Size: px
Start display at page:

Download ""

Transcription

1 StaticFrequencyAssignmentinCellular LataNarayanan Networks August,998 SunilM.Shendey tice.inthestaticfrequencyassignmentproblem,eachvertexofthegraphisa Acellularnetworkisgenerallymodeledasasubgraphofthetriangularlat- Abstract distinctfrequenciespercall.theedgesofthegraphmodelinterferenceconstraintsforfrequenciesassignedtoneighboringstations.thestaticfrequency representsthenumberofcallsthatmustbeservedatthevertexbyassigning basestationinthenetwork,andhasassociatedwithitanintegerweightthat anyouterplanargraph.fortheproblemofmulticoloringanarbitraryconnected describeanecientalgorithmtooptimallymulticoloranyweightedevenorodd lengthcyclerepresentingacellularnetwork.thisresultisfurtherextendedto assignmentproblemcanbeabstractedasagraphmulticoloringproblem.we whichguaranteesthatnomorethan4=3timestheminimumnumberofrequired subgraphofthetriangularlattice,wedemonstrateanapproximationalgorithm weightsatasmallneighborhood. adistributedmanner,whereeachstationneedstohaveknowledgeonlyofthe colorsareused.further,weshowthatthisalgorithmcanbeimplementedin DepartmentofComputerScience,ConcordiaUniversity,Montreal,Quebec,Canada,H3GM8. rithms,graphmulticoloring,distributedalgorithms. Keywords:Frequencyassignment,cellularnetworks,approximationalgo- ydepartmentofcomputerscience,rutgersuniversity,camden,nj0802,usa.

2 Cellulardataandcommunicationnetworkscanbemodeledasgraphswitheachver- texrepresentingabasestation(sometimescalledacell)inthenetwork.cellscan Introduction anygiventime,acertainnumberofactiveconnections(orcallsincellularnetwork terminology)areservicedbytheirnearestbasestation.thisserviceconsistsmainly communicatewiththeirneighborsinthegraphviadirectionalradiotransceivers.at interferencebetweentwodistinctcallsinthenetwork.however,cellularnetworksuse ofassigningafrequencytoeachclientcallinamannerthatminimizesoravoidsradio staticfrequencyassignmentproblem,therefore,consistsofdesigninganinterferencefreefrequencyallocationprotocolforanetworkwherethenumberofcallspercelliitedavailablebandwidthiscriticaltotheviabilityandeciencyofthenetwork.the axedspectrumofradiofrequenciesandtheecientsharedutilizationofthelim- nitetriangulargridembeddedintheplane.verticesrepresentingcellsareplaced knownapriori.thisformsthemotivationfortheproblemsstudiedinthispaper. attheapexesofsimilartriangles,andeachvertexhasatmostsixotherneighbors Inparticular,cellularnetworksareusuallymodeledasniteportionsoftheinsurroundingitinthegrid.Thereasonforadoptingthisparticulargeometrystems fromthefactthatcellsareuniformlydistributedinthegeographicareaofthenetwork,andanindividualcellgenerallyhassixdirectionaltransceivers.hence,the asaregularhexagon.thetriangulartilingrepresentingthenetworkissimplythe planardualoftheresultingvoronoidiagram.weshallrefertotheresultinggraphs Voronoiregionaroundacell(orequivalently,thatcell'scallingarea)canbeidealized ashexagongraphs. hasanassociatedintegerweight,w(v)0.aw-coloring(ormulticoloring)ofg abstractedasfollows.letg=(v;e)denoteanhexagongraph.eachvertexv2v Thefrequencyassignmentproblemincorporatinginterferenceconstraintscanbe w(v)distinctcolorswherebyforeveryedge(u;v)2e,thesetofcolorsassignedto theendpointsuandvaredisjoint.inparticular,weareinterestedinaminimum isanassignmentofsetsofcolorstotheverticessuchthateachvertexvisassigned multicoloringoraw-coloringofgthatusestheleastnumberofcolors. thecellularnetworkliterature.however,inpractice,cellularsystemstendtobemorecomplicated functions;seeforexampleborndorferet.al.[].nevertheless,thehexagongraphmodelcontinues andtherehavebeenrecentstudiesthatattempttomodelmoregeneralinterferencepatternsandcost Wenoteherethatthisisthemostcommonlyusedmodelforfrequencyassignmentproblemsin tobeofsignicancefromthehistoricalstandpointandasanabstractionthatissucientlycloseto realitytoprovideusefulinsights. 2

3 distinctfrequencyanditisassumedthattwocallsmayusethesamefrequencyifand ausefulabstractionoftheessentialinterferenceconstraints:eachcolorrepresentsa Inthecontextoffrequencyassignment,amulticoloringasdenedabove,provides oftheradiospectrum,andfrequencyreuseiscontrolledbyasequenceofnon-negative inpractice,theavailablecellularfrequencyspectrumisacontiguouslinearsubinterval onlyiftheyoriginateindistinctcellsthatarenotneighbors.itshouldbenotedthat incellsthatareadistanceiapartintheunderlyinggraphmustbeassignedfrequencies integers,c0c:::,withc0,calleddistancereuseconstraints.twodistinctcalls thesimplestconstraints,viz.whenc0=c=andci=0,i2.underthis andversionsofthefrequencyassignmentproblem.weformulateourproblemunder thatdierbyciinthefrequencyspectrum.hale[3]discussesmanygeneralizations formulation,theproblemreducestobeingabletocomputeaminimummulticoloring a(vertex)weightedgraphthatisanite,inducedsubgraphoftheinnitetriangular toagivenhexagongraph. grid.thus,thegraphisplanar,andeveryvertexv2vhasdegreeatmostsix Inthesequel,weassumethatG=(V;E;w)denotesahexagongraph,i.e.itis andanassociatedintegerweight,w(v)0.theweightedchromaticnumberofg, ofdetermining(g)isnon-trivial.infact,ithasbeenestablishedonlyrecentlythat forgraphswitharegularstructuresuchasthoseconsideredinthepaper,theproblem denoted(g),istheminimumnumberofcolorsrequiredinaw-coloringofg.even interesttostudyapproximationalgorithmsfortheproblem. apolynomialtimealgorithmforcomputing(g)canbedevised.naturally,itisof thecorrespondingdecisionproblemisnp-complete[7],andhenceitisunlikelythat atverticesinanymaximalcliqueinthegraphisatriviallowerboundon(g).note atanysetofmutuallyadjacentvertices.thusthemaximumoverthesumofweights Itiseasytoseethat(G)mustbegreaterthanthetotalnumberofcolorsrequired upperbounds,whilethereisavastliteratureonalgorithmsforfrequencyassignment thatforhexagongraphs,edgesandtrianglesaremaximalcliques.inthedirectionof arenoprovenboundsontheperformanceoftheproposedalgorithms,intermsofthe numberofcolorsusedinrelationtotheweightedchromaticnumber[2,5,6,8,9].we ongraphs(especiallyhexagongraphs)thatclaimtousefewcolors,generallythere noteheretwoexceptions.awell-knownalgorithm,sometimesreferredtoasfixed usescolorsfromtherstset,andavertexthatbasecolor2or3usescolorsfromthe usesthreexedsetsofcolors,oneforeachbasecolor.avertexthathasbasecolor Allocation,usesthefactthattheunderlyinggraphcanbe3-colored.Thealgorithm manyas3timesthenumberofrequiredcolors.janssenet.al.[4]proposeadierent secondorthirdsetsrespectively.itiseasytoshowthatthisalgorithmcoulduseas 3

4 3=2timestheminimumnumberofcolorsrequired. algorithmcalledfixedpreferenceallocationthatisguaranteedtousenomorethan graphs.insection4,weaddressthequestionofmulticoloringanarbitraryhexagon Section3,wepresentoptimalalgorithmsformulticoloringcyclesandouterplanar Inthenextsection,weformallydenesomebasicterminologyandproblems.In graph.ourmainresultisanecientapproximationalgorithmwithaperformance offuturedirectionsinsection6. guaranteeofwithin4=3oftheoptimal.finally,insection5,weshowhowtoimplementtheabovealgorithminadistributedmanner2.weconcludewithadiscussion denedontheverticesofthegraph,wherew(v)representsthenumberofcallsto 2LetG=(V;E;w)beahexagongraphwithanon-negativeintegerweightvectorw Preliminaries withverticesandedgescontainedintheinnitetriangularlattice(tessellation)ofthe beservedatvertexv.weassumehereafterthatghasaxedplanarembedding plane.thusanyvertexvcanbeconnectedtoatmost6neighbors,andforaxed edgeincidentonv,anyotheredgeincidentonvisatanangleof=3;2=3;;4=3or 5=3fromthatedge.Sincethetriangularlatticeis3-colorableintheordinarysense (i.e.wheneachvertexhasunitweight),theunderlyinggraphcorrespondingtounit weightsatverticesofgisalso3-colorable. thepalettecsuchthat C(thecolorpalette)andafunctionfthatassignstoeachv2Vasubsetf(v)of Aw-coloringormulticoloringofthegraphG=(V;E;w)consistsofasetofcolors 8(u;v)2E;f(u)\f(v)=:twoneighboringverticesgetdisjointsetsofcolors. 8v;jf(v)j=w(v):eachvertexgetsw(v)distinctcolors,and maticnumberofg,denoted(g),isthesmallestnumbermsuchthatthereexists amulticoloringofgofspanm.thusgivenahexagongraphg,ourobjectiveisto ThespanofamulticoloringisthecardinalityofthesetC.Theweightedchro- ndamulticoloringforgwhosespanisascloseto(g)aspossible. inadistributedsetting. dentlyderived,andunlikethemcdiarmid-reedalgorithm,hastheadvantageofbeingimplementable havealsodescribedadierent4=3-approximatealgorithmfortheproblem.ourresultwasindepen- 2WenotethatinadditiontoshowingtheNP-hardnessofthisproblem,McDiarmidandReed[7] 4

5 thattheweightofanymaximalcliqueofgisalowerboundon(g).letd[2] D[3] anedge(triangle)ingtobethesumoftheweightsofitsendpoints(apexes).note TheonlymaximalcliquesinGbeingedgesandtriangles,wedenetheweightof denedg=maxfd[2] GdenotetherespectivemaximaovertheweightsofedgesandtrianglesinG,and G;D[3] Gg.Then,ifthereexistsamulticoloringofGwithspan, Gand itfollowsthat: besuitablyorderedorpartitioned;inparticular,wewilloftenassumethatvertices Wewillassumewithoutlossofgeneralitythatanypaletteofavailablecolorscan (G)DG: areassignedcolorsfromthecircularlyorderedinterval[;m]=f;2;:::;mg,where itmeansthatthevertexiscoloredwiththesetfi;i+;:::;jginacyclicmanner Forinstance,whenavertexisassignedthesubintervalofcolors[i;j]fromthepalette, Misapositiveintegerthatdependsontheparticulargraphunderconsideration. wherecolorisassumedtofollowthecolorm. ConsiderahexagongraphG=(V;E;w)withnverticesintheformofasimple 3cycle,labeledu;u2;:::;uninclockwiseorder.Forsimplicity,letwi;in, OptimalMulticoloringofCycles onwhethern,thenumberofverticesonthecycle,isevenorodd. optimallycoloredwithexactly(g)colors.therearetwocasestoconsiderdepending denotetheweight,w(ui),ofvertexui.weshowthatanysuchhexagongraphcanbe maximalcliquesofgbeingedges,dg=d[2] Supposethatn=2m,i.e.thegraphconsistsofanevenlengthcycle.Thenall colorpalette[;dg].theideaistoassignforim,thecolors[;w2i ]tothe cycle.weobservethataverysimplegreedystrategysucestomulticolorgwiththe Gisthemaximumweightofanedgeinthe vertexu2i.notingthatforim, odd-numberedvertexu2i andthecolors[dg w2i+;dg]totheeven-numbered withsubscriptsinterpretedcyclically,itfollowsthatthegivenmulticoloringisproper. DGw2i +w2i; DGw2i+w2i+ and optimalmulticoloringofg. Byconstruction,(G)=DGandthesimpleparity-basedalgorithmthusprovidesan [8,4],butitwasonlyappliedtonetworksconsistingofsimplepaths(itiseasyto Wenotethataverysimilarideawasalreadyusedinthecellularnetworkliterature 5

6 unweightedodd-lengthcycleneedsatleastthreecolorsinanyordinarycoloring.for parityargumentfailstomulticolorodd-lengthcycles,preciselybecausetheunderlying seethatthisstrategyworksingeneralforanybipartitegraph).unfortunately,the Denition3.LetG=(V;E;w)beanodd-lengthsimplecycle,withverticeslabeled bemulticoloredwithdg=4colors,butneeds5colorsinstead. instance,ifgisa9-cyclewithweight2oneachvertex,itiseasytoseethatgcannot u,u2,:::,u2m+,m,inclockwiseorder.wedene D0G=maxfD[2] G;dP2m+ i=wi m eg Theorem3.2LetG=(V;E;w)beacycleofoddlengthn=2m+3.Then Proof.ItisclearthatD[2] (G)=D0GandGcanbeoptimallymulticoloredwithexactlyD0Gcolors.Further,the multicoloringcanbeobtainedintimeo(n). isatmostm,anysinglecolorcanbeusedonlyatmverticesorfewerinthecycle. andhenced0g,isalowerboundon(g).sincethesizeofanindependentseting Gisalowerboundon(G);weestablishthatd2m+ i=wi Thetotalnumberofcolorsneededatallverticesbeing2m+ m e, (G)d2m+ NextweshowthatGcanbecoloredwithD0Gcolorsusingalineartimealgorithm; i=wi m e.thus,d0gisindeedalowerboundon(g). i=wi,weconcludethat thiscompletestheproofofthetheorem.werstobservethattheremustbeasmallest indexk,km,whichsatisestheinequality 2k+ iswell-denedandcanbefoundeasilyinlineartime. NotethatthispropertyholdstruefortheindexmfromDenition3.,andhencek i=wikd0g:.verticesuthroughu2kareassignedcontiguouscolorsinacyclicmannerfrom Theverticesofthecyclearenowcoloredasfollows: thepalette[;d0g].specically,forj2k,vertexujisassignedthecolors cyclically.byconstruction,thisensuresthatthepathu;u2;:::;u2kisproperly [(+j Xi=wi);jXi=wi]; multicoloredsinced0gd[2] G. 6

7 2.Verticesu2k+throughu2m+arecoloredbasedontheirparity(asintheevencyclealgorithm).Inparticular,for2k+i2m+,thevertexuiisassigned thecolors[;wi]ifiiseven,orthecolors[d0g wi+;d0g]ifiisodd.again, thisensuresthatthepathu2k+;u2k+2;:::;u2m+isproperlymulticolored. theedge(u2k;u2k+)isproperlymulticolored:thisisaconsequenceoftheminimality ofk,forweknowthat2k theedge(u;u2m+)isalsoproperlymulticolored.allthatremainsistoverifythat Sincevertexuhasthecolors[;w]andvertexu2m+thecolors[D0G w2m++;d0g], amongthecolors[d0g w2k++;d0g]assignedtovertexu2k+. Weillustratethelabelingschemeusinga9-cyclewithweight2oneachvertexas i=wi>(k )D0G.Hence,nocolorassignedtou2kcanbe anexample.asd0g=maxf4;5g=5,weusethepalette[:::5].since5i=wi= assigncolorsasinabipartitegraph,fromthetwoendsoftheinterval[;5].finally, alwaystakingthenextfouravailablecolorsinthepalette.forthelastvevertices,we 02D0Gbut3i=wi=6>D0G,wecolortherstfourverticesinacyclicmanner, wenotethatouralgorithmcanactuallymulticoloranycycle,andnotjustcyclesthat arehexagongraphs(i.e.embeddedinthetriangularlattice). everyvertexofgliesontheboundaryoftheexteriorface.itisstraightforwardto graph.agraphissaidtobeouterplanarifitcanbeembeddedintheplanesothat Theorem3.2canbeusedtoderiveanoptimalmulticoloringofanyouterplanar seethattheweightedchromaticnumberofanygraphisthemaximumtakenoverthe chords.abiconnectedouterplanargraphgwithoutchordsisasimplecycleandcan siderabiconnectedouterplanargraph:anysuchgraphisacyclewithnon-intersecting weightedchromaticnumbersofitsbiconnectedcomponents.thusitsucestocon- bemulticoloredoptimallyusingtheconstructionintheproofoftheorem3.2.otherwise,let(u;v)beachordandletgandg2bethetwopartsofgonthesidesof thecolorassignmentofg2sothatthecolorsassignedtouandving2agreewith thischord,eachoneincludingtheedge(u;v).recursivelycolorgandg2.relabel coloredoptimallyusing(g)colors. Corollary3.3LetG=(V;E;w)beanarbitraryouterplanargraph.ThenGcanbe thoseassigneding.thefollowingcorollaryisimmediate: multicoloring.weremarkthatcorollary3.3appliestoanyouterplanargraph,and notjustouterplanarhexagongraphs. Acarefulimplementationofthealgorithmsketchedabove,resultsinalineartime 7

8 4Inthissection,weconsidertheproblemofcomputinganapproximatemulticoloring ofanarbitraryhexagongraph.sinceahexagongraphmaycontainanoddcycleasan Approximatemulticoloringofhexagongraphs inducedsubgraph,itfollowsasaconsequenceoftheorem3.2thatd[3] D[3] weighttakenoveralltriangles,isnotalwaysatightbound.forexample,consider a9-cyclewhereeveryvertexisgiventheweightk,forsomeintegerk2.while G=D[2] G,themaximum choosea9-cyclebecauseitisthesmallestoddcyclethatcanbeaninducedsubgraph ofthetriangularlattice.thisshowsthatanyalgorithmtocolorhexagongraphsmust useatleastd9d[3] G=2kforthegraph,weknowfromTheorem3.2that(G)=d9k=4e.We graphusingatmost4dd[3] demonstrateanecientapproximationalgorithmthatcanmulticoloranyhexagon G=8ecolorsonsomegraphsGwithtriangleboundD[3] G=3ecolors(andhence,atmost4d(G)=3ecolors). G.Infact,we weletm=dd[3] ponentsofgcanbeindependentlycoloredwithoutanycolorconicts.forsimplicity, Withoutlossofgenerality,weassumethatGisconnected,sincedisconnectedcom- withabasecoloringofgsothateveryvertexgetsbasecolorred,blueorgreen.with eachbasecolor,weassociateaclassofmhuesidentiedwiththeinterval[;m]. G=3eandwechoosethefollowingcolorpaletteinouralgorithm.Start withtheinterval[;m].theentirecollectionof4mdistincthuesformsourcolor palette. Inaddition,wehaveatourdisposalaclassofauxiliarypurplehues,againidentied theauxiliarypurpleclass.wedescribethealgorithmasproceedinginvephases; possiblebeforetryingtousehueseitherfromtheremainingtwobaseclassesorfrom Theideaistoleteachvertexvuseasmanyhuesfromitsbasecolorclassas wemaintaintheinvariantthatattheendofeachphase,thegraphispartiallybut completed.wealsoassignanarticialprioritytovertices:redverticesdominateover letgi=(vi;ei;wi)denotetheremaininggraphafterphasei(i4)hasbeen correctlycolored.tofacilitatereasoningaboutthecorrectnessofthealgorithm,we blueoneswhichinturndominateovergreenones.thispriorityschemeisusedin phases2and3toselect,ineachcase,asuitablesubsetofverticesforpartialcoloring. of24colorsequallydividedamongthered,blue,greenandpurplehues. forwhich3m=d[3] WeillustrateouralgorithmwitharunningexampleshowninFigure,agraphG Avertexv2Gisdenedtobelightifw(v)Mandtobeheavyotherwise.This Gcaneasilybeveriedtobe8.Hence,thecolorpaletteconsists distinctioniscriticaltoeachofthethevephasesbelow: Phase:Everyvertexvisassignedtherstw(v)huesfromitsbasecolorclass,in particular,thehues[;minfw(v);mg].allthelightverticesthusgetcompletely 8

9 Figure:Ahexagongraphwithinitialweights 2 0 Red Blue Green vertexvisdecreasedbym,resultinginthegraphg. coloredandaredeletedfromthegraph.theweightofeveryremainingheavy everytriangleingmustcontainatleastonelightvertexthatiseliminatedinthe rstphase.lethdenotethesubgraphofginducedbythedegree3verticesing. ItiseasytoseethatGhasnomaximalcliquesofsizegreaterthan2,because 2=3radiansinorder;furthermorethegeometryimpliesthatallthreeneighborshave embedding)ing,thentheincidentedgestotheneighborsformsuccessiveanglesof Notethatifavertexv2Ghasthreeneighbors(say,inclockwiseorderinthexed thesamebasecolor.itfollowsthateachconnectedcomponentinhcontainsvertices orblueandgreenvertices. consistsofeitheranisolatedvertex,orcontainsonlyredandblue,orredandgreen, thatbelongtoatmosttwobasecolorclasses.thus,everyconnectedcomponentofh amongitsneighbors(ifany)inh(recallthatreddominatesbluewhichdominates green).clearly,thepriorityverticesformanindependentset(infact,adominating Callavertexv2Hapriorityvertexifandonlyifithasthehighestpriority set)inh. Phase2:Withoutlossofgenerality,letvbearedpriorityvertexinHwiththree blueneighborsinh.letg(v)bethemaximumamongtheweightsofthe colortheremainingweightonvsinceallthreeblueneighborsofvareheavy ThenvcanborrowfromamongthelastM g(v)greenhues;thesesuceto threegreenneighborsofv;theseverticesmusthavebeenlightverticesing. verticesandhence,w(v)m g(v).accordingly,visassignedthegreen 9

10 r-6 r-6 r-6 r-6 r-6 r-6 b-6 b-6 b-6 b-6 g-6 g-3 g g g g-3 b-6 g-2 r (a) (b) g x v u y t b-2 g-6 2 b a c b d e Figure2:Colorassignmentduring(a)Phaseand(b)Phase2 hues,[m g(v)+;m],andeliminatedfromfurtherconsideration.notethat thepartialcolorassignmentattheendofphase2hasnocolorconictsamong neighbors,andtheremaininggraphisdesignatedg2. Figure2detailsthepartialcolorassignmentattheendofphaseandphase2 respectively.notethatthesixredhuesaredenotedasr-6andsoforthinthe gure.sincethesubsetofpriorityverticeseliminatedinphase2isadominatingset ofh(thedegree3verticesofg),everyremainingvertexing2nowhasdegreeat most2.equivalently,theconnectedcomponentsofg2consistofisolatedvertices, cyclesandpathsinthetriangulargrid.notealsothatanyedgeofg2hasaresidual weightofatmostm,aconsequenceofthedenitionofheavyvertices.ifthegraph G2containsonlyevencyclesorpaths,thenwecancoloralltheverticesusingtheM purplecolors.howeverg2maycontainisolatedverticesandoddcycles.inthenext phase,weessentiallyeliminateallpotentialcyclesing2. Callavertexv2G2acornervertexifandonlyifithastwoneighborsx;yofthe samebasecolorclassing2suchthattheanglesubtendedatvbytheincidentedges (v;x)and(v;y)isexactly2=3radians.further,acornervertexvisapriorityvertex ing2ifandonlyifvhasthehighestpriorityamongallitsneighbors,ifany,thatare alsocornervertices.itisnotdiculttoseethatthesubsetofpriorityverticesing2 formsanindependentseting2.also,everycornervertexiseitheritselfapriority vertexorisadjacenttoapriorityvertex;hence,thesubsetofpriorityverticesis adominatingsetofthesubgraphinducedbythecornerverticesing2.finally,by denitioneverycycleing2containsatleastonecornervertex.thus,coloringpriority verticesandeliminatingthemalsobreaksallcycles.forexample,infigure2-(b), 0

11 a x p Red t u Figure3:LocalgeometryaroundabluepriorityvertexvinPhase3 r Blue v Green priorityvertices. theverticeslabeledv,v0andxarecornerverticesofg2;amongthem,vandv0are b y q Phase3:Withoutlossofgenerality,letvbeabluepriorityvertexinG2withred neighborsxandying2asshowninfigure3.notethatudenotesthethird blueverticespandqmustbelightvertices.whileuisabsenting2,thereare priorityconsiderationsthatxandymustbenon-cornerverticesandhence,the neighborofvofthesamebasecolorclassasxandy.itisalsoeasytoseefrom (i)uwaseliminatedinphase(i.e.w(u)=0):letg(v)bethemaximum twopossibilities. overtheweightsofv'sgreenneighbors(i.e.verticesa,bandtinfigure3) ing.sinceudidnotparticipateinphase2,vcanborrowfromamongthe lastm g(v)greenhues;thesesucesincetwoofv'sredneighborsareheavy [M w2(v)+;m],andeliminated. verticesandhencew2(v)m g(v).accordingly,visassignedthegreenhues, andrecallthatuwasassignedthelastw(u)greenhues,[m w(u)+;m], greenneighborsofuandving.letwabbethemaximumamongw(a)andw(b) (ii)uwasapriorityvertexinphase2:consideraandb,thecommon(light) thegreenhues[wab+;wab+w2(v)]fromthemiddleofthegreenspectrum. However,wemustensurethatthisassignmentwillnotconictwiththegreen duringphase2.sincew2(v)+w(u)+wabm,itappearsthatvcouldborrow huesassignedtot(seefigure3). Ifw(t)wab,thenclearlythenewassignmentdoesnotconictwithprior nowusestherstwabandthelastw(t) wabgreenhues.thenewassignment colorassignments.however,ifw(t)>wab,thenwecanrecolortasfollows:its originalassignmentoftherstw(t)greenhues(inphase)ischangedsothatt

12 g2 p p-4 g2-5 b4-5 4 p p g3-4 g6-2 Figure4:Colorassignmentduring(a)Phase3and(b)Phase4 8 p p p-6,b5-6 sincew(t)+w2(v)m. totcannotconictwiththegreenhues,[wab+;wab+w2(v)],borrowedbyv (b) otherneighboroft.clearlysuchaconictcouldoccuronlyifsomeotherneighborof talsoborrowsgreenhuesinphases2or3.fromtheobservationsabove,weconclude Itremainstoverifythatrecoloringtdoesnotcauseacascadingconictwithany phase)andp;q(theyarelighting).theonlyremainingpossibility,viz.vertexr,is thatthiswouldbeimpossibleforverticesx;y(theyarenotpriorityverticesineither 3,itwouldhavegreenneighborsinG2andwouldborrowbluehues.Figure4-(a) notaproblemeither:rcouldnothavebeenapriorityvertexinphase2(sinceithas threeconsecutivelightneighborsp;tandq)andifitwereacornervertexinphase lightvertexlabeledtinfigure2-(b)isrecoloredasdescribedabove. depictsthecolorassignmentduringphase3fortherunningexample;notethatthe paths.itiseasytoseethatanyremainingisolatedvertexmayhavearesidualweight furthermore,theremaininggraphg3consistsonlyofisolatedverticesorstraight-line Thus,attheendofphase3,wehaveacorrectpartialassignmentofcolors,and Phase4:Toanyisolatedvertexv2G3,werstassignminfw3(v);Mgpurplehues. betweenand2m,whereastheweightoneveryremainingedgeisatmostm. Ifw3(v)>M,thenwestillneedtond=w3(v) MMadditionalcolorsto nishcoloringv.withoutlossofgenerality,weassumethatvisaredvertex, andobservethatalltheneighborsofvmusthavebeenlightverticesing. Hence,theblue(green)neighborsofvmusthavehadcolorseitherassigned totheminphaseorinphase3(asaresultofrecoloring).weclaimthat 2

13 vcanstillborrowcolorsfromeithertheblueorthegreenpaletteswithout beusingcolorsfromeitherendoftheirbasecolorpalettes.letb3b2bm Fromthedescriptionofphasesand3,observethatthelightneighborsofvmay conictingwithanyneighboringassignment. andg3g2gmbetheweightsofv'sblueandgreenneighborsing thebluepalette.likewise,thereareatleastm (g+g2)greenhuesavailable assignedbluehues,vhasatleastm (b+b2)huesavailableforitsusefrom respectively.clearly,regardlessofthemannerinwhichtheblueneighborsare tog.sincethegreenvertexwithweightgformsatriangleingwithvand that M (b2+g).asimilarargumentshowsthatm (g2+b).itfollows eitheroneoftheblueverticeswithweightborwithweightb2.inanyevent, orinotherwords,thatvcanobtaintheremainingcolorsbyborrowingeither onlybluehuesoronlygreenhueswithoutanycolorconictswithassignments maxfm (b+b2);m (g+g2)g; verticesinourrunningexample.attheendofphase4,theremaininggraphconsists Figure4-(b)demonstratesthecolorsassignedinPhase4totheremainingisolated priortothephase. onlyofstraight-linepaths,i.e.pathsinwhichanytwoconsecutiveedgessubtendan Phase5:Sinceeveryremainingconnectedcomponentisastraight-linepathwitha edgehasaresidualweightofatmostm. angleofdegreesatthecommonvertex.further,asnotedabove,everyremaining weightedchromaticnumberofatmostm,itsucestousethegreedyparitybasedstrategydescribedinsection3tonishcoloringthegraphusingthem sincethepurplehueswereusedonlyinphase4tocolorisolatedverticesinp; purplehues.thiscannotcauseanyconictwithpreviouslycoloredvertices runningexample.thefollowingresultisimmediate: Figure5showstheentirecolorassignmentconstructedbyouralgorithmforthe thelatteraredisconnectedfromanyremainingvertexinthecurrentphase. foranyhexagongraphg=(v;e;w)canbeecientlycomputedinlineartime. Theorem4.Anapproximatemulticoloringthatusesnomorethan4dD[3] G=3ecolors 3

14 r-6,g2 b-6,p b-6,p g r-6,p6 b-2 g-6,p-4 g r-6,g2-5 b-3 g-6,b4-5 b-6,p g r-6,p g-3 r-6,g5-6 g6-2 b-6,g3-4 r-6,p-6,b5-6 5 Adistributedimplementation Figure5:Completecolorassignmentintheexamplegraph b-6,p g-2 r-6,p modelinganetworkofprocessors(basestations),witheachprocessorresponsiblefor implementedinacompletelydistributedmanner.weconsiderthehexagongraphas Thealgorithmgivenintheprevioussectionhastheadditionalpropertythatitcanbe asinglevertexinthehexagongraph.thenetworkhasthesamespatialembeddingas thegraph,andprocessorsatneighboringbasestationsinthenetworkcanexchange localinformationeciently.foreaseofdescription,wewillsometimesidentifythe verticesofthehexagongraphwiththeirprocessors. arbitraryvertextobetheorigin,andthreedirectionalaxesthatintersecttheorigin: onedesignatedthehorizontalaxis,andtheremainingtwoatangles=3and2=3 Inthexedplanarembeddingoftheinnitetriangulargrid,wecanselectan fromthehorizontalaxis.itiseasytoseethatanypathinthegraph,wheretheangles subtendedbyallintermediateedgesinthepathareexactly,isorientedalongone ofthethreedirectionalaxes.foreveryvertex,wewishtoassignaparitywithrespect toeachdirectionalaxis.thiscaneasilybedoneasfollows.theparityofavertexv alongthehorizontalaxisisdenedtobetheparityofthelengthofthepathoriented alongthehorizontalaxisfromvtoavertexonthe=3axisthatintersectstheorigin. 4

15 axisintersectingtheorigin.thusgivenanarbitrarynitehexagongraph,anypath thepathfromvorientedalongthe=3axis(2=3axis)toavertexonthehorizontal Similarly,theparityofvalongthe=3axis(2=3axis)istheparityofthelengthof canbepre-computedaccordingtotheparitiesoftheverticesalongthepath. inthegraphthatisorientedalongoneofthedirectionalaxeshasa2-coloringthat information: Abasecoloringforthegraphisknown:eachprocessorknowswhetheritsvertex Ouralgorithmassumesthateachprocessorinitiallyhasaccesstothefollowing A2-coloringalongeachpathorientedalongadirectionalaxisisknown.This meanseachprocessorknowsthreebitscorrespondingtowhetherithasevenor isred,greenorblue,andalsothecolorofeachofitsneighbors. ThevalueofD[3] classesamongprocessorsisknown.additionally,thisimpliesthateveryvertex oddparityalongeachofthe3directionalaxes. hasaccesstoaknownsetofmpurplehuesifneeded. Gisknown;thisalsoimpliesthatthedivisionofbasecolor insection4.thealgorithmstartswiththreeroundsofinformationgathering,after participateinoneormoreofthevephasesoftheapproximationalgorithmdescribed Thedistributedalgorithmconsistsofeachprocessordeterminingwhetheritshould whichnomorecommunicationotherthaninformingneighborsofthecurrentcolor assignmentisrequired;essentially,processorscancontinueindependentlytocompute Round:psendsitsweighttoeachofitssixneighbors. thehuestoassigntothemselves.wedescribethecommunicationroundsfromthe perspectiveofaxedprocessorp. Round2:Havingreceivedtheweightsofallitsneighbors,pdecidesifitwouldbea degree3vertexafterphase,andsendsthisinformation(asinglebit)toeach Round3:Theinformationreceivedintheprevioustworoundssucesforptodecide ofitsneighbors.thiswouldbethecaseifpisitselfaheavyvertexandhas threeneighborsthatareheavyvertices. isabluevertexwithdegree3afterphaseeitherwithnoneighborsthatwill ifitwillbeapriorityvertexinphase2aswellasifanyofitsneighborswill alsobedegree3verticesafterphase,orwithgreenneighborsofdegree3after bepriorityverticesinphase2.forinstance,pwillbeapriorityvertexifit phase(seesection4). 5

16 Next,pdeterminesifitwillbeacornervertexinphase4andsendsthisinformation(asinglebit)toeachofitsneighbors.pisacornervertexifallthe pisaheavyvertex. phasexactlytwoneighborsofthesamecolorclassthatareheavyvertices pwillnotbeapriorityvertexinphase2. followingconditionsaremet: Round4:TheinformationderivedfromRound3enablesptodetermineifitwillbe apriorityvertexinphase3,asdescribedinsection4.ifpwouldbeapriority butnotpriorityverticesinphase2. neighbor,sayqthatwouldneedtoberecoloredinthatphase.inthiscase,p vertexinphase3,andwouldfallintocase(ii)ofphase3,thenithasalight Round5:AlightvertexthatgotamessagetorecoloritselfinRound4informs sendsamessagetoqwiththemaximumweightofitsremainingtwoneighbors allitsneighborsofhowmanycolorsitwillusefromtheendofitsbasecolor ofthesamecolorasq,sothatpcancoloritselfappropriately. Fromtheweightsofitsneighboringprocessorsanditslimitedglobalknowledge, appropriatelyinphase4. spectrum.thisenablesanisolatedvertexinitsneighborhoodtocoloritself cessorcaneasilycomputethecolorsitwilluseineachofthevephases.without lossofgenerality,consideraprocessorthatcorrespondstoabluevertexv2g.the andtheinformationcollectedinthecommunicationroundsdescribedabove,apro- Phase:Ifw(v)<=M,theprocessorassigns(toitself)theappropriatebluehues. processoremulatesthevephasesofthesequentialalgorithmasfollows: Phase2:IftheprocessorisapriorityvertexinPhase2,itsimulatesphase2and continues. Otherwise,itassignstoitselfallthebluehues,reducesitsweightbyMand wouldborrowfromoneofitsneighboringcolorclassarethelastcolorsfrom stops,orelsecontinuestophase3.recallthatthecolorsthatapriorityvertex Phase3:IftheprocessorisapriorityvertexinPhase3,itcandeterminethecolors atapriorityvertex. thatclass;thusnoconsultationisrequiredwithneighborstocomputethecolors itneedstoborrowfromtheappropriateneighboringcolorclass. 6

17 distributedalgorithmaswell.todoso,itusestheinformationitreceivedin inphase3ofthesequentialalgorithm,thenitcanemulatethisbehaviorinthe If,however,theprocessorisalightvertexthatwouldhaveundergonerecoloring Phase4:Ifaprocessorisanisolatedvertexinthisphase,itassignsitselfanypurple itsneighborinround4,andrecolorsitselfasdescribedinsection4sothatno huesthatitneeds.additionalcolorsthatitmayneedareborrowedfromone conictappearsamongthebluecolors. recoloreditselfinthelastphasesentinformationinround5aboutthenumber ofcolorsitwouldusefromtheendofitsbasecolorspectrum,theprocessorcan oftheneighboringcolorclasses.sinceanyofitslightneighborsthatmayhave Phase5:Anyvertexwithunassignedcolorsatthisstageliesalongsomestraight-line determineallcolorsusedbyitslightneighborsandcanborrowcolorswithout anypossibilityofconict. caneasilycomputetheidentityoftheparticularaxisfromtheinformation neighborsthatliealongexactlyoneofthethreedirectionalaxes.theprocessor pathinthegrid.inparticular,itcandetectitsoneortwoincompletelyassigned thesetofpurplehues,asinthecoloringforbipartitegraphs. alongthisaxis,itassignsitselfthenecessaryhuesfromthebeginningorendof gatheredafterround3.dependingonwhetheritisanevenoroddvertex completelydistributedmanner,afteraninitialconstanttimecommunicationprotocol foranyhexagongraphg=(v;e;w),canbeecientlycomputedinconstanttimeina Theorem5.Anapproximatemulticoloringthatusesnomorethan4dD[3] G=3ecolors whereeachprocessorexchangesvemessageswitheachofitsneighbors. 6Inthispaper,wehavecasttheproblemoffrequencyassignmentincellularnet- worksasamulticoloringproblemforhexagongraphs.forsomeparticularinduced Discussion algorithmsformulticoloringthemusinganoptimalnumberofcolors.insection4, subgraphsofhexagongraphs,i.e.cyclesandouterplanargraphs,weshowecient wedescribeamulticoloringalgorithmthatusesatmost4dd[3] themaximumweightonany3-cliqueing,isatriviallowerboundontheminimum numberofcolorsrequired.weshowedalsoahexagongraphthatrequiresd9d[3] G=3ecolorswhereD[3] G=8e colors.determininganexactboundon(g),theweightedchromaticnumberofan arbitraryhexagongraphisnp-hard;ourresultsdoestablishthatforallhexagon 7

18 graphsg,(g)4dd[3] forhexagongraphswhichalwaysusesatmostd9d[3] G=3e.Whetherornotthereisanapproximationalgorithm distributedmanner.incontrast,thealgorithmofmcdiarmidandreed[7],which openproblem.ausefulfeatureofouralgorithmisthatitcanbeimplementedina G=8ecolorsremainsanintriguing madedistributedinanyobviousway. hasthesameperformanceratioasours,seemsinherentlycentralizedandcannotbe quirednotmerelytobedierent,butalsotobefarenoughapart[3].anotherrecently wherethefrequenciesassignedataparticularvertexoratadjacentverticesarere- Aninterestingavenueforfutureresearchisthegeneralizedversionoftheproblem, proposedmodel[]considersarbitraryinterferencegraphswithpre-denedcostson totalcost,orequivalently,thenetinterferenceofanassignment.finally,thedynamic frequenciesareassignedtoneighboringnodes.theobjectivehereistominimizethe theedges;thesecostsreecttheinterferencepenaltieswhenthesameoradjacent inthissettingandwhatboundscanbeprovedonitsperformance. versionoftheprobleminvolveschangingweightsatvertices.itwouldbeinteresting toseeifthedistributedalgorithmwedescribeinsection5canbeadaptedtowork Acknowledgments WethankJeannetteJanssenforintroducingustotheproblemofchannelassignment, formofcorollary3.3. totheanonymousrefereesfortheirusefulcomments,andforsuggestingthecurrent andforcommentsthatgreatlyimprovedthepresentationofsection3.wearegrateful References []R.Borndorfer,A.Eisenblatter,M.Grotschel,andA.Martin.Frequencyassignmentincellularphonenetworks.Technicalreport,Knorad-ZuseZentrumfur InformationstechnikBerlin,997. [2]D.DimitrijevicandJ.Vucetic.Designandperformanceanalysisofalgorithmsfor [3]W.K.Hale.Frequencyassignment:Theoryandapplications.Proceedingsofthe ogy,42(4):526{534,993. channelallocationincellularnetworks.ieeetransactionsonvehiculartechnol- IEEE,68(2):497{54,980. 8

19 [5]T.KahwaandN.Georganas.Ahybridchannelassignmentschemeinlargescalecellular-structuredmobilecommunicationsystems.IEEETransactionson forcellulartelephonesystems.unpublishedmanuscript,april995. [4]J.Janssen,K.Kilakos,andO.Marcotte.Fixedpreferencefrequencyallocation [6]S.KimandS.L.Kim.Atwo-phasealgorithmforfrequencyassignmentincellular mobilesystems.ieeetransactionsonvehiculartechnology,994. Communications,4:432{438,978. [8]P.Raymond.Performanceanalysisofcellularnetworks.IEEETransactionson [7]C.McDiarmidandB.Reed.Channelassignmentandweightedcoloring.submitted Communications,39(2):787{793,99. forpublication,997. [9]W.WangandC.Rushforth.Anadaptivelocal-searchalgorithmforthechannelassignmentproblem.TechnicalReport,August995. 9

Munsell Soil Color. Munsell Gradient No. Code

Munsell Soil Color. Munsell Gradient No. Code Munsell Gradient No. Munsell Soil Color Code Munsell Soil Color Description 10.0 10R 2.5/1 Reddish Black 10.0 10R 2.5/2 Very Dusky Red 10.0 10R 3/1 Dark Reddish 10.0 10R 3/2 Dusky Red 10.0 10R 3/3 Dusky

More information

Tabla de conversión Pantone a NCS (Natural Color System)

Tabla de conversión Pantone a NCS (Natural Color System) Tabla de conversión Pantone a NCS (Natural Color System) PANTONE NCS (más parecido) PANTONE NCS (más parecido) Pantone Yellow C NCS 0580-Y Pantone 3985C NCS 3060-G80Y Pantone Yellow U NCS 0580-Y Pantone

More information

Color Code Drug Doses L.A. County Kids

Color Code Drug Doses L.A. County Kids 3 Kg 1. 3.0 Joules 3.0 Joules 12 Joules 12 Joules 0. 60 mg 0.0 3 meq Add 18 mg (.23mL) to a 100 ml bag of NS. adequate perfusion 6 ml 1. 0.0 0. 0. 60 ml 4 Kg 2 Joules 1 1 0. 80 mg 0.0 4 meq Add 2 (.3mL)

More information

Green = 0,255,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (43,215,35) Equal Luminance Gray for Green

Green = 0,255,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (43,215,35) Equal Luminance Gray for Green Red = 255,0,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (184,27,26) Equal Luminance Gray for Red = 255,0,0 (147,147,147) Mean of Observer Matches to Red=255

More information

Perception of Light and Color

Perception of Light and Color Perception of Light and Color Theory and Practice Trichromacy Three cones types in retina a b G+B +R Cone sensitivity functions 100 80 60 40 20 400 500 600 700 Wavelength (nm) Short wavelength sensitive

More information

Working Paper Series Department of Economics Alfred Lerner College of Business & Economics University of Delaware

Working Paper Series Department of Economics Alfred Lerner College of Business & Economics University of Delaware Wk p Dp f Af L C f B & Uv f Dw Wk p N. 2005-21 Rf H : Mv B T Jff M 1 I. I vv, Ab - G, R Bv, H, f Cbv H ;. I f b v K Kf M. T. K w f f w-fv Uv f Dw. W wk v pj, pp p wk pj B. K w f f pp f b. H f Uv Fb fwp

More information

User Guide for Patients

User Guide for Patients User Guide for Patients Creating a My Health Online Account Before you can create a My Health Online account you must register for this service at your GP practice. Your practice will provide you with

More information

PROVIDER APPLICATION FOR MEDICAL LIEN PORTFOLIO PURCHASE

PROVIDER APPLICATION FOR MEDICAL LIEN PORTFOLIO PURCHASE G CA HNOW F OYOUM D CA N C F d g f d gp fm d ( OP ) g p y w U W b p d gf g f p f f 10y W yb q dbyp b mp y d b p b Y dw gf y d k f py m by gy m d f d g p yf mp Wp d d w p ya p f f mub dm d p d W pf p z

More information

Guide for Performing a Wireless Site Survey. 2.4 GHz IEEE 802.11g/802.11b/802.15.4

Guide for Performing a Wireless Site Survey. 2.4 GHz IEEE 802.11g/802.11b/802.15.4 Guide for Performing a Wireless Site Survey 2.4 GHz IEEE 802.11g/802.11b/802.15.4 1 Table of Contents Table of Contents 2 Introduction 3 Wireless Characteristics 3 AMX Site Survey Tools 5 Creating a Channel

More information

PANTONE Solid to Process

PANTONE Solid to Process PANTONE Solid to Process PANTONE C:0 M:0 Y:100 K:0 Proc. Yellow PC PANTONE C:0 M:0 Y:51 K:0 100 PC PANTONE C:0 M:2 Y:69 K:0 106 PC PANTONE C:0 M:100 Y:0 K:0 Proc. Magen. PC PANTONE C:0 M:0 Y:79 K:0 101

More information

Pantone Matching System Color Chart PMS Colors Used For Printing

Pantone Matching System Color Chart PMS Colors Used For Printing Pantone Matching System Color Chart PMS Colors Used For Printing Use this guide to assist your color selection and specification process. This chart is a reference guide only. Pantone colors on computer

More information

CGS2 2003 2004 2005 2006 2007 2008 2009 2010 X X X X X

CGS2 2003 2004 2005 2006 2007 2008 2009 2010 X X X X X CGS2 Blue, GCS, time Black, GCS, time Red, GCS, time CGS2 Blue, GCS, time Black, GCS, time Red, GCS, time CGS1 Blue, GCS, time Black, GCS, time Red, GCS, time CGS2 (Discontinued) Blue, GCS, time Black,

More information

How To Color Print

How To Color Print Pantone Matching System Color Chart PMS Colors Used For Printing Use this guide to assist your color selection and specification process. This chart is a reference guide only. Pantone colors on computer

More information

Download Google Drive to windows 7

Download Google Drive to windows 7 Download Google Drive to windows 7 Google Drive allows you to store and synchronize your files on the web, hard drive and mobile device. Prior to installing Google Drive, it is recommended that you organize

More information

1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35,

1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35, 1. Let A, B and C are three events such that PA =.4, PB =.3, PC =.3, P A B =.6, P A C =.6, P B C =., P A B C =.7. a Compute P A B, P A C, P B C. b Compute P A B C. c Compute the probability that exactly

More information

Notes on Probability. Peter J. Cameron

Notes on Probability. Peter J. Cameron Notes on Probability Peter J. Cameron ii Preface Here are the course lecture notes for the course MAS108, Probability I, at Queen Mary, University of London, taken by most Mathematics students and some

More information

Betting Duty (Amendment) Ordinance 2013. Contents

Betting Duty (Amendment) Ordinance 2013. Contents Betting Duty (Amendment) Ordinance 2013 Betting Duty (Amendment) Ordinance 2013 Contents Ord. No. 6 of 2013 A119 Section Page Part 1 Preliminary 1. Short title and commencement... A123 Amendments to Betting

More information

A Comprehensive Set of Image Quality Metrics

A Comprehensive Set of Image Quality Metrics The Gold Standard of image quality specification and verification A Comprehensive Set of Image Quality Metrics GoldenThread is the product of years of research and development conducted for the Federal

More information

VARIABLE SPEED CONTROL CPMD CONNECTIONS

VARIABLE SPEED CONTROL CPMD CONNECTIONS VARIABLE SPEED ONTROL PMD ONNETIONS INLET DRAIN ONNETOR ORIENTATION (side view) PROBE MINIMUM SPEED ADJUST DIAGSTI LEDS TE: SPLASH OVER T SHOWN FOR LARITY. IRUIT BREAKER MAINS ONNETOR - SEELEY INTERNATIONAL

More information

Analysis of Patient Monitor Alarms in Adult Intensive Care Units --- University of California, San Francisco April 25, 2013 Patricia Harris, RN, PhD

Analysis of Patient Monitor Alarms in Adult Intensive Care Units --- University of California, San Francisco April 25, 2013 Patricia Harris, RN, PhD Analysis of Patient Monitor Alarms in Adult Intensive Care Units --- University of California, San Francisco April 25, 2013 Patricia Harris, RN, PhD **** AAMI/HTSI National Alarm Coalition UCSF GE Healthcare

More information

First Step: Have the patient describe the problem. 0 - Patient is not sure if the lights are behaving correctly:

First Step: Have the patient describe the problem. 0 - Patient is not sure if the lights are behaving correctly: Background: Number of patients: 150 patients Duration of individual patient monitoring: 12 months Total Duration: 24 months First Step: Have the patient describe the problem 0. Patient is not sure if the

More information

General Product Line Quick Quote U.S. Suggested List Price

General Product Line Quick Quote U.S. Suggested List Price Note: Not all items are presented in our order on line web site! Please use as a reference tool only. General Product Line Quick Quote U.S. Suggested List Price January 1, 2006 Table of Contents Tapers

More information

Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 2012

Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 2012 Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 202. Twenty workers are to be assigned to 20 different jobs, one to each job. How many different assignments

More information

PANTONE Chart Builder 2.5.2 File: MPC2000_2500_3000 Page: 1 of 14

PANTONE Chart Builder 2.5.2 File: MPC2000_2500_3000 Page: 1 of 14 PANTONE Chart Builder 2.5.2 File: MPC2000_2500_3000 Page: 1 of 14 PANTONE Yellow CS C:2 M:9 Y:98 K:0 PANTONE Purple CS C:32 M:74 Y:0 K:0 PANTONE Pro. Yel. CS C:3 M:4 Y:100 K:0 PANTONE Hex. Yel. CS C:0

More information

Setting your session preferences

Setting your session preferences What is Aspen? 7 Basic Steps 1 Setting your session preferences 2 Building the simulation 3 Entering the simulation environment 4 Using the workbook 5 Installing Unit Operations 6 Run Your Simulation 7

More information

Animated example of Mr Coscia s trading

Animated example of Mr Coscia s trading 1 Animated example of Mr Coscia s trading 4 An example of Mr Coscia's trading (::. to ::.69) 3 2 The chart explained: horizontal axis shows the timing of the trades in milliseconds right hand vertical

More information

PANTONE ColorVANTAGE Process Simulations of PANTONE solid colors Page: 1 of 14

PANTONE ColorVANTAGE Process Simulations of PANTONE solid colors Page: 1 of 14 PANTONE ColorVANTAGE Process Simulations of PANTONE solid colors Page: 1 of 14 PANTONE Yellow CS R:245 G:222 B:0 PANTONE Purple CS R:158 G:56 B:181 PANTONE Pro. Yel. CS R:242 G:227 B:0 PANTONE Hex. Yel.

More information

Health Science Center AirWatch Installation and Enrollment Instructions For Apple ios 8 Devices

Health Science Center AirWatch Installation and Enrollment Instructions For Apple ios 8 Devices Health Science Center AirWatch Installation and Enrollment Instructions For Apple ios 8 Devices Following are the steps necessary to register and enroll an Apple ios 8 device with the University s AirWatch

More information

This feature is available on select devices featuring VUDU. In order to use this feature, your VUDU device must be connected to the Internet.

This feature is available on select devices featuring VUDU. In order to use this feature, your VUDU device must be connected to the Internet. Movie Download This feature is available on select devices featuring VUDU. In order to use this feature, your VUDU device must be connected to the Internet. Summary The Movie Download feature allows you

More information

Organic Pigments. Azo Pigments

Organic Pigments. Azo Pigments Organic Pigments Azo Pigments Holtint Fast Yellow G Yellow 1 Holtint Fast Yellow 10 G Yellow 3 Holtint Fast Yellow 5G Yellow 5 Holtint Diaryl Yellow DHG Yellow 12 Holtint Diaryl Yellow GR Yellow 13 Holtint

More information

Dolch Pre-Primer Sight Vocabulary Bingo. Noah s Ark Bingo. 40 Pre-Primer Dolch Sight Words. Ordered by frequency

Dolch Pre-Primer Sight Vocabulary Bingo. Noah s Ark Bingo. 40 Pre-Primer Dolch Sight Words. Ordered by frequency Noah s Ark Bingo 40 Pre-Primer Dolch Sight Words Ordered by frequency Set1 Set 2 Set 3 the down make to can yellow and see two a not play I one run you my find it me three in big funny said come come for

More information

Garment Manufacturing Through Lean Initiative-An Empirical Study On WIP Fluctuation In T-Shirt Production Unit

Garment Manufacturing Through Lean Initiative-An Empirical Study On WIP Fluctuation In T-Shirt Production Unit m D g jmpg: www. g.m/ j Gm Mg g v- mp dy O WP F - Pd U B. Km * Cpdg :.p Gdgm Uvy [email protected] D. V.. mp Cpd: Pp Nd Cg ggdd BC KYWOD D g mg Gm pd g v pd mx d Gb M. pp w Cmzd mpm mmzg p w W pg WP g m

More information

Effects of changing slope or y-intercept

Effects of changing slope or y-intercept Teacher Notes Parts 1 and 2 of this lesson are to be done on the calculator. Part 3 uses the TI-Navigator System. Part 1: Calculator Investigation of changing the y-intercept of an equation In your calculators

More information

Employee Manual Development Tool Version 7.0. User Guide

Employee Manual Development Tool Version 7.0. User Guide rotecting entists. t s all e do. Employee Manual Development Tool Version 7.0 User Guide Developing Effective Employment Practices A guide for dentists The Dentists Insurance Company Page 1 Table of Contents

More information

Enjoy Music over Your Wi-Fi Network

Enjoy Music over Your Wi-Fi Network Personal Audio System Enjoy Music over Your Wi-Fi Network Read this document first. Enjoy Music over Your Wi-Fi Network GB SRS-X7 This manual introduces how to play music connecting this unit to your Wi-Fi

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

More information

Software Development Process

Software Development Process 1 Software Development Process Development Process Document... 2 Symbols... 2 General Overview... 3 Initial Work... 4 Case study document... 5 Preliminary Vision Document... 5 Design... 6 Implementation...6

More information

References Control and signalling units Ø 22 0

References Control and signalling units Ø 22 0 Merlin Gerin Modicon Square D Telemecanique References To combine with heads, see pages 36060-EN_ er4.0/2 to 36067-EN_er3.0/2 Body/contact assemblies - Screw clamp terminal connections 814264 Body/fixing

More information

Section 6-5 Sample Spaces and Probability

Section 6-5 Sample Spaces and Probability 492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

More information

Accessing vlabs using the VMware Horizon View Client for OSX

Accessing vlabs using the VMware Horizon View Client for OSX Accessing vlabs using the VMware Horizon View Client for OSX This document will demonstrate how to download, install, and connect to a virtual lab desktop from a personal Mac OSX computer using the VMware

More information

E. OZCEYLAN /International Journal of Lean Thinking Volume 1, Issue 1 (June 2010)

E. OZCEYLAN /International Journal of Lean Thinking Volume 1, Issue 1 (June 2010) I J L T k gv m1 I 1( J 2 0 1 0 ) LT k g. jmg: www. k g.m/ j AD S S m C m T M L g E Öz S ç ku D m I E g g C m 4 2 0 3 1 K T k z @ k.. ABSTRACT KEYWORDS L g m g m T m m m M m k g m m g g. F m T A m m x m

More information

To add fractions we rewrite the fractions with a common denominator then add the numerators. = +

To add fractions we rewrite the fractions with a common denominator then add the numerators. = + Partial Fractions Adding fractions To add fractions we rewrite the fractions with a common denominator then add the numerators. Example Find the sum of 3 x 5 The common denominator of 3 and x 5 is 3 x

More information

COLOR THEORY WORKSHEET

COLOR THEORY WORKSHEET COLOR THEORY WORKSHEET Use color pencils to complete the following exercises Name: Period Date PRIMARY COLORS cannot be made from any combination of colors. Fade intensity from top left to bottom right

More information

System Requirements for Dynamics GP 2013

System Requirements for Dynamics GP 2013 System for Dynamics GP 2013 Overview This document contains the preliminary minimum client hardware requirements and server recommendations supported by the Microsoft Dynamics GP Technical Support Team.

More information

13s Windy City Power League Schedule

13s Windy City Power League Schedule BVC 13s Diamond Elite 13 Jade E.N.E. 13U Nike Fearless 13 Red Lions 13 Blue Lions 13 Red Lions 13 1 Michio Chicago13 Prem Powerhouse N 13 Black Sky High 13 Black Sky High 13 Red Sky High 13 White Uno Girls

More information

WebEx Sharing Resources

WebEx Sharing Resources WebEx Sharing Resources OTS PUBLICATION: WX0 REVISED: 4/8/06 04 TOWSON UNIVERSITY OFFICE OF TECHNOLOGY SERVICES =Shortcut =Advice =Caution Introduction During a WebEx session, the host has the ability

More information

AMAS 05.03. Mine/ERW Clearance Marking System. Third Edition April 2011

AMAS 05.03. Mine/ERW Clearance Marking System. Third Edition April 2011 AMAS 05.03 Mine/ERW Clearance Marking System Mine Action Coordination Centre of Afghanistan (MACCA) Post Box : 520 Kabul Afghanistan website: www.macca.org.af Page 1 of 7 CONTENTS 1. INTRODUCTION... 3

More information

Mekong River Cruises. Indochina Sails BRAND GUIDELINES. (*) This brand guidelines is temporary and can be changed by request

Mekong River Cruises. Indochina Sails BRAND GUIDELINES. (*) This brand guidelines is temporary and can be changed by request Mekong River Cruises Indochina Sails BRAND GUIDELINES (*) This brand guidelines is temporary and can be changed by request Contents 1 THE MEKONG RIVER CRUISES - INDOCHINA SAILS BRAND In t ro d u c t io

More information

TWS SERIES TWS PLASTIC ENCLOSURE WITH SILICONE PROTECTOR FEATURE. Operating temperature -10 C~+60 C. Components. Accessories (Optional parts)

TWS SERIES TWS PLASTIC ENCLOSURE WITH SILICONE PROTECTOR FEATURE. Operating temperature -10 C~+60 C. Components. Accessories (Optional parts) TWS SERIES Operatin temperature -10 C~+60 C TWS PLASTIC ENCLOSURE WIT SILICONE PROTECTOR 1 FEATURE Universal plastic enclosure with protective silicone are spriny, anti-slip, and protect of your device

More information

For example some Bookkeepers are using Dropbox to share the accounting files between them and their client.

For example some Bookkeepers are using Dropbox to share the accounting files between them and their client. DropBox vs SugarSync - File storage in the cloud 1 Dropbox There are a number of solutions emerging into the market, which provide users the ability to store files in the cloud, which provide a number

More information

HR DEPARTMENTAL SUFFIX & ORGANIZATION CODES

HR DEPARTMENTAL SUFFIX & ORGANIZATION CODES HR DEPARTMENTAL SUFFIX & ORGANIZATION CODES Department Suffix Organization Academic Affairs and Dean of Faculty, VP AA 1100 Admissions (Undergraduate) AD 1330 Advanced Ceramics, Colorado Center for--ccac

More information

On Frequency Assignment in Cellular Networks

On Frequency Assignment in Cellular Networks On Frequency ssignment in ellular Networks Sanguthevar Rajasekaran Dept.ofISE,Univ. offlorida Gainesville, FL 32611 David Wei Dept. of S, Fordham University New York, NY K. Naik Dept. of S, Univ. of izu

More information

Google Sites: Site Creation and Home Page Design

Google Sites: Site Creation and Home Page Design Google Sites: Site Creation and Home Page Design This is the second tutorial in the Google Sites series. You should already have your site set up. You should know its URL and your Google Sites Login and

More information

User s Manual of BTGP-38KM Bluetooth GPS Data Logger V1.0

User s Manual of BTGP-38KM Bluetooth GPS Data Logger V1.0 User s Manual of BTGP-38KM Bluetooth GPS Data Logger V1.0 I Instruction to Product 1. Summary BTGP-38KM, a high-tech product combines the advanced Bluetooth technology and GPS technology. Through, Bluetooth

More information

Joomla Article Advanced Topics: Table Layouts

Joomla Article Advanced Topics: Table Layouts Joomla Article Advanced Topics: Table Layouts An HTML Table allows you to arrange data text, images, links, etc., into rows and columns of cells. If you are familiar with spreadsheets, you will understand

More information

Simplify your palette

Simplify your palette Simplify your palette ou can create most any spectrum color with a simple six color palette. And, an infinity of tones and shades you ll make by mixing grays and black with your colors... plus color tints

More information

ONLINE LEVEL ONE UMPIRES COURSE PARTICIPANT FACT SHEET

ONLINE LEVEL ONE UMPIRES COURSE PARTICIPANT FACT SHEET About the course The Level One Online Umpire s Course has been designed to assist you in achieving the necessary skills and knowledge to be an effective umpire and enjoy your officiating role. The course

More information

SOMERS POINT BRAND IDENTITY STYLE GUIDE

SOMERS POINT BRAND IDENTITY STYLE GUIDE SOMERS POINT BRAND IDENTITY STYLE GUIDE WHAT IT IS The new Somers Point logo will be the single most recognizable icon used to represent our City. WHY IT MATTERS Our logo immediately identifies our brand.

More information

3704-0147 Lithichrome Stone Paint- LT Blue Gallon 3704-0001 Lithichrome Stone Paint- Blue 2 oz 3704-0055 Lithichrome Stone Paint- Blue 6 oz 3704-0082

3704-0147 Lithichrome Stone Paint- LT Blue Gallon 3704-0001 Lithichrome Stone Paint- Blue 2 oz 3704-0055 Lithichrome Stone Paint- Blue 6 oz 3704-0082 Lithichrome Colors Item Number Item Description 120-COL Lithichrome Stone Paint - Any Size or Color 3704-0011 Lithichrome Stone Paint- LT Blue 2 oz 3704-0066 Lithichrome Stone Paint- LT Blue 6 oz 3704-0093

More information

DNS-327L Compatible List

DNS-327L Compatible List 1. Hard Disk Compatible List: DNS-327L Compatible List Vendor Family Model Interface Capacity HGST Deskstar 7K1000.C HDS721050CLA362 SATA 3G 500 GB HGST Deskstar 7k1000.D HDS721010DLE630 SATA 6G 1 TB HGST

More information

Panda GateDefender Virtual eseries QUICK GUIDE

Panda GateDefender Virtual eseries QUICK GUIDE Panda GateDefender Virtual eseries QUICK GUIDE CONTENTS Panda GateDefender virtual eseries - KVM > What you have and what you need > Panda Virtual Appliance Installation Procedure > Web interface > Choose

More information

System Requirements for Microsoft Dynamics GP 2013

System Requirements for Microsoft Dynamics GP 2013 Page 1 of 5 System Requirements for Microsoft Dynamics GP 2013 Last Modified 12/9/2012 Posted 4/2/2012 This page lists the preliminary system requirements for Microsoft Dynamics GP 2013. The system requirements

More information

GE Lightech LED Driver Programming Tool

GE Lightech LED Driver Programming Tool GE Lightech LED Driver Programming Tool BEFORE YOU BEGIN Read these instructions completely and carefully. 1 Contents Introduction... 3 System requirements... 3 Downloading and installing GE Lightech LED

More information

Week 2: Conditional Probability and Bayes formula

Week 2: Conditional Probability and Bayes formula Week 2: Conditional Probability and Bayes formula We ask the following question: suppose we know that a certain event B has occurred. How does this impact the probability of some other A. This question

More information

GOLD COAST CITY COUNCIL

GOLD COAST CITY COUNCIL GOLD COAST CITY COUNCIL LOCAL LAW NO 5 (DISTRIBUTION OF BUSINESS ADVERTISING PUBLICATIONS AND TOUTING) GOLD COAST CITY COUNCIL LOCAL LAW POLICY NO 5 (DISTRIBUTION OF BUSINESS ADVERTISING PUBLICATIONS AND

More information

More Quadratic Equations

More Quadratic Equations More Quadratic Equations Math 99 N1 Chapter 8 1 Quadratic Equations We won t discuss quadratic inequalities. Quadratic equations are equations where the unknown appears raised to second power, and, possibly

More information

48,00 26,50 18,00 59,50 59,50 54,50. PENNE white 20 x 50. m 2. WHITE glossy 20 x 50. PENNE inserto flower 20 x 50. szt. PENNE border flower 8 x 50

48,00 26,50 18,00 59,50 59,50 54,50. PENNE white 20 x 50. m 2. WHITE glossy 20 x 50. PENNE inserto flower 20 x 50. szt. PENNE border flower 8 x 50 PENNE white WHITE glossy PENNE inserto flower PENNE border flower 8 x 50 PENNE border flower 2,5 x 50 PENNE white, grey 33,3 x 33,3 59,50 59,50 48,00 26,50 18,00 54,50 AMARANTE cream, brown, graphite 29,7

More information

WifiEagle Channel Analyzer

WifiEagle Channel Analyzer Information NUTS ABOUT Technology NETS, Solutions LLC WifiEagle Channel Analyzer CH ANNEL M ETRI CS Performs bandwidth channel Quantify And Predict Throughput Performance Of Each 802.11 Channel analysis

More information

Industrial Automation course

Industrial Automation course Industrial Automation course Lesson 8 PLC Structured text Exercises Politecnico di Milano Universidad de Monterrey, July 2015, A. L. Cologni 1 Exercise 1 Let s consider a rocks transport system based on

More information

APRSstat An APRS Network Analysis Tool

APRSstat An APRS Network Analysis Tool APRSstat An APRS Network Analysis Tool Richard Parry, P.E., W9IF [email protected] http://people.qualcomm.com/rparry ABSTRACT APRSstat monitors network traffic by connecting to an APRS telnet server

More information

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

More information

COMOS FEED Knowledge Base

COMOS FEED Knowledge Base COMOS FEED Knowledge Base White Paper Simple creation and checking of rules for process flow diagrams Summary Controlled planning processes are a fundamental factor in efficient plant engineering. During

More information

Using Your Polyvision Digital Whiteboard and Walk-and-Talk

Using Your Polyvision Digital Whiteboard and Walk-and-Talk Using Your Polyvision Digital Whiteboard and Walk-and-Talk What is Walk-and-Talk? The Walk-and-Talk Digital Whiteboard is a remote control operated interactive system that connects to your computer. You

More information

Kingston Technology DataTraveler Customization Program

Kingston Technology DataTraveler Customization Program Kingston Technology DataTraveler Customization Program KINGSTON.COM/US/USB/CUSTOMIZATION Please fax or email completed form to your Sales Representative. Side A: Kingston Logo Side B: Customer Logo (shown

More information

THE BASICS OF COLOUR THEORY

THE BASICS OF COLOUR THEORY HUE: VALUE: THE BASICS OF COLOUR THEORY Hue is another word for colour, such as blue, red, yellow-green Distinguishes between the lightness (tint) and darkness (shade) of Colours. (TONE) CHROMA: The vibrancy

More information

Mobile Eyewear Recorder

Mobile Eyewear Recorder Mobile Eyewear Recorder 1 2 1. Quality Polaroid Lens from brand makers. 2. User friendly operation button for easy control. 3. With extended memory slot for TF/Micro SD card. 4. Easy connection with PC/Laptops,no

More information

02896 100537 6' LapLink DB25 Male/Male 02897 100534 6' Serial LapLink DB9F/DB25F (4 Connectors)

02896 100537 6' LapLink DB25 Male/Male 02897 100534 6' Serial LapLink DB9F/DB25F (4 Connectors) DB Style Extension Cables 02713 100708 15' DB9 Male to Female 02655 100515 6' DB25 Male to Female 02656 100516 10' DB25 Male to Female 02658 100517 15' DB25 Male to Female 02565 100518 6' DB25 Male to

More information

Telekom Communication Center User manual. version 4.2

Telekom Communication Center User manual. version 4.2 Telekom Communication Center User manual version 4.2 Contents Introduction... 3 System requirements... 4 Installation... 5 Usage... 13 TCC window... 14 Connecting to internet... 15 Installing new phone...

More information

Trailer Bodywork. Plywood Steel & Aluminium Sheet Safety & Security Products

Trailer Bodywork. Plywood Steel & Aluminium Sheet Safety & Security Products Plywood Steel & Aluminium Sheet Safety & Security Products Contents Inspection doors Horsebox, Boxvan & Livestock Horsebox coated panels. HB0, HB0 & HB Horsebox coated panels. HB0, HB0 & HB0 Body panels,

More information

Why use ColorGauge Micro Analyzer with the Micro and Nano Targets?

Why use ColorGauge Micro Analyzer with the Micro and Nano Targets? Image Science Associates introduces a new system to analyze images captured with our 30 patch Micro and Nano targets. Designed for customers who require consistent image quality, the ColorGauge Micro Analyzer

More information

Graphing Equations. with Color Activity

Graphing Equations. with Color Activity Graphing Equations with Color Activity Students must re-write equations into slope intercept form and then graph them on a coordinate plane. 2011 Lindsay Perro Name Date Between The Lines Re-write each

More information

The Foundation User Manual LED Battery Slim Par Fixture (RGBA, DMX 7Ch/4CH)

The Foundation User Manual LED Battery Slim Par Fixture (RGBA, DMX 7Ch/4CH) The Foundation User Manual LED Battery Slim Par Fixture (RGBA, DMX 7Ch/4CH) Page 1 I. Security: 1. Make sure the user voltage cannot higher or lower than the regulating voltage. 2. Please use proper and

More information

NTI INCORPORATED. www.nti1.com 13W3M-15HDF-ID. VGA Monitor-to-SUN Video Port Adapter Installation Manual. Man078 Rev Date October 28, 2004

NTI INCORPORATED. www.nti1.com 13W3M-15HDF-ID. VGA Monitor-to-SUN Video Port Adapter Installation Manual. Man078 Rev Date October 28, 2004 NTI R NETWORK 5 Danner Dr Tel:0-5-00 TECHNOLOGIES Aurora, OH 440 Fax:0-5-999 INCORPORATED www.nti.com WM-5HDF-ID VGA Monitor-to-SUN Video Port Adapter Installation Manual Man0 Rev Date October, 004 Warranty

More information

Industrial Automation course

Industrial Automation course Industrial Automation course Lesson 6 PLC SFC Exercises Politecnico di Milano Universidad de Monterrey, July 2015, A. L. Cologni 1 Exercise 1 Let s consider a rocks transport system based on a cart. The

More information

Data Storage 3.1. Foundations of Computer Science Cengage Learning

Data Storage 3.1. Foundations of Computer Science Cengage Learning 3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

More information

Review for Test 2. Chapters 4, 5 and 6

Review for Test 2. Chapters 4, 5 and 6 Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair six-sided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than

More information

Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median

Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median 58 What is a Ratio? A ratio is a comparison of two numbers. We generally separate the two numbers in the ratio with a

More information