltimore, MD January 5, 2016 [email protected] www.rycoley.com github: rycoley Education Ph.D., Biostatistics, University
Big Data Discovery: Five Easy Steps to Value
Big Data Discovery: Five Easy Steps to Value Big data could really be called big frustration. For all the hoopla about big data being poised to reshape industries from healthcare to retail to financial
So which is the best?
Manifold Learning Techniques: So which is the best? Todd Wittman Math 8600: Geometric Data Analysis Instructor: Gilad Lerman Spring 2005 Note: This presentation does not contain information on LTSA, which
Data Driven Discovery In the Social, Behavioral, and Economic Sciences
Data Driven Discovery In the Social, Behavioral, and Economic Sciences Simon Appleford, Marshall Scott Poole, Kevin Franklin, Peter Bajcsy, Alan B. Craig, Institute for Computing in the Humanities, Arts,
Outline. What is Big data and where they come from? How we deal with Big data?
What is Big Data Outline What is Big data and where they come from? How we deal with Big data? Big Data Everywhere! As a human, we generate a lot of data during our everyday activity. When you buy something,
DATA VISUALIZATION: When Data Speaks Business PRODUCT ANALYSIS REPORT IBM COGNOS BUSINESS INTELLIGENCE. Technology Evaluation Centers
PRODUCT ANALYSIS REPORT IBM COGNOS BUSINESS INTELLIGENCE DATA VISUALIZATION: When Data Speaks Business Jorge García, TEC Senior BI and Data Management Analyst Technology Evaluation Centers Contents About
Big Data Systems CS 5965/6965 FALL 2014
Big Data Systems CS 5965/6965 FALL 2014 Today General course overview Q&A Introduction to Big Data Data Collection Assignment #1 General Course Information Course Web Page http://www.cs.utah.edu/~hari/teaching/fall2014.html
DATA SCIENCE CURRICULUM WEEK 1 ONLINE PRE-WORK INSTALLING PACKAGES COMMAND LINE CODE EDITOR PYTHON STATISTICS PROJECT O5 PROJECT O3 PROJECT O2
DATA SCIENCE CURRICULUM Before class even begins, students start an at-home pre-work phase. When they convene in class, students spend the first eight weeks doing iterative, project-centered skill acquisition.
IC05 Introduction on Networks &Visualization Nov. 2009. <[email protected]>
IC05 Introduction on Networks &Visualization Nov. 2009 Overview 1. Networks Introduction Networks across disciplines Properties Models 2. Visualization InfoVis Data exploration
Big Data Introduction, Importance and Current Perspective of Challenges
International Journal of Advances in Engineering Science and Technology 221 Available online at www.ijaestonline.com ISSN: 2319-1120 Big Data Introduction, Importance and Current Perspective of Challenges
North Highland Data and Analytics. Data Governance Considerations for Big Data Analytics
North Highland and Analytics Governance Considerations for Big Analytics Agenda Traditional BI/Analytics vs. Big Analytics Types of Requiring Governance Key Considerations Information Framework Organizational
Big Data. What is Big Data? Over the past years. Big Data. Big Data: Introduction and Applications
Big Data Big Data: Introduction and Applications August 20, 2015 HKU-HKJC ExCEL3 Seminar Michael Chau, Associate Professor School of Business, The University of Hong Kong Ample opportunities for business
Big Data and Transactional Databases Exploding Data Volume is Creating New Stresses on Traditional Transactional Databases
Big Data and Transactional Databases Exploding Data Volume is Creating New Stresses on Traditional Transactional Databases Introduction The world is awash in data and turning that data into actionable
