BIG DATA: CONVENTIONAL METHODS MEET UNCONVENTIONAL DATA
|
|
|
- Roy Nelson
- 10 years ago
- Views:
Transcription
1 BIG DATA: CONVENTIONAL METHODS MEET UNCONVENTIONAL DATA Harvard Medical School & Harvard School of Public Health October 14, / 7
2 THE SETTING Unprecedented advances in data acquisition technologies The omics technologies Imaging data Telecommunication data Social networking data Medical record data and registries Features of Big Data Number of variables (P) > number of people (N) Different data types & resolutions natural language processed, claims, laboratory Potential to grow Most focus on solutions to storing, indexing, querying, and accessing Big Data Less focus on statistical inference: turning data into knowledge 2 / 7
3 BIG ISSUE - 1 Selecting correct approach for confounding adjustment when re are many potential confounders Rarely know exact confounders required to satisfy no unmeasured confounding assumptions Rarely know identity of subgroups exhibiting heterogeneous treatment effects Level of uncertainty is: Substantially increased in big data settings Typically ignored in computations Require approaches to account for such uncertainties in making regulatory decisions 3 / 7
4 BIG ISSUE - 2 How much data pooling permitted for making safety and effectiveness decisions? All empirical studies pool information Survival analysis: event times are averaged or pooled across patients receiving device A and compared to pooled event times among device B patients Pooling across different units Pool information from different countries to learn about device effectiveness in a particular subpopulation Pool information from many different manufacturer devices to learn about a specific manufacturers device Require a clear understanding of oretical assumptions, an approach to quantify amount of pooling, and implications of pooling 4 / 7
5 BIG ISSUE - 2 (cont.) Pool information from many different manufacturer devices to learn about a specific manufacturers device i = 1, 2,, n j patients implanted with manufacturer j s device j = 1, 2,, J manufacturers of device y ji = mean outcome for patient i implanted with device j y ji N(α j, σ 2 y,j) and α j N(µ α, σ 2 α) For each manufacturer j, estimate of α j is ( No ) Pooling ˆα j = ω j µ α + (1 ω j )ȳ j 0 ω j = σ 2 y n j σ 2 α + σ2 y n j 1 ( ) Complete Pooling 5 / 7
6 BIG ISSUE - 3 The role of missing data in big data Risk of missing data is higher in big data Standard strategies for filling-in missing data have not been tested Multiple imputation Partially or completely missing variables Different missingness mechanisms Not collected in one registry vs patients too sick to have variable measured Mixture models for missingness mechanism Missing data strategies in big data settings require systematic study 6 / 7
7 OTHER BIG ISSUES New oretical underpinnings of asymptotic ory: Large p, small n: what happens when p goes to infinity faster than n? Large p, large n; what happens when p and n go to infinity at same rate? Dimensionality and sparsity issues - how to reduce dimensionality? Global sparsity: in genomics, expression levels for thousands of genes but only a handful are likely to be predictive of a specific phenotypic trait (LASSO methods) Local sparsity: partition of p-dimensional space such that, within each region, outcome depends upon a small number of p variables (regression trees) Mixture sparsity: data arises from several simple models (mixture models) How to measure strength of evidence? p-values are driven by sample size Bayes factors are a good solution 7 / 7
Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13
Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13 Overview Missingness and impact on statistical analysis Missing data assumptions/mechanisms Conventional
Index. Registry Report
2013.1-12 Registry Report 01 02 03 06 19 21 22 23 24 25 26 27 28 29 31 34 35 Index Registry Report 02 Registry Report Registry Report 03 04 Registry Report Registry Report 05 06 Registry Report Registry
Electronic health records to study population health: opportunities and challenges
Electronic health records to study population health: opportunities and challenges Caroline A. Thompson, PhD, MPH Assistant Professor of Epidemiology San Diego State University [email protected]
BIG DATA AND HIGH DIMENSIONAL DATA ANALYSIS
BIG DATA AND HIGH DIMENSIONAL DATA ANALYSIS B.L.S. Prakasa Rao CR RAO ADVANCED INSTITUTE OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE (AIMSCS) University of Hyderabad Campus GACHIBOWLI, HYDERABAD 500046
Sample Size Designs to Assess Controls
Sample Size Designs to Assess Controls B. Ricky Rambharat, PhD, PStat Lead Statistician Office of the Comptroller of the Currency U.S. Department of the Treasury Washington, DC FCSM Research Conference
Statistics Graduate Courses
Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
Gerard Mc Nulty Systems Optimisation Ltd [email protected]/0876697867 BA.,B.A.I.,C.Eng.,F.I.E.I
Gerard Mc Nulty Systems Optimisation Ltd [email protected]/0876697867 BA.,B.A.I.,C.Eng.,F.I.E.I Data is Important because it: Helps in Corporate Aims Basis of Business Decisions Engineering Decisions Energy
Problem of Missing Data
VASA Mission of VA Statisticians Association (VASA) Promote & disseminate statistical methodological research relevant to VA studies; Facilitate communication & collaboration among VA-affiliated statisticians;
Targeted Learning with Big Data
Targeted Learning with Big Data Mark van der Laan UC Berkeley Center for Philosophy and History of Science Revisiting the Foundations of Statistics in the Era of Big Data: Scaling Up to Meet the Challenge
False Discovery Rates
False Discovery Rates John D. Storey Princeton University, Princeton, USA January 2010 Multiple Hypothesis Testing In hypothesis testing, statistical significance is typically based on calculations involving
Fixed-Effect Versus Random-Effects Models
CHAPTER 13 Fixed-Effect Versus Random-Effects Models Introduction Definition of a summary effect Estimating the summary effect Extreme effect size in a large study or a small study Confidence interval
Workshop on Establishing a Central Resource of Data from Genome Sequencing Projects
Report on the Workshop on Establishing a Central Resource of Data from Genome Sequencing Projects Background and Goals of the Workshop June 5 6, 2012 The use of genome sequencing in human research is growing
A Basic Introduction to Missing Data
John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit non-response. In a survey, certain respondents may be unreachable or may refuse to participate. Item
Statistical Challenges with Big Data in Management Science
Statistical Challenges with Big Data in Management Science Arnab Kumar Laha Indian Institute of Management Ahmedabad Analytics vs Reporting Competitive Advantage Reporting Prescriptive Analytics (Decision
AVOIDING BIAS AND RANDOM ERROR IN DATA ANALYSIS
AVOIDING BIAS AND RANDOM ERROR IN DATA ANALYSIS Susan Ellenberg, Ph.D. Perelman School of Medicine University of Pennsylvania School of Medicine FDA Clinical Investigator Course White Oak, MD November
The PCORI Methodology Report. Appendix A: Methodology Standards
The Appendix A: Methodology Standards November 2013 4 INTRODUCTION This page intentionally left blank. APPENDIX A A-1 APPENDIX A: PCORI METHODOLOGY STANDARDS Cross-Cutting Standards for PCOR 1: Standards
Marketing Mix Modelling and Big Data P. M Cain
1) Introduction Marketing Mix Modelling and Big Data P. M Cain Big data is generally defined in terms of the volume and variety of structured and unstructured information. Whereas structured data is stored
Organizing Your Approach to a Data Analysis
Biost/Stat 578 B: Data Analysis Emerson, September 29, 2003 Handout #1 Organizing Your Approach to a Data Analysis The general theme should be to maximize thinking about the data analysis and to minimize
Childhood leukemia and EMF
Workshop on Sensitivity of Children to EMF Istanbul, Turkey June 2004 Childhood leukemia and EMF Leeka Kheifets Professor Incidence rate per 100,000 per year 9 8 7 6 5 4 3 2 1 0 Age-specific childhood
Dealing with Missing Data
Dealing with Missing Data Roch Giorgi email: [email protected] UMR 912 SESSTIM, Aix Marseille Université / INSERM / IRD, Marseille, France BioSTIC, APHM, Hôpital Timone, Marseille, France January
Challenges in Longitudinal Data Analysis: Baseline Adjustment, Missing Data, and Drop-out
Challenges in Longitudinal Data Analysis: Baseline Adjustment, Missing Data, and Drop-out Sandra Taylor, Ph.D. IDDRC BBRD Core 23 April 2014 Objectives Baseline Adjustment Introduce approaches Guidance
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will
Financial Time Series Analysis (FTSA) Lecture 1: Introduction
Financial Time Series Analysis (FTSA) Lecture 1: Introduction Brief History of Time Series Analysis Statistical analysis of time series data (Yule, 1927) v/s forecasting (even longer). Forecasting is often
Advances in Loss Data Analytics: What We Have Learned at ORX
Advances in Loss Data Analytics: What We Have Learned at ORX Federal Reserve Bank of Boston: New Challenges For Operational Risk Measurement and Management May 14, 2008 Regulatory and Management Context
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Employers costs for total benefits grew
Costs Benefit Costs Comparing benefit costs for full- and part-time workers Health insurance appears to be the only benefit representing a true quasi-fixed cost to employers, meaning that the cost per
U.S. Army Research, Development and Engineering Command. Cyber Security CRA Overview
U.S. Army Research, Development and Engineering Command Cyber Security CRA Overview Dr. Ananthram Swami, ST Network Science 18FEB 2014 Cyber Security Collaborative Research Alliance A Collaborative Venture
Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov
Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social
Data Mining. Nonlinear Classification
Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15
Towards running complex models on big data
Towards running complex models on big data Working with all the genomes in the world without changing the model (too much) Daniel Lawson Heilbronn Institute, University of Bristol 2013 1 / 17 Motivation
Personalized Predictive Medicine and Genomic Clinical Trials
Personalized Predictive Medicine and Genomic Clinical Trials Richard Simon, D.Sc. Chief, Biometric Research Branch National Cancer Institute http://brb.nci.nih.gov brb.nci.nih.gov Powerpoint presentations
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
CSC 342 Semester I: 1425-1426H (2004-2005 G)
CSC 342 Semester I: 1425-1426H (2004-2005 G) Software Engineering Systems Analysis: Requirements Structuring Context & DFDs. Instructor: Dr. Ghazy Assassa Software Engineering CSC 342/Dr. Ghazy Assassa
The primary goal of this thesis was to understand how the spatial dependence of
5 General discussion 5.1 Introduction The primary goal of this thesis was to understand how the spatial dependence of consumer attitudes can be modeled, what additional benefits the recovering of spatial
The Optimality of Naive Bayes
The Optimality of Naive Bayes Harry Zhang Faculty of Computer Science University of New Brunswick Fredericton, New Brunswick, Canada email: hzhang@unbca E3B 5A3 Abstract Naive Bayes is one of the most
Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.
Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are
PREDICTIVE ANALYTICS: PROVIDING NOVEL APPROACHES TO ENHANCE OUTCOMES RESEARCH LEVERAGING BIG AND COMPLEX DATA
PREDICTIVE ANALYTICS: PROVIDING NOVEL APPROACHES TO ENHANCE OUTCOMES RESEARCH LEVERAGING BIG AND COMPLEX DATA IMS Symposium at ISPOR at Montreal June 2 nd, 2014 Agenda Topic Presenter Time Introduction:
Challenges, Tools and Examples for Big Data Inference
Challenges, Tools and Examples for Big Data Inference Jean-François Plante, HEC Montréal Closing Conference: Statistical and Computational Analytics for Big Data June 12 th, 2015 What is Big Data? Dan
Missing data and net survival analysis Bernard Rachet
Workshop on Flexible Models for Longitudinal and Survival Data with Applications in Biostatistics Warwick, 27-29 July 2015 Missing data and net survival analysis Bernard Rachet General context Population-based,
Presenting data: how to convey information most effectively Centre of Research Excellence in Patient Safety 20 Feb 2015
Presenting data: how to convey information most effectively Centre of Research Excellence in Patient Safety 20 Feb 2015 Biomedical Informatics: helping visualization from molecules to population Dr. Guillermo
The Consequences of Missing Data in the ATLAS ACS 2-TIMI 51 Trial
The Consequences of Missing Data in the ATLAS ACS 2-TIMI 51 Trial In this white paper, we will explore the consequences of missing data in the ATLAS ACS 2-TIMI 51 Trial and consider if an alternative approach
DATA MINING IN FINANCE
DATA MINING IN FINANCE Advances in Relational and Hybrid Methods by BORIS KOVALERCHUK Central Washington University, USA and EVGENII VITYAEV Institute of Mathematics Russian Academy of Sciences, Russia
Euro-BioImaging European Research Infrastructure for Imaging Technologies in Biological and Biomedical Sciences
Euro-BioImaging European Research Infrastructure for Imaging Technologies in Biological and Biomedical Sciences WP11 Data Storage and Analysis Task 11.1 Coordination Deliverable 11.2 Community Needs of
A Proven Approach to Stress Testing Consumer Loan Portfolios
A Proven Approach to Stress Testing Consumer Loan Portfolios Interthinx, Inc. 2013. All rights reserved. Interthinx is a registered trademark of Verisk Analytics. No part of this publication may be reproduced,
Determining Measurement Uncertainty for Dimensional Measurements
Determining Measurement Uncertainty for Dimensional Measurements The purpose of any measurement activity is to determine or quantify the size, location or amount of an object, substance or physical parameter
Knowledge Discovery and Data Mining
Knowledge Discovery and Data Mining Unit # 11 Sajjad Haider Fall 2013 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right
Machine Learning Methods for Causal Effects. Susan Athey, Stanford University Guido Imbens, Stanford University
Machine Learning Methods for Causal Effects Susan Athey, Stanford University Guido Imbens, Stanford University Introduction Supervised Machine Learning v. Econometrics/Statistics Lit. on Causality Supervised
The Data Mining Process
Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data
Introduction to nonparametric regression: Least squares vs. Nearest neighbors
Introduction to nonparametric regression: Least squares vs. Nearest neighbors Patrick Breheny October 30 Patrick Breheny STA 621: Nonparametric Statistics 1/16 Introduction For the remainder of the course,
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework 4.65 You buy a hot stock for $1000. The stock either gains 30% or loses 25% each day, each with probability.
Penalized regression: Introduction
Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood
Optimal and Worst-Case Performance of Mastery Learning Assessment with Bayesian Knowledge Tracing
Optimal and Worst-Case Performance of Mastery Learning Assessment with Bayesian Knowledge Tracing Stephen E. Fancsali, Tristan Nixon, and Steven Ritter Carnegie Learning, Inc. 437 Grant Street, Suite 918
Logistic Regression (1/24/13)
STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used
Data deluge (and it s applications) Gianluigi Zanetti. Data deluge. (and its applications) Gianluigi Zanetti
Data deluge (and its applications) Prologue Data is becoming cheaper and cheaper to produce and store Driving mechanism is parallelism on sensors, storage, computing Data directly produced are complex
Principles of Systematic Review: Focus on Alcoholism Treatment
Principles of Systematic Review: Focus on Alcoholism Treatment Manit Srisurapanont, M.D. Professor of Psychiatry Department of Psychiatry, Faculty of Medicine, Chiang Mai University For Symposium 1A: Systematic
Bootstrapping Big Data
Bootstrapping Big Data Ariel Kleiner Ameet Talwalkar Purnamrita Sarkar Michael I. Jordan Computer Science Division University of California, Berkeley {akleiner, ameet, psarkar, jordan}@eecs.berkeley.edu
Big Data: a new era for Statistics
Big Data: a new era for Statistics Richard J. Samworth Abstract Richard Samworth (1996) is a Professor of Statistics in the University s Statistical Laboratory, and has been a Fellow of St John s since
Sensitivity Analysis in Multiple Imputation for Missing Data
Paper SAS270-2014 Sensitivity Analysis in Multiple Imputation for Missing Data Yang Yuan, SAS Institute Inc. ABSTRACT Multiple imputation, a popular strategy for dealing with missing values, usually assumes
Optimization applications in finance, securities, banking and insurance
IBM Software IBM ILOG Optimization and Analytical Decision Support Solutions White Paper Optimization applications in finance, securities, banking and insurance 2 Optimization applications in finance,
Guideline on missing data in confirmatory clinical trials
2 July 2010 EMA/CPMP/EWP/1776/99 Rev. 1 Committee for Medicinal Products for Human Use (CHMP) Guideline on missing data in confirmatory clinical trials Discussion in the Efficacy Working Party June 1999/
Chapter 8: Quantitative Sampling
Chapter 8: Quantitative Sampling I. Introduction to Sampling a. The primary goal of sampling is to get a representative sample, or a small collection of units or cases from a much larger collection or
Handling missing data in Stata a whirlwind tour
Handling missing data in Stata a whirlwind tour 2012 Italian Stata Users Group Meeting Jonathan Bartlett www.missingdata.org.uk 20th September 2012 1/55 Outline The problem of missing data and a principled
Stock Market Liquidity and the Business Cycle
Stock Market Liquidity and the Business Cycle Forthcoming, Journal of Finance Randi Næs a Johannes Skjeltorp b Bernt Arne Ødegaard b,c Jun 2010 a: Ministry of Trade and Industry b: Norges Bank c: University
Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal
Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether
Clinical Research Infrastructure
Clinical Research Infrastructure Enhancing UK s Clinical Research Capabilities & Technologies At least 150m to establish /develop cutting-edge technological infrastructure, UK wide. to bring into practice
M.Sc. Health Economics and Health Care Management
List of Courses M.Sc. Health Economics and Health Care Management METHODS... 2 QUANTITATIVE METHODS... 2 ADVANCED ECONOMETRICS... 3 MICROECONOMICS... 4 DECISION THEORY... 5 INTRODUCTION TO CSR: FUNDAMENTALS
EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.
EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER ANALYTICS LIFECYCLE Evaluate & Monitor Model Formulate Problem Data Preparation Deploy Model Data Exploration Validate Models
Qualitative and Quantitative Assessment of Uncertainty in Regulatory Decision Making. Charles F. Manski
Qualitative and Quantitative Assessment of Uncertainty in Regulatory Decision Making Charles F. Manski Department of Economics and Institute for Policy Research Northwestern University Legal analysis of
i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by
Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter
Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection
Directions in Statistical Methodology for Multivariable Predictive Modeling Frank E Harrell Jr University of Virginia Seattle WA 19May98 Overview of Modeling Process Model selection Regression shape Diagnostics
A Bayesian hierarchical surrogate outcome model for multiple sclerosis
A Bayesian hierarchical surrogate outcome model for multiple sclerosis 3 rd Annual ASA New Jersey Chapter / Bayer Statistics Workshop David Ohlssen (Novartis), Luca Pozzi and Heinz Schmidli (Novartis)
Big Data, Statistics, and the Internet
Big Data, Statistics, and the Internet Steven L. Scott April, 4 Steve Scott (Google) Big Data, Statistics, and the Internet April, 4 / 39 Summary Big data live on more than one machine. Computing takes
Statistical issues in the analysis of microarray data
Statistical issues in the analysis of microarray data Daniel Gerhard Institute of Biostatistics Leibniz University of Hannover ESNATS Summerschool, Zermatt D. Gerhard (LUH) Analysis of microarray data
Network Analysis. BCH 5101: Analysis of -Omics Data 1/34
Network Analysis BCH 5101: Analysis of -Omics Data 1/34 Network Analysis Graphs as a representation of networks Examples of genome-scale graphs Statistical properties of genome-scale graphs The search
Evaluating Current Practices in Shelf Life Estimation
Definition of Evaluating Current Practices in Estimation PQRI Stability Working Group Pat Forenzo Novartis James Schwenke Applied Research Consultants, LLC From ICH Q1E An appropriate approach to retest
Understanding Media Asset Management A Plain English Guide for Printing Communications Professionals
Understanding Media Asset Management A Plain English Guide for Printing Communications Professionals Interest in Media Asset Management is growing dramatically. A growing number of software and service
Regression Modeling Strategies
Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions
Establishing the Scope for The Business Case Structure to Evaluate Advanced Metering
Establishing the Scope for The Business Case Structure to Evaluate Advanced Metering What factors should be considered when determining whether to invest in an advanced metering system? How can a business
Case Study Call Centre Hypothesis Testing
is often thought of as an advanced Six Sigma tool but it is a very useful technique with many applications and in many cases it can be quite simple to use. Hypothesis tests are used to make comparisons
Statistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before
Section 6: Model Selection, Logistic Regression and more...
Section 6: Model Selection, Logistic Regression and more... Carlos M. Carvalho The University of Texas McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Model Building
Confirmation Bias as a Human Aspect in Software Engineering
Confirmation Bias as a Human Aspect in Software Engineering Gul Calikli, PhD Data Science Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University Why Human Aspects in Software
Big Data An Opportunity or a Distraction? Signal or Noise?
Big Data An Opportunity or a Distraction? Signal or Noise? Maya R. Said, Sc.D. SVP & Global Head, Oncology Policy & Market Access, Novartis 3rd International Systems Biomedicine Symposium Luxembourg, 28
Managing Portfolios of DSM Resources and Reducing Regulatory Risks: A Case Study of Nevada
Managing Portfolios of DSM Resources and Reducing Regulatory Risks: A Case Study of Nevada Hossein Haeri, Lauren Miller Gage, and Amy Green, Quantec, LLC Larry Holmes, Nevada Power Company/Sierra Pacific
17. SIMPLE LINEAR REGRESSION II
17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.
270107 - MD - Data Mining
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 015 70 - FIB - Barcelona School of Informatics 715 - EIO - Department of Statistics and Operations Research 73 - CS - Department of
Analysis and Design of Software Systems Practical Session 01. System Layering
Analysis and Design of Software Systems Practical Session 01 System Layering Outline Course Overview Course Objectives Computer Science vs. Software Engineering Layered Architectures Selected topics in
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
