Accelerating CST MWS Performance with GPU and MPI Computing. CST workshop series

Size: px
Start display at page:

Download "Accelerating CST MWS Performance with GPU and MPI Computing. CST workshop series"

Transcription

1 Accelerating CST MWS Performance with GPU and MPI Computing CST workshop series

2 Hardware Based Acceleration Techniques - Overview - Multithreading GPU Computing Distributed Computing MPI Computing CST workshop series

3 Acceleration Dialog All acceleration features can be configured at a central position for all solvers. Multithreading Press the "Acceleration..." button in the solver dialog. 32 GPU Computing Distributed Computing MPI Computing Token Calculator CST workshop series

4 Multicore Computing CST workshop series

5 Multicore Processors - Hardware Overview Nehalem EP - Intel Xeon 5600 (Core i7 workstation) Series Key Facts: Quickpath Interconnect Non Uniform Memory Access (NUMA) Architecture Triple Channel RAM (DDR3) Integrated Memory Controller Per Processor 4/6 Processor Cores CST workshop series

6 GPU Computing CST workshop series

7 GPU Computing - Key Facts - Available for OS: Licensing: Token Scheme Solvers supported: Current GPU hardware supported by CST, NVIDIA Tesla 10 series: 1 GPU 2 GPU 4 GPU Tesla C1060 (no display) - $1,200 Quadro FX $3,000 Quadro Plex 2200 D2 $10,000 Tesla S $8,000 Some Technical Specs of GPU Hardware: 240 Cores per GPU 4 GB GDDR3 memory per GPU Memory Bandwidth 102 GB/s (normal DDR3 RAM: 25.6 GB/s) CST workshop series

8 Windows XP x64 Windows Vista x64 Windows 7 x64 Windows Server 2003 R2 Windows Server 2008 R2 RHEL 4, 5 CentOS 4,5 Supported Configurations Workstations: HPZ800, Dell T7500, etc Servers: 1U, 2U SuperMicro GP-GPU servers CST can assist with hardware recommendation. Further information in support area at (FAQs hardware) CST workshop series

9 GPU Computing - New Hardware (Codename "Fermi") - Supported in CST2011(NVIDIA Tesla 20 series) Tesla C2050: $2,500 Tesla C2070: $4,000 1 GPU 4 GPU Tesla S2050: $13,000 Tesla S2070: Some Technical Specs of GPU Hardware: 512 Cores per GPU C2050/C2070 cards include graphics display 3 GB GDDR5 (C2050,S2050), 6 GB GDDR5 (C2070,S2070) memory per GPU First GPU with Error Protecting Code (ECC) Floating Point Performance strongly improved by factor of about 8 C2050 supported in CST2011 release; C2070 support in 2011 service pack CST workshop series

10 GPU Computing - Performance - Typical Speedup of Solver Loop (Compared to 2 x Quad Core Intel Xeon X5550, 2.66 GHz) "Please note that the performance graph shows the behavior for a certain benchmark. The performance as well as the soft memory limit are problem dependent." CST workshop series

11 GPU Computing - Performance SAM head and Cell phone TIME X GPU 2 X GPU 4 X GPU solver loop 21M Mesh Cells CPU: 2x Intel Xeon E5530, 72 GB RAM GPU: NVIDIA Tesla S CST workshop series

12 MPI Computing CST workshop series

13 MPI Computing - Key Facts - Available for OS: Licensing: Token Scheme Solvers supported: ( supported in v2011) Technical Requirements: TCP/IP network connection between nodes. (IB supported in v2011). Homogeneous cluster strongly recommended. Further information: CST workshop series

14 MPI Computing - Working Principle - The simulation model (computational domain) is split into parts (subdomains). Those subdomains are sent to the compute nodes. All calculations necessary for such a subdomain is done locally on the compute node. Subdomain Boundary Simulation Model Node 1 Node 2 Node 3 Data exchange for subdomain boundaries is necessary during each time step. Interconnection Network CST workshop series

15 MPI Computing - MPI Cluster Update - Reference Installation Update Package After the update all nodes are consistent with the reference installation. CST workshop series

16 CST workshop series MPI Computing - Airbus A320 Benchmark-

17 MPI Computing - Airbus A320 Benchmark - 8 MPI nodes; 8 Blade cluster Each node: (8) E5520, 2.3GHz; 24GB DDR3 RAM 384M cells; also run with 1B cells! CST workshop series

18 MPI Computing - Airbus A320 Benchmark - Plane Wave Excitation, FarField output CST workshop series

19 MPI Computing + GPU Computing - Combined MPI Computing and GPU Computing - As the capacity of the GPU hardware is limited. Combined MPI and GPU Computing provides a possibility to combine GPU accelerated nodes to form an MPI cluster. This helps to increase the maximum model size. Each MPI node can be accelerated by GPU hardware. CST workshop series

20 Domain Decomposition Cluster Computing Matrix calculation and transient solution distributed Memory & CPU balancing Complex model split into sub-structures (domains) for solution on a cluster CST workshop series

21 MPI+GPU Computing Performance typical model - 100M cells Test Case # Nodes # Cores per Node # GPUs per Node Total # GPUs Pure CPU 1 2x4 0 0 MPI 8 2x4 0 0 GPU 1 2x4 4 4 MPI+GPU 4 2x Speedup Pure CPU MPI GPU MPI+GPU CST workshop series

22 Mixing Acceleration Features The following table gives you an overview of which combinations of acceleration features are possible for the solvers supporting the feature. Multithreading GPU Computing MPI Computing Distributed Computing Multithreading - GPU Computing - MPI Computing - Distributed Computing - CST workshop series

23 Acceleration Features - Which Acceleration Technique should I use? - Solver Transient Transient Transient Frequency Domain Model Size below memory limit of GPU hardware below memory limit of GPU hardware above memory limit of GPU hardware Number of Simulations low medium/high Acceleration Technique GPU Computing GPU Computing on a DC Cluster - MPI or Combined MPI+GPU Computing - medium/high Distributed Computing (DC) MPI (v2011) Non HPC simulation getting faster too - cooperation with chip manufacturers helps enhance multithreading, memory layout optimizations, workflow improvement etc. CST workshop series

24 Acceleration Token Concept - Unified License for all Acceleration Features - GPU Computing Distributed Computing MPI Computing CST workshop series

25 Acceleration Token Concept - Token Table / Example - Example: CST workshop series

26 External Job Queuing Linux Batch Computing CST workshop series

27 Job Queuing on Linux Clusters CST MWS T!, F!, I! solver batch computing supported on Linux clusters Separate Linux DVD LSF, PBS, Torque, OGE job schedulers CST workshop series

High Performance Computing in CST STUDIO SUITE

High Performance Computing in CST STUDIO SUITE High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver

More information

High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates

High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of

More information

SUBJECT: SOLIDWORKS HARDWARE RECOMMENDATIONS - 2013 UPDATE

SUBJECT: SOLIDWORKS HARDWARE RECOMMENDATIONS - 2013 UPDATE SUBJECT: SOLIDWORKS RECOMMENDATIONS - 2013 UPDATE KEYWORDS:, CORE, PROCESSOR, GRAPHICS, DRIVER, RAM, STORAGE SOLIDWORKS RECOMMENDATIONS - 2013 UPDATE Below is a summary of key components of an ideal SolidWorks

More information

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

GPU System Architecture. Alan Gray EPCC The University of Edinburgh GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems

More information

Recent Advances in HPC for Structural Mechanics Simulations

Recent Advances in HPC for Structural Mechanics Simulations Recent Advances in HPC for Structural Mechanics Simulations 1 Trends in Engineering Driving Demand for HPC Increase product performance and integrity in less time Consider more design variants Find the

More information

Hardware Acceleration for CST MICROWAVE STUDIO

Hardware Acceleration for CST MICROWAVE STUDIO Hardware Acceleration for CST MICROWAVE STUDIO Chris Mason Product Manager Amy Dewis Channel Manager Agenda 1. Introduction 2. Why use Hardware Acceleration? 3. Hardware Acceleration Technologies 4. Current

More information

Parallel Computing with MATLAB

Parallel Computing with MATLAB Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best

More information

A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures

A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures 11 th International LS-DYNA Users Conference Computing Technology A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures Yih-Yih Lin Hewlett-Packard Company Abstract In this paper, the

More information

Accelerating CFD using OpenFOAM with GPUs

Accelerating CFD using OpenFOAM with GPUs Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide

More information

Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture

Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive

More information

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,

More information

RWTH GPU Cluster. Sandra Wienke wienke@rz.rwth-aachen.de November 2012. Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky

RWTH GPU Cluster. Sandra Wienke wienke@rz.rwth-aachen.de November 2012. Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky RWTH GPU Cluster Fotos: Christian Iwainsky Sandra Wienke wienke@rz.rwth-aachen.de November 2012 Rechen- und Kommunikationszentrum (RZ) The RWTH GPU Cluster GPU Cluster: 57 Nvidia Quadro 6000 (Fermi) innovative

More information

HPC Cluster Decisions and ANSYS Configuration Best Practices. Diana Collier Lead Systems Support Specialist Houston UGM May 2014

HPC Cluster Decisions and ANSYS Configuration Best Practices. Diana Collier Lead Systems Support Specialist Houston UGM May 2014 HPC Cluster Decisions and ANSYS Configuration Best Practices Diana Collier Lead Systems Support Specialist Houston UGM May 2014 1 Agenda Introduction Lead Systems Support Specialist Cluster Decisions Job

More information

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France

More information

Trends in High-Performance Computing for Power Grid Applications

Trends in High-Performance Computing for Power Grid Applications Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views

More information

ANSYS Computing Platform Support. July 2013

ANSYS Computing Platform Support. July 2013 ANSYS Computing Platform Support July 2013 1 Outline Computing platform trends and support roadmap Windows Linux Solaris ANSYS 14.5 Platform Support By application Other Platform Related Issues MPI and

More information

How to choose a suitable computer

How to choose a suitable computer How to choose a suitable computer This document provides more specific information on how to choose a computer that will be suitable for scanning and post-processing your data with Artec Studio. While

More information

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

CORRIGENDUM TO TENDER FOR HIGH PERFORMANCE SERVER

CORRIGENDUM TO TENDER FOR HIGH PERFORMANCE SERVER CORRIGENDUM TO TENDER FOR HIGH PERFORMANCE SERVER Tender Notice No. 3/2014-15 dated 29.12.2014 (IIT/CE/ENQ/COM/HPC/2014-15/569) Tender Submission Deadline Last date for submission of sealed bids is extended

More information

HP Blade Workstation Solution FAQ

HP Blade Workstation Solution FAQ HP Blade Workstation Solution FAQ Index Blade and infrastructure...2 Client...4 Configuration and ordering...6 Q: What is the HP Blade Workstation Solution? A: The HP Blade Workstation Solution is a complete

More information

A general-purpose virtualization service for HPC on cloud computing: an application to GPUs

A general-purpose virtualization service for HPC on cloud computing: an application to GPUs A general-purpose virtualization service for HPC on cloud computing: an application to GPUs R.Montella, G.Coviello, G.Giunta* G. Laccetti #, F. Isaila, J. Garcia Blas *Department of Applied Science University

More information

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:

More information

GPUs for Scientific Computing

GPUs for Scientific Computing GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles mike.giles@maths.ox.ac.uk Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research

More information

The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices

The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices

More information

Cloud Computing through Virtualization and HPC technologies

Cloud Computing through Virtualization and HPC technologies Cloud Computing through Virtualization and HPC technologies William Lu, Ph.D. 1 Agenda Cloud Computing & HPC A Case of HPC Implementation Application Performance in VM Summary 2 Cloud Computing & HPC HPC

More information

~ Greetings from WSU CAPPLab ~

~ Greetings from WSU CAPPLab ~ ~ Greetings from WSU CAPPLab ~ Multicore with SMT/GPGPU provides the ultimate performance; at WSU CAPPLab, we can help! Dr. Abu Asaduzzaman, Assistant Professor and Director Wichita State University (WSU)

More information

GPGPU accelerated Computational Fluid Dynamics

GPGPU accelerated Computational Fluid Dynamics t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute

More information

LabStats 5 System Requirements

LabStats 5 System Requirements LabStats Tel: 877-299-6241 255 B St, Suite 201 Fax: 208-473-2989 Idaho Falls, ID 83402 LabStats 5 System Requirements Server Component Virtual Servers: There is a limit to the resources available to virtual

More information

Brainlab Node TM Technical Specifications

Brainlab Node TM Technical Specifications Brainlab Node TM Technical Specifications BRAINLAB NODE TM HP ProLiant DL360p Gen 8 CPU: Chipset: RAM: HDD: RAID: Graphics: LAN: HW Monitoring: Height: Width: Length: Weight: Operating System: 2x Intel

More information

A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS

A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS SUDHAKARAN.G APCF, AERO, VSSC, ISRO 914712564742 g_suhakaran@vssc.gov.in THOMAS.C.BABU APCF, AERO, VSSC, ISRO 914712565833

More information

1 DCSC/AU: HUGE. DeIC Sekretariat 2013-03-12/RB. Bilag 1. DeIC (DCSC) Scientific Computing Installations

1 DCSC/AU: HUGE. DeIC Sekretariat 2013-03-12/RB. Bilag 1. DeIC (DCSC) Scientific Computing Installations Bilag 1 2013-03-12/RB DeIC (DCSC) Scientific Computing Installations DeIC, previously DCSC, currently has a number of scientific computing installations, distributed at five regional operating centres.

More information

Several tips on how to choose a suitable computer

Several tips on how to choose a suitable computer Several tips on how to choose a suitable computer This document provides more specific information on how to choose a computer that will be suitable for scanning and postprocessing of your data with Artec

More information

ANSYS Computing Platform Support. June 2014

ANSYS Computing Platform Support. June 2014 ANSYS Computing Platform Support June 2014 1 Outline Computing platform trends and support roadmap Windows Linux ANSYS 15.0 Platform Support By application Other Platform Related Issues MPI and Interconnect

More information

Enabling Technologies for Distributed Computing

Enabling Technologies for Distributed Computing Enabling Technologies for Distributed Computing Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF Multi-core CPUs and Multithreading Technologies

More information

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*

More information

Efficient Parallel Graph Exploration on Multi-Core CPU and GPU

Efficient Parallel Graph Exploration on Multi-Core CPU and GPU Efficient Parallel Graph Exploration on Multi-Core CPU and GPU Pervasive Parallelism Laboratory Stanford University Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun Graph and its Applications Graph Fundamental

More information

Turbomachinery CFD on many-core platforms experiences and strategies

Turbomachinery CFD on many-core platforms experiences and strategies Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29

More information

Purchase of High Performance Computing (HPC) Central Compute Resources by Northwestern Researchers

Purchase of High Performance Computing (HPC) Central Compute Resources by Northwestern Researchers Information Technology Purchase of High Performance Computing (HPC) Central Compute Resources by Northwestern Researchers Effective for FY2016 Purpose This document summarizes High Performance Computing

More information

Using the Windows Cluster

Using the Windows Cluster Using the Windows Cluster Christian Terboven terboven@rz.rwth aachen.de Center for Computing and Communication RWTH Aachen University Windows HPC 2008 (II) September 17, RWTH Aachen Agenda o Windows Cluster

More information

An introduction to Fyrkat

An introduction to Fyrkat Cluster Computing May 25, 2011 How to get an account https://fyrkat.grid.aau.dk/useraccount How to get help https://fyrkat.grid.aau.dk/wiki What is a Cluster Anyway It is NOT something that does any of

More information

Workshop on Parallel and Distributed Scientific and Engineering Computing, Shanghai, 25 May 2012

Workshop on Parallel and Distributed Scientific and Engineering Computing, Shanghai, 25 May 2012 Scientific Application Performance on HPC, Private and Public Cloud Resources: A Case Study Using Climate, Cardiac Model Codes and the NPB Benchmark Suite Peter Strazdins (Research School of Computer Science),

More information

ArcGIS Pro: Virtualizing in Citrix XenApp and XenDesktop. Emily Apsey Performance Engineer

ArcGIS Pro: Virtualizing in Citrix XenApp and XenDesktop. Emily Apsey Performance Engineer ArcGIS Pro: Virtualizing in Citrix XenApp and XenDesktop Emily Apsey Performance Engineer Presentation Overview What it takes to successfully virtualize ArcGIS Pro in Citrix XenApp and XenDesktop - Shareable

More information

1 Bull, 2011 Bull Extreme Computing

1 Bull, 2011 Bull Extreme Computing 1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance

More information

PSE Molekulardynamik

PSE Molekulardynamik OpenMP, bigger Applications 12.12.2014 Outline Schedule Presentations: Worksheet 4 OpenMP Multicore Architectures Membrane, Crystallization Preparation: Worksheet 5 2 Schedule 10.10.2014 Intro 1 WS 24.10.2014

More information

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it t.diamanti@cineca.it Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

More information

Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing

Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing Microsoft Windows Compute Cluster Server 2003 Partner Solution Brief Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing Microsoft Windows Compute Cluster Server Runs

More information

Building a Top500-class Supercomputing Cluster at LNS-BUAP

Building a Top500-class Supercomputing Cluster at LNS-BUAP Building a Top500-class Supercomputing Cluster at LNS-BUAP Dr. José Luis Ricardo Chávez Dr. Humberto Salazar Ibargüen Dr. Enrique Varela Carlos Laboratorio Nacional de Supercómputo Benemérita Universidad

More information

OpenMP Programming on ScaleMP

OpenMP Programming on ScaleMP OpenMP Programming on ScaleMP Dirk Schmidl schmidl@rz.rwth-aachen.de Rechen- und Kommunikationszentrum (RZ) MPI vs. OpenMP MPI distributed address space explicit message passing typically code redesign

More information

PRIMERGY server-based High Performance Computing solutions

PRIMERGY server-based High Performance Computing solutions PRIMERGY server-based High Performance Computing solutions PreSales - May 2010 - HPC Revenue OS & Processor Type Increasing standardization with shift in HPC to x86 with 70% in 2008.. HPC revenue by operating

More information

Qualified Apple Mac Workstations for Avid Media Composer v5.0.x

Qualified Apple Mac Workstations for Avid Media Composer v5.0.x Qualified Apple Mac Workstations for Media Composer v5.0.x Qualified Workstation Two 2.66GHz 6-Core Intel Xeon Westmere (12 cores) 6 GB Ram (6x1GB) ATI Radeon HD 5770 1GB ^ Nitris Mojo Mojo Mojo SDI or

More information

Qualified PC Workstations for Avid Media Composer v5.5, Avid NewsCutter v9.5, Avid Assist 2.3, and Avid Instinct 3.5

Qualified PC Workstations for Avid Media Composer v5.5, Avid NewsCutter v9.5, Avid Assist 2.3, and Avid Instinct 3.5 Qualified PC s f Media Composer v5.5, NewsCutter v9.5, Assist 2.3, and Instinct 3.5 Qualified HP Z820 Dual 6 Ce Intel Xeon E5-2640 2.5 GHz NVIDIA Quadro 4000 NVIDIA Quadro K4000 16GB (8x2GB) 32GB (8x4GB)

More information

Enabling Technologies for Distributed and Cloud Computing

Enabling Technologies for Distributed and Cloud Computing Enabling Technologies for Distributed and Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Multi-core CPUs and Multithreading

More information

HP Workstations graphics card options

HP Workstations graphics card options Family data sheet HP Workstations graphics card options Quick reference guide Leading-edge professional graphics February 2013 A full range of graphics cards to meet your performance needs compare features

More information

PERFORMANCE ENHANCEMENTS IN TreeAge Pro 2014 R1.0

PERFORMANCE ENHANCEMENTS IN TreeAge Pro 2014 R1.0 PERFORMANCE ENHANCEMENTS IN TreeAge Pro 2014 R1.0 15 th January 2014 Al Chrosny Director, Software Engineering TreeAge Software, Inc. achrosny@treeage.com Andrew Munzer Director, Training and Customer

More information

Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server

Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server Technology brief Introduction... 2 GPU-based computing... 2 ProLiant SL390s GPU-enabled architecture... 2 Optimizing

More information

Performance Measurement of a High-Performance Computing System Utilized for Electronic Medical Record Management

Performance Measurement of a High-Performance Computing System Utilized for Electronic Medical Record Management Performance Measurement of a High-Performance Computing System Utilized for Electronic Medical Record Management 1 Kiran George, 2 Chien-In Henry Chen 1,Corresponding Author Computer Engineering Program,

More information

Minimum Hardware Specifications Upgrades

Minimum Hardware Specifications Upgrades Minimum Hardware Specifications Upgrades http://www.varian.com/hardwarespecs Eclipse TM treatment planning system Hardware V 11.0 1 TPS Version 11.0 Minimum Hardware Specifications [DELL OS supported upgrade

More information

Several tips on how to choose a suitable computer

Several tips on how to choose a suitable computer Several tips on how to choose a suitable computer This document provides more specific information on how to choose a computer that will be suitable for scanning and postprocessing of your data with Artec

More information

Introduction to High Performance Cluster Computing. Cluster Training for UCL Part 1

Introduction to High Performance Cluster Computing. Cluster Training for UCL Part 1 Introduction to High Performance Cluster Computing Cluster Training for UCL Part 1 What is HPC HPC = High Performance Computing Includes Supercomputing HPCC = High Performance Cluster Computing Note: these

More information

Visualization Cluster Getting Started

Visualization Cluster Getting Started Visualization Cluster Getting Started Contents 1 Introduction to the Visualization Cluster... 1 2 Visualization Cluster hardware and software... 2 3 Remote visualization session through VNC... 2 4 Starting

More information

Small Business Upgrades to Reliable, High-Performance Intel Xeon Processor-based Workstations to Satisfy Complex 3D Animation Needs

Small Business Upgrades to Reliable, High-Performance Intel Xeon Processor-based Workstations to Satisfy Complex 3D Animation Needs Small Business Upgrades to Reliable, High-Performance Intel Xeon Processor-based Workstations to Satisfy Complex 3D Animation Needs Intel, BOXX Technologies* and Caffelli* collaborated to deploy a local

More information

FLOW-3D Performance Benchmark and Profiling. September 2012

FLOW-3D Performance Benchmark and Profiling. September 2012 FLOW-3D Performance Benchmark and Profiling September 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: FLOW-3D, Dell, Intel, Mellanox Compute

More information

Parallel Large-Scale Visualization

Parallel Large-Scale Visualization Parallel Large-Scale Visualization Aaron Birkland Cornell Center for Advanced Computing Data Analysis on Ranger January 2012 Parallel Visualization Why? Performance Processing may be too slow on one CPU

More information

Overview of HPC Resources at Vanderbilt

Overview of HPC Resources at Vanderbilt Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources

More information

Scaling from Workstation to Cluster for Compute-Intensive Applications

Scaling from Workstation to Cluster for Compute-Intensive Applications Cluster Transition Guide: Scaling from Workstation to Cluster for Compute-Intensive Applications IN THIS GUIDE: The Why: Proven Performance Gains On Cluster Vs. Workstation The What: Recommended Reference

More information

HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK

HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK Steve Oberlin CTO, Accelerated Computing US to Build Two Flagship Supercomputers SUMMIT SIERRA Partnership for Science 100-300 PFLOPS Peak Performance

More information

Pedraforca: ARM + GPU prototype

Pedraforca: ARM + GPU prototype www.bsc.es Pedraforca: ARM + GPU prototype Filippo Mantovani Workshop on exascale and PRACE prototypes Barcelona, 20 May 2014 Overview Goals: Test the performance, scalability, and energy efficiency of

More information

HPC Wales Skills Academy Course Catalogue 2015

HPC Wales Skills Academy Course Catalogue 2015 HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses

More information

IBM Platform Computing Cloud Service Ready to use Platform LSF & Symphony clusters in the SoftLayer cloud

IBM Platform Computing Cloud Service Ready to use Platform LSF & Symphony clusters in the SoftLayer cloud IBM Platform Computing Cloud Service Ready to use Platform LSF & Symphony clusters in the SoftLayer cloud February 25, 2014 1 Agenda v Mapping clients needs to cloud technologies v Addressing your pain

More information

Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer

Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer Stan Posey, MSc and Bill Loewe, PhD Panasas Inc., Fremont, CA, USA Paul Calleja, PhD University of Cambridge,

More information

Multicore Parallel Computing with OpenMP

Multicore Parallel Computing with OpenMP Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large

More information

Tekla Structures 18 Hardware Recommendation

Tekla Structures 18 Hardware Recommendation 1 (5) Tekla Structures 18 Hardware Recommendation Recommendations for Tekla Structures workstations Tekla Structures hardware recommendations are based on the setups that have been used in testing Tekla

More information

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip. Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide

More information

Intel Solid- State Drive Data Center P3700 Series NVMe Hybrid Storage Performance

Intel Solid- State Drive Data Center P3700 Series NVMe Hybrid Storage Performance Intel Solid- State Drive Data Center P3700 Series NVMe Hybrid Storage Performance Hybrid Storage Performance Gains for IOPS and Bandwidth Utilizing Colfax Servers and Enmotus FuzeDrive Software NVMe Hybrid

More information

SGI HPC Systems Help Fuel Manufacturing Rebirth

SGI HPC Systems Help Fuel Manufacturing Rebirth SGI HPC Systems Help Fuel Manufacturing Rebirth Created by T A B L E O F C O N T E N T S 1.0 Introduction 1 2.0 Ongoing Challenges 1 3.0 Meeting the Challenge 2 4.0 SGI Solution Environment and CAE Applications

More information

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.

More information

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming Overview Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.

More information

Deep Learning GPU-Based Hardware Platform

Deep Learning GPU-Based Hardware Platform Deep Learning GPU-Based Hardware Platform Hardware and Software Criteria and Selection Mourad Bouache Yahoo! Performance Engineering Group Sunnyvale, CA +1.408.784.1446 bouache@yahoo-inc.com John Glover

More information

Qualified Apple Mac Systems for Media Composer 8.0

Qualified Apple Mac Systems for Media Composer 8.0 Qualified Apple Mac Systems for Media Composer 8.0 System Version Supported* Nitris Mojo ISIS Notes** 16, 32 or 64 GB DDR3-1866Mhz ECC memory (4 DIMMs required) Mac Pro 3.5 Ghz 6- core, 3.0 Ghz 8-core,

More information

Logically a Linux cluster looks something like the following: Compute Nodes. user Head node. network

Logically a Linux cluster looks something like the following: Compute Nodes. user Head node. network A typical Linux cluster consists of a group of compute nodes for executing parallel jobs and a head node to which users connect to build and launch their jobs. Often the compute nodes are connected to

More information

Dell High-Performance Computing Clusters and Reservoir Simulation Research at UT Austin. http://www.dell.com/clustering

Dell High-Performance Computing Clusters and Reservoir Simulation Research at UT Austin. http://www.dell.com/clustering Dell High-Performance Computing Clusters and Reservoir Simulation Research at UT Austin Reza Rooholamini, Ph.D. Director Enterprise Solutions Dell Computer Corp. Reza_Rooholamini@dell.com http://www.dell.com/clustering

More information

ALPS Supercomputing System A Scalable Supercomputer with Flexible Services

ALPS Supercomputing System A Scalable Supercomputer with Flexible Services ALPS Supercomputing System A Scalable Supercomputer with Flexible Services 1 Abstract Supercomputing is moving from the realm of abstract to mainstream with more and more applications and research being

More information

Autodesk Revit 2016 Product Line System Requirements and Recommendations

Autodesk Revit 2016 Product Line System Requirements and Recommendations Autodesk Revit 2016 Product Line System Requirements and Recommendations Autodesk Revit 2016, Autodesk Revit Architecture 2016, Autodesk Revit MEP 2016, Autodesk Revit Structure 2016 Minimum: Entry-Level

More information

High Performance Computing Infrastructure at DESY

High Performance Computing Infrastructure at DESY High Performance Computing Infrastructure at DESY Sven Sternberger & Frank Schlünzen High Performance Computing Infrastructures at DESY DV-Seminar / 04 Feb 2013 Compute Infrastructures at DESY - Outline

More information

The Lattice Project: A Multi-Model Grid Computing System. Center for Bioinformatics and Computational Biology University of Maryland

The Lattice Project: A Multi-Model Grid Computing System. Center for Bioinformatics and Computational Biology University of Maryland The Lattice Project: A Multi-Model Grid Computing System Center for Bioinformatics and Computational Biology University of Maryland Parallel Computing PARALLEL COMPUTING a form of computation in which

More information

Cloud Computing. Alex Crawford Ben Johnstone

Cloud Computing. Alex Crawford Ben Johnstone Cloud Computing Alex Crawford Ben Johnstone Overview What is cloud computing? Amazon EC2 Performance Conclusions What is the Cloud? A large cluster of machines o Economies of scale [1] Customers use a

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware

More information

JUROPA Linux Cluster An Overview. 19 May 2014 Ulrich Detert

JUROPA Linux Cluster An Overview. 19 May 2014 Ulrich Detert Mitglied der Helmholtz-Gemeinschaft JUROPA Linux Cluster An Overview 19 May 2014 Ulrich Detert JuRoPA JuRoPA Jülich Research on Petaflop Architectures Bull, Sun, ParTec, Intel, Mellanox, Novell, FZJ JUROPA

More information

Intel Cluster Ready Appro Xtreme-X Computers with Mellanox QDR Infiniband

Intel Cluster Ready Appro Xtreme-X Computers with Mellanox QDR Infiniband Intel Cluster Ready Appro Xtreme-X Computers with Mellanox QDR Infiniband A P P R O I N T E R N A T I O N A L I N C Steve Lyness Vice President, HPC Solutions Engineering slyness@appro.com Company Overview

More information

Dragon Medical Enterprise Network Edition Technical Note: Requirements for DMENE Networks with virtual servers

Dragon Medical Enterprise Network Edition Technical Note: Requirements for DMENE Networks with virtual servers Dragon Medical Enterprise Network Edition Technical Note: Requirements for DMENE Networks with virtual servers This section includes system requirements for DMENE Network configurations that utilize virtual

More information

Comparing the performance of the Landmark Nexus reservoir simulator on HP servers

Comparing the performance of the Landmark Nexus reservoir simulator on HP servers WHITE PAPER Comparing the performance of the Landmark Nexus reservoir simulator on HP servers Landmark Software & Services SOFTWARE AND ASSET SOLUTIONS Comparing the performance of the Landmark Nexus

More information

OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC

OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,

More information

Avigilon Control Center Server User Guide

Avigilon Control Center Server User Guide Avigilon Control Center Server User Guide Version 4.10 PDF-SERVER-D-Rev1 Copyright 2011 Avigilon. All rights reserved. The information presented is subject to change without notice. No copying, distribution,

More information

Parallel Processing using the LOTUS cluster

Parallel Processing using the LOTUS cluster Parallel Processing using the LOTUS cluster Alison Pamment / Cristina del Cano Novales JASMIN/CEMS Workshop February 2015 Overview Parallelising data analysis LOTUS HPC Cluster Job submission on LOTUS

More information

ST810 Advanced Computing

ST810 Advanced Computing ST810 Advanced Computing Lecture 17: Parallel computing part I Eric B. Laber Hua Zhou Department of Statistics North Carolina State University Mar 13, 2013 Outline computing Hardware computing overview

More information

Building Clusters for Gromacs and other HPC applications

Building Clusters for Gromacs and other HPC applications Building Clusters for Gromacs and other HPC applications Erik Lindahl lindahl@cbr.su.se CBR Outline: Clusters Clusters vs. small networks of machines Why do YOU need a cluster? Computer hardware Network

More information

Autodesk 3ds Max 2010 Boot Camp FAQ

Autodesk 3ds Max 2010 Boot Camp FAQ Autodesk 3ds Max 2010 Boot Camp Frequently Asked Questions (FAQ) Frequently Asked Questions and Answers This document provides questions and answers about using Autodesk 3ds Max 2010 software with the

More information

High-Density Network Flow Monitoring

High-Density Network Flow Monitoring Petr Velan petr.velan@cesnet.cz High-Density Network Flow Monitoring IM2015 12 May 2015, Ottawa Motivation What is high-density flow monitoring? Monitor high traffic in as little rack units as possible

More information