Data Refinery with Big Data Aspects
|
|
|
- Noel Willis
- 10 years ago
- Views:
Transcription
1 International Journal of Information and Computation Technology. ISSN Volume 3, Number 7 (2013), pp International Research Publications House irphouse.com /ijict.htm Data Refinery with Big Data Aspects Rajan Kumar 1 and Sarika Gupta 2 1 Department of Information Technology, Dronacharya College of Engineering, Greater Noida U.P, India 2 Department of Information Technology, Dronacharya College of Engineering, Greater Noida U.P, India. Abstract Big data has become an extremely popular term, due to the well documentary explosion in the amount of data being stored and processed by today businesses. According to IDC [1] the amount of digital information produced in 2011 will be ten times that produced in 2006: 1,800 Exabyte s. The majority of this data will be unstructured complex data poorly suited to management by structured storage systems like relational databases. Unstructured data comes from many sources and takes many forms web logs, text files, sensor readings, user generated Content like product reviews or text messages, audio, video and still imagery and more. Big data is difficult to work with using most relational database management systems and desktop statistics and visualization packages, requiring instead "massively parallel software running on tens, hundreds, or even thousands of servers. Through our work, we examine the data refinery objects and application that mostly used to handle the big data aspects like Hadoop, MapReduce, cloud database, TeraData[2] and many other platform that try to analysis the best way to handle this problem. Keywords: Big Data, cloud architecture, Hadoop, MapReduce, TeraData. 1. Introduction Big data usually includes data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process the data within time. Another reason that big data is a hot topic in the market today and new technology that enables
2 656 Rajan Kumar & Sarika Gupta an organization to take advantage of the natural resources of big data. Big data itself is not new it has been here for a while and growing exponentially. What is new is the technology to process and analyze it. The purpose of big data technology is to cost effectively manage and analyze all of the available data. We can see the wide variety of sources of big data. It comes from our traditional systems Billing systems, ERP systems[3], CRM systems[4].it also comes from machine data from sensors, network switches. Moreover, it comes from humans website data, social media, etc. In business publications and IT trade journals, the buzz about big data challenges is nearly deafening. Rapidly growing volumes of data from transactional systems like enterprise resource planning (ERP) software and non-transactional sources such as web logs, customer call center records, and video images are everywhere. A tsunami of data, some experts call it. In a 2001 research report and related lectures, META Group defined data growth challenges and opportunities as being three-dimensional, i.e. increasing volume (amount of data), velocity (speed of data in and out), and variety (range of data types and sources). Now much of the industry, continue to use this "3Vs" model for describing big data. Figure 1: 3Vs model of Big Data integrity. 1.1Volume-The amount of data generated by companies and their customers, competitors, and partners continues to grow exponentially. According to industry analyst IDC, the digital universe created and replicated 1.8 trillion gigabytes in that is the equivalent of 57.5 billion 32GB Apple ipods. 1.2 Velocity-Data continues changing at an increasing rate of speed, making it difficult for companies to capture and analyze. For example, machine-generated data from sensors and web log data is being ingested in real-time by many applications. Without real-time analytics to decipher these dynamic data streams, companies cannot make sense of the information in time to take meaningful action. 1.3 Variety-It is no longer enough to collect just transactional data such as sales, inventory details, or procurement information. Analysts are increasingly interested in new data types, such as sentiments expressed in product reviews, unstructured text
3 Data Refinery with Big Data Aspects 657 from call records and service reports, online behavior such as click streams, images and videos, and geospatial and temporal details. These data types add richness that supports more analyses that are detailed. Moreover they also analysis about the complexity 1.4 Complexity-With more details and sources, the data is more complex and difficult to analyze. In the past, banks used just transactional data to predict the probability of a customer closing an account. Now, these companies want to understand the last mile of the customer s decision process. By gaining visibility into common consumer behavior patterns across the web site, social networks, call centers, and branches, banks can address issues affecting customer loyalty before consumers decide to defect. Analyzing and detecting patterns on the fly across and all customer records is time-consuming and costly. Replicating that effort over time can be even more challenging. Figure 1.2: Increasing size of data with variety velocity and complexity. 2. Management of Big Data Aspects Every major sector of industry and organization are hit by their own data that need to manage it, some of them developed their own technique hand and other takes help from data handler tools. These reliable technique and tools may be used different kind of handler but they have to pass from common problems. Dealing with big data required two major things: 2.1 Inexpensive, reliable storage 2.2 New tool for analyzing the structure the unstructured data
4 658 Rajan Kumar & Sarika Gupta 2.1 Reliable Storage: HDFS Hadoop includes a fault tolerant storage system called the Hadoop Distributed File System, or HDFS. HDFS is able to store huge amounts of information, scale up incrementally and survive the failure of significant parts of the storage Infrastructure without losing data. Hadoop creates clusters of machines and coordinates work among them. Clusters can be built with inexpensive computers. If one fails, Hadoop continues to operate the cluster without losing data or interrupting work, by shifting work to the remaining machines in the cluster. HDFS manages storage on the cluster by breaking incoming files into pieces, called blocks, and storing each of the blocks redundantly across the pool of servers. In the common case, HDFS stores three complete copies of each file by copying each piece to three different servers. HDFS has several useful features. In the very simple example shown, any two servers can fail, and the entire file will still be available. HDFS notices when a block or a node is lost, and creates a new copy of missing data from the replicas it. 2.2 New tool for analyzing the structure the unstructured data is most usable in today s business and IT operations because of some important and reliable factor that allowing users to: Capture and refine data from a wide variety of sources Perform necessary multi-structured data preprocessing Develop rapid analytics Process embedded analytics, analyzing both relational and non-relational data Produce semi-structured data as output, often with metadata and heuristic analysis Solve new analytical workloads with reduced time to insight Use massively parallel storage in Hadoop to efficiently store and retain data 2.3 HADOOP Big Idea: Many popular tools for enterprise data management relational database systems are designed to make simple queries run quickly. They use techniques like indexing to examine just a small portion of all the available data in order to answer a question. Hadoop is a different sort of tool. Hadoop is aimed at problems that require examination of all the available data. For example, text analysis and image processing generally require that every single record be read, and often interpreted in the context of similar records. Hadoop uses a technique called MapReduce to carry out this exhaustive analysis quickly. In the previous section, we saw that HDFS distributes blocks from a single file among a large number of servers for reliability. Hadoop takes advantage of this data distribution by pushing the work involved in an analysis out to many different servers. Each of the servers runs the analysis on its own block from the file. Results are collated and digested into a single result after each piece has been analyzed. 2.4 MapReduce supports distributed processing of the common map and reduction operations. In the map step, a master node divides a query or request into smaller
5 Data Refinery with Big Data Aspects 659 problems. It distributes each query to a set of map tasks scheduled on a worker node within a cluster of execution nodes. The output of the map steps is sent to nodes that combine or reduce the output and create a response to the query. Because both the map and reduce functions can be distributed to clusters of commodity hardware and performed in parallel, MapReduce techniques are appropriate for larger datasets. Many people think big data is about Hadoop technology. It is and it is not. It is about a lot more than Hadoop. One of the key requirements is to understand and navigate federated sources of big data to discover data in place. New technology has emerged that discovers, indexes, searches, and navigates diverse sources of big data. Of course, big data is also about Hadoop. Hadoop is a collection of open source capabilities. Two of the most prominent ones are Hadoop File System for storing a variety of information, and MapReduce a parallel processing engine. Data warehouses also manage big data- the volume of structured data is growing quickly. The ability to run deep analytic queries on huge volumes of structured data is a big data problem. It requires massive parallel processing data warehouses and purposebuilt appliances for deep analytics. Big data is not just at rest it is also in motion. Streaming data represents an entirely different big data problem the ability to quickly analyze and act upon data while it is still moving. This new technology opens a world of possibilities from processing volumes of data that were just not practical to store, to detecting insight and responding quickly. As much of the worlds, big data is unstructured and in textual content, text analytics is a critical component to analyze and derive meaning from text. Integration and governance technology establishes the veracity of big data, and is critical in determining whether information is trusted or not. 3. Cloud Technology in Big Data A recent survey conducted by GigaSpaces found that 80 percent of those IT executives who think big data processing is important are considering moving their big data analytics to one or more cloud delivery models. Cloud delivery models offer exceptional flexibility, enabling IT to evaluate the best approach to each business user s request. For example, organizations that already support an internal private cloud environment can add big data analytics to their in-house offerings, use a cloud services provider, or build a hybrid cloud that protects certain sensitive data in a private cloud, but takes advantage of valuable external data sources and applications provided in public clouds. Using cloud infrastructure to analyze big data makes sense because Investments in big data analysis can be significant and drive a need for efficient, cost-effective infrastructure. Private clouds can offer a more efficient, costeffective model to implement analysis of big data in-house, while augmenting internal resources with public cloud services. This hybrid cloud option enables companies to use on-demand storage space and computing power via public cloud services for certain analytics initiatives (for example, short-term projects), and provide added capacity and scale as needed. Big data may mix internal and external sources. While enterprises often keep their most sensitive data in-house, huge volumes of big data
6 660 Rajan Kumar & Sarika Gupta (owned by the organization or generated by third-party and public providers) may be located externally some of it already in a cloud environment. Data services are needed to extract value from big data. Depending on requirements and the usage scenario, the best use of your IT budget may be to focus on analytics as a service supported by your internal private cloud, a public cloud, or a hybrid model. 4. Security Aggregating data by nature increases the risk that a cybercriminal or insider (malicious or otherwise) can compromise sensitive information. Therefore, organizations should strictly limit the number of people who can access repositories like Hadoop. Big data environments should include basic security and controls as a way to defend and protect data. First, access control ensures that the right user gets access to the right data at the right time. Second, continuously monitoring user and application access is highly important especially as individuals changes roles or leave the organization. Monitoring data access and usage patterns can alert security teams to potential abuse or security policies violations like an administrator altering log files. Typically, internal attackers or cybercriminals will leave clues or artifacts about their breach attempts that can be detected through careful monitoring. Monitoring helps ensure security policies are enforced and effective. Organizations can secure data using data abstraction techniques such as encryption or masking. Generally, cybercriminals cannot easily decrypt or recover data after it has been encrypted or masked. The unfortunate reality is that organizations need to adopt a zero trust policy to ensure complete protection. 5. Conclusion Organizations do not have to feel overwhelmed when it comes to securing big data environments. The same security fundamentals for securing databases, data warehouses and file share systems can be applied to securing Hadoop implementations these solutions scale to protect both traditional data management architectures and big data environments and protect against a complex threat landscape including insider fraud, unauthorized changes and external attacks while remaining focused on business goals and automating compliance. References [1] An Updated Forecast of Worldwide Information Growth Through 2011, IDC, March [2] Hortonworks TeraData(Best decision possible)
7 Data Refinery with Big Data Aspects 661 Tim Kraska Published by the IEEE Computer Society /13/$ IEEE IBM Big Data Platform Overview Martin Pavlík [3] ERP Enterprise Resource Planning [4] Customer_relationship_managementen.wikipedia.org/wiki/Customer_relation ship_managemen Big Data: Issues and Challenges Moving Forward [5] th Hawaii International Conference on System Sciences /12 $ IEEE [6] Rob Peglar Introduction Analytics BigData Hadoop [7] BIG DATA ANALYSIS [8] Big Data Processing in Cloud Computing Environments 2012 International Symposium on Pervasive Systems, Algorithms and Networks /12 $ IEEE.
8 662 Rajan Kumar & Sarika Gupta
5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014
5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for
Manifest for Big Data Pig, Hive & Jaql
Manifest for Big Data Pig, Hive & Jaql Ajay Chotrani, Priyanka Punjabi, Prachi Ratnani, Rupali Hande Final Year Student, Dept. of Computer Engineering, V.E.S.I.T, Mumbai, India Faculty, Computer Engineering,
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges
Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges Prerita Gupta Research Scholar, DAV College, Chandigarh Dr. Harmunish Taneja Department of Computer Science and
Datenverwaltung im Wandel - Building an Enterprise Data Hub with
Datenverwaltung im Wandel - Building an Enterprise Data Hub with Cloudera Bernard Doering Regional Director, Central EMEA, Cloudera Cloudera Your Hadoop Experts Founded 2008, by former employees of Employees
Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop
Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop Kanchan A. Khedikar Department of Computer Science & Engineering Walchand Institute of Technoloy, Solapur, Maharashtra,
The Future of Data Management
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class
Are You Ready for Big Data?
Are You Ready for Big Data? Jim Gallo National Director, Business Analytics February 11, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?
Hortonworks & SAS. Analytics everywhere. Page 1. Hortonworks Inc. 2011 2014. All Rights Reserved
Hortonworks & SAS Analytics everywhere. Page 1 A change in focus. A shift in Advertising From mass branding A shift in Financial Services From Educated Investing A shift in Healthcare From mass treatment
Big Data on Cloud Computing- Security Issues
Big Data on Cloud Computing- Security Issues K Subashini, K Srivaishnavi UG Student, Department of CSE, University College of Engineering, Kanchipuram, Tamilnadu, India ABSTRACT: Cloud computing is now
End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ
End to End Solution to Accelerate Data Warehouse Optimization Franco Flore Alliance Sales Director - APJ Big Data Is Driving Key Business Initiatives Increase profitability, innovation, customer satisfaction,
Using Tableau Software with Hortonworks Data Platform
Using Tableau Software with Hortonworks Data Platform September 2013 2013 Hortonworks Inc. http:// Modern businesses need to manage vast amounts of data, and in many cases they have accumulated this data
Are You Ready for Big Data?
Are You Ready for Big Data? Jim Gallo National Director, Business Analytics April 10, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2
Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue
Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies
Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com Image
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
IBM Software Top tips for securing big data environments
IBM Software Top tips for securing big data environments Why big data doesn t have to mean big security challenges 2 Top Comprehensive tips for securing data big protection data environments for physical,
Big Data. White Paper. Big Data Executive Overview WP-BD-10312014-01. Jafar Shunnar & Dan Raver. Page 1 Last Updated 11-10-2014
White Paper Big Data Executive Overview WP-BD-10312014-01 By Jafar Shunnar & Dan Raver Page 1 Last Updated 11-10-2014 Table of Contents Section 01 Big Data Facts Page 3-4 Section 02 What is Big Data? Page
A New Era Of Analytic
Penang egovernment Seminar 2014 A New Era Of Analytic Megat Anuar Idris Head, Project Delivery, Business Analytics & Big Data Agenda Overview of Big Data Case Studies on Big Data Big Data Technology Readiness
Harnessing the Value of Big Data Analytics
Big Data Analytics Harnessing the Value of Big Data Analytics How to Gain Business Insight Using MapReduce and Apache Hadoop with SQL-Based Analytics By: Shaun Connolly, VP, Corporate Strategy, Hortonworks
Apache Hadoop: The Big Data Refinery
Architecting the Future of Big Data Whitepaper Apache Hadoop: The Big Data Refinery Introduction Big data has become an extremely popular term, due to the well-documented explosion in the amount of data
Big Data: What You Should Know. Mark Child Research Manager - Software IDC CEMA
Big Data: What You Should Know Mark Child Research Manager - Software IDC CEMA Agenda Market Dynamics Defining Big Data Technology Trends Information and Intelligence Market Realities Future Applications
Optimized for the Industrial Internet: GE s Industrial Data Lake Platform
Optimized for the Industrial Internet: GE s Industrial Lake Platform Agenda The Opportunity The Solution The Challenges The Results Solutions for Industrial Internet, deep domain expertise 2 GESoftware.com
BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata
BIG DATA: FROM HYPE TO REALITY Leandro Ruiz Presales Partner for C&LA Teradata Evolution in The Use of Information Action s ACTIVATING MAKE it happen! Insights OPERATIONALIZING WHAT IS happening now? PREDICTING
BIG DATA CHALLENGES AND PERSPECTIVES
BIG DATA CHALLENGES AND PERSPECTIVES Meenakshi Sharma 1, Keshav Kishore 2 1 Student of Master of Technology, 2 Head of Department, Department of Computer Science and Engineering, A P Goyal Shimla University,
The Next Wave of Data Management. Is Big Data The New Normal?
The Next Wave of Data Management Is Big Data The New Normal? Table of Contents Introduction 3 Separating Reality and Hype 3 Why Are Firms Making IT Investments In Big Data? 4 Trends In Data Management
DATAOPT SOLUTIONS. What Is Big Data?
DATAOPT SOLUTIONS What Is Big Data? WHAT IS BIG DATA? It s more than just large amounts of data, though that s definitely one component. The more interesting dimension is about the types of data. So Big
Ganzheitliches Datenmanagement
Ganzheitliches Datenmanagement für Hadoop Michael Kohs, Senior Sales Consultant @mikchaos The Problem with Big Data Projects in 2016 Relational, Mainframe Documents and Emails Data Modeler Data Scientist
Testing Big data is one of the biggest
Infosys Labs Briefings VOL 11 NO 1 2013 Big Data: Testing Approach to Overcome Quality Challenges By Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar Gajja Validate data quality by employing
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A SURVEY ON BIG DATA ISSUES AMRINDER KAUR Assistant Professor, Department of Computer
HP Vertica at MIT Sloan Sports Analytics Conference March 1, 2013 Will Cairns, Senior Data Scientist, HP Vertica
HP Vertica at MIT Sloan Sports Analytics Conference March 1, 2013 Will Cairns, Senior Data Scientist, HP Vertica So What s the market s definition of Big Data? Datasets whose volume, velocity, variety
How the oil and gas industry can gain value from Big Data?
How the oil and gas industry can gain value from Big Data? Arild Kristensen Nordic Sales Manager, Big Data Analytics [email protected], tlf. +4790532591 April 25, 2013 2013 IBM Corporation Dilbert
www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage
www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage If every image made and every word written from the earliest stirring of civilization
locuz.com Big Data Services
locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.
Keywords Big Data, NoSQL, Relational Databases, Decision Making using Big Data, Hadoop
Volume 4, Issue 1, January 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Transitioning
Big Data. Fast Forward. Putting data to productive use
Big Data Putting data to productive use Fast Forward What is big data, and why should you care? Get familiar with big data terminology, technologies, and techniques. Getting started with big data to realize
Ramesh Bhashyam Teradata Fellow Teradata Corporation [email protected]
Challenges of Handling Big Data Ramesh Bhashyam Teradata Fellow Teradata Corporation [email protected] Trend Too much information is a storage issue, certainly, but too much information is also
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Wayne W. Eckerson Director of Research, TechTarget Founder, BI Leadership Forum Business Analytics
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Siva Ravada Senior Director of Development Oracle Spatial and MapViewer 2 Evolving Technology Platforms
Log Mining Based on Hadoop s Map and Reduce Technique
Log Mining Based on Hadoop s Map and Reduce Technique ABSTRACT: Anuja Pandit Department of Computer Science, [email protected] Amruta Deshpande Department of Computer Science, [email protected]
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
VIEWPOINT. High Performance Analytics. Industry Context and Trends
VIEWPOINT High Performance Analytics Industry Context and Trends In the digital age of social media and connected devices, enterprises have a plethora of data that they can mine, to discover hidden correlations
A Next-Generation Analytics Ecosystem for Big Data. Colin White, BI Research September 2012 Sponsored by ParAccel
A Next-Generation Analytics Ecosystem for Big Data Colin White, BI Research September 2012 Sponsored by ParAccel BIG DATA IS BIG NEWS The value of big data lies in the business analytics that can be generated
The Rise of Industrial Big Data
GE Intelligent Platforms The Rise of Industrial Big Data Leveraging large time-series data sets to drive innovation, competitiveness and growth capitalizing on the big data opportunity The Rise of Industrial
Apache Hadoop Patterns of Use
Community Driven Apache Hadoop Apache Hadoop Patterns of Use April 2013 2013 Hortonworks Inc. http://www.hortonworks.com Big Data: Apache Hadoop Use Distilled There certainly is no shortage of hype when
Journal of Environmental Science, Computer Science and Engineering & Technology
JECET; March 2015-May 2015; Sec. B; Vol.4.No.2, 202-209. E-ISSN: 2278 179X Journal of Environmental Science, Computer Science and Engineering & Technology An International Peer Review E-3 Journal of Sciences
BIG DATA & ANALYTICS. Transforming the business and driving revenue through big data and analytics
BIG DATA & ANALYTICS Transforming the business and driving revenue through big data and analytics Collection, storage and extraction of business value from data generated from a variety of sources are
Hadoop Big Data for Processing Data and Performing Workload
Hadoop Big Data for Processing Data and Performing Workload Girish T B 1, Shadik Mohammed Ghouse 2, Dr. B. R. Prasad Babu 3 1 M Tech Student, 2 Assosiate professor, 3 Professor & Head (PG), of Computer
Beyond Web Application Log Analysis using Apache TM Hadoop. A Whitepaper by Orzota, Inc.
Beyond Web Application Log Analysis using Apache TM Hadoop A Whitepaper by Orzota, Inc. 1 Web Applications As more and more software moves to a Software as a Service (SaaS) model, the web application has
Big Data and Transactional Databases Exploding Data Volume is Creating New Stresses on Traditional Transactional Databases
Big Data and Transactional Databases Exploding Data Volume is Creating New Stresses on Traditional Transactional Databases Introduction The world is awash in data and turning that data into actionable
Spatio-Temporal Networks:
Spatio-Temporal Networks: Analyzing Change Across Time and Place WHITE PAPER By: Jeremy Peters, Principal Consultant, Digital Commerce Professional Services, Pitney Bowes ABSTRACT ORGANIZATIONS ARE GENERATING
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK REVIEW ON BIG DATA SECURITY IN CLOUD COMPUTING MISS. ANKITA S. AMBADKAR 1, PROF.
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Luncheon Webinar Series May 13, 2013
Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration
Improving Data Processing Speed in Big Data Analytics Using. HDFS Method
Improving Data Processing Speed in Big Data Analytics Using HDFS Method M.R.Sundarakumar Assistant Professor, Department Of Computer Science and Engineering, R.V College of Engineering, Bangalore, India
Exploiting Data at Rest and Data in Motion with a Big Data Platform
Exploiting Data at Rest and Data in Motion with a Big Data Platform Sarah Brader, [email protected] What is Big Data? Where does it come from? 12+ TBs of tweet data every day 30 billion RFID tags
Big Data a threat or a chance?
Big Data a threat or a chance? Helwig Hauser University of Bergen, Dept. of Informatics Big Data What is Big Data? well, lots of data, right? we come back to this in a moment. certainly, a buzz-word but
IBM System x reference architecture solutions for big data
IBM System x reference architecture solutions for big data Easy-to-implement hardware, software and services for analyzing data at rest and data in motion Highlights Accelerates time-to-value with scalable,
Massive Cloud Auditing using Data Mining on Hadoop
Massive Cloud Auditing using Data Mining on Hadoop Prof. Sachin Shetty CyberBAT Team, AFRL/RIGD AFRL VFRP Tennessee State University Outline Massive Cloud Auditing Traffic Characterization Distributed
Big Data Challenges. Alexandru Adrian TOLE Romanian American University, Bucharest, Romania [email protected]
Database Systems Journal vol. IV, no. 3/2013 31 Big Data Challenges Alexandru Adrian TOLE Romanian American University, Bucharest, Romania [email protected] The amount of data that is traveling across
Big Data Challenges and Success Factors. Deloitte Analytics Your data, inside out
Big Data Challenges and Success Factors Deloitte Analytics Your data, inside out Big Data refers to the set of problems and subsequent technologies developed to solve them that are hard or expensive to
Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies
Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data: Global Digital Data Growth Growing leaps and bounds by 40+% Year over Year! 2009 =.8 Zetabytes =.08
Big Data: Study in Structured and Unstructured Data
Big Data: Study in Structured and Unstructured Data Motashim Rasool 1, Wasim Khan 2 [email protected], [email protected] Abstract With the overlay of digital world, Information is available
The Future of Business Analytics is Now! 2013 IBM Corporation
The Future of Business Analytics is Now! 1 The pressures on organizations are at a point where analytics has evolved from a business initiative to a BUSINESS IMPERATIVE More organization are using analytics
BIG DATA: BIG CHALLENGE FOR SOFTWARE TESTERS
BIG DATA: BIG CHALLENGE FOR SOFTWARE TESTERS Megha Joshi Assistant Professor, ASM s Institute of Computer Studies, Pune, India Abstract: Industry is struggling to handle voluminous, complex, unstructured
NextGen Infrastructure for Big DATA Analytics.
NextGen Infrastructure for Big DATA Analytics. So What is Big Data? Data that exceeds the processing capacity of conven4onal database systems. The data is too big, moves too fast, or doesn t fit the structures
Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence
Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.
Big Data at Cloud Scale
Big Data at Cloud Scale Pushing the limits of flexible & powerful analytics Copyright 2015 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For
Detecting Anomalous Behavior with the Business Data Lake. Reference Architecture and Enterprise Approaches.
Detecting Anomalous Behavior with the Business Data Lake Reference Architecture and Enterprise Approaches. 2 Detecting Anomalous Behavior with the Business Data Lake Pivotal the way we see it Reference
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
Big Data Analytics OverOnline Transactional Data Set
Big Data Analytics OverOnline Transactional Data Set Rohit Vaswani 1, Rahul Vaswani 2, Manish Shahani 3, Lifna Jos(Mentor) 4 1 B.E. Computer Engg. VES Institute of Technology, Mumbai -400074, Maharashtra,
Microsoft Big Data. Solution Brief
Microsoft Big Data Solution Brief Contents Introduction... 2 The Microsoft Big Data Solution... 3 Key Benefits... 3 Immersive Insight, Wherever You Are... 3 Connecting with the World s Data... 3 Any Data,
Microsoft Big Data Solutions. Anar Taghiyev P-TSP E-mail: [email protected];
Microsoft Big Data Solutions Anar Taghiyev P-TSP E-mail: [email protected]; Why/What is Big Data and Why Microsoft? Options of storage and big data processing in Microsoft Azure. Real Impact of Big
Modern Data Architecture for Predictive Analytics
Modern Data Architecture for Predictive Analytics David Smith VP Marketing and Community - Revolution Analytics John Kreisa VP Strategic Marketing- Hortonworks Hortonworks Inc. 2013 Page 1 Your Presenters
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON BIG DATA MANAGEMENT AND ITS SECURITY PRUTHVIKA S. KADU 1, DR. H. R.
Big Data Analytics: Today's Gold Rush November 20, 2013
Copyright 2013 Vivit Worldwide Big Data Analytics: Today's Gold Rush November 20, 2013 Brought to you by Copyright 2013 Vivit Worldwide Hosted by Bernard Szymczak Vivit Leader Ohio Chapter TQA SIG Copyright
Traditional BI vs. Business Data Lake A comparison
Traditional BI vs. Business Data Lake A comparison The need for new thinking around data storage and analysis Traditional Business Intelligence (BI) systems provide various levels and kinds of analyses
QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM
QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QlikView Technical Case Study Series Big Data June 2012 qlikview.com Introduction This QlikView technical case study focuses on the QlikView deployment
While a number of technologies fall under the Big Data label, Hadoop is the Big Data mascot.
While a number of technologies fall under the Big Data label, Hadoop is the Big Data mascot. Remember it stands front and center in the discussion of how to implement a big data strategy. Early adopters
NoSQL for SQL Professionals William McKnight
NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to
HDP Hadoop From concept to deployment.
HDP Hadoop From concept to deployment. Ankur Gupta Senior Solutions Engineer Rackspace: Page 41 27 th Jan 2015 Where are you in your Hadoop Journey? A. Researching our options B. Currently evaluating some
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK OVERVIEW ON BIG DATA SYSTEMATIC TOOLS MR. SACHIN D. CHAVHAN 1, PROF. S. A. BHURA
A Novel Cloud Based Elastic Framework for Big Data Preprocessing
School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview
Big Data on Microsoft Platform
Big Data on Microsoft Platform Prepared by GJ Srinivas Corporate TEG - Microsoft Page 1 Contents 1. What is Big Data?...3 2. Characteristics of Big Data...3 3. Enter Hadoop...3 4. Microsoft Big Data Solutions...4
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager Big Data: The Datafication Of Everything Thoughts Devices Processes Thoughts Things Processes Run the Business Organize data to do something
Keywords Big Data; OODBMS; RDBMS; hadoop; EDM; learning analytics, data abundance.
Volume 4, Issue 11, November 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analytics
Customer Cloud Architecture for Big Data and Analytics, Version 1.1
Customer Cloud Architecture for Big Data and Analytics, Version 1.1 Executive Overview Using analytics reveals patterns, trends and associations in data that help an organization understand the behavior
Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics
Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics Dr. Liangxiu Han Future Networks and Distributed Systems Group (FUNDS) School of Computing, Mathematics and Digital Technology,
How To Use Big Data For Business
Big Data Maturity - The Photo and The Movie Mike Ferguson Managing Director, Intelligent Business Strategies BA4ALL Big Data & Analytics Insight Conference Stockholm, May 2015 About Mike Ferguson Mike
Hadoop s Entry into the Traditional Analytical DBMS Market. Daniel Abadi Yale University August 3 rd, 2010
Hadoop s Entry into the Traditional Analytical DBMS Market Daniel Abadi Yale University August 3 rd, 2010 Data, Data, Everywhere Data explosion Web 2.0 more user data More devices that sense data More
A Database Hadoop Hybrid Approach of Big Data
A Database Hadoop Hybrid Approach of Big Data Rupali Y. Behare #1, Prof. S.S.Dandge #2 M.E. (Student), Department of CSE, Department, PRMIT&R, Badnera, SGB Amravati University, India 1. Assistant Professor,
Customer Cloud Architecture for Big Data and Analytics
Customer Cloud Architecture for Big Data and Analytics Executive Overview Using analytics reveals patterns, trends and associations in data that help an organization understand the behavior of the people
Transforming the Telecoms Business using Big Data and Analytics
Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe
