T s and F s. Statistical testing for means. FETP India
|
|
|
- Erick Morton
- 9 years ago
- Views:
Transcription
1 T s and F s Statistical testing for means FETP India
2 Competency to be gained from this lecture Test the statistical significance of the difference between two means
3 Key elements Paired and unpaired data Paired t-test Unpaired t-test F test
4 Means Proportion Application of the concept of statistical testing Measures of association Paired and unpaired data
5 Statistical testing for means Means T-test for paired data T-test for unpaired data F-test to test the difference in variances Proportion Measures of association Paired and unpaired data
6 Comparing unpaired data Concept Comparing a bag of observations against another bag of observations Example The mean height of the children in one class versus versus the height of the children in another Paired and unpaired data
7 Comparing paired data Concept Comparing pairs of observations that are linked with each other Example Pre and post treatment values of a parameter in a group of subjects Paired and unpaired data
8 Paired and unpaired t-tests To test the difference between two sample means that are paired (e.g., before and after treatment) or matched (e.g., patients matched for age, sex, etc) Use PAIRED t-test To test the difference between two sample means that are not paired / unmatched Use UNPAIRED (independent) t-test Paired and unpaired data
9 Example Drug trial Drug A and Drug B Two groups have equal initial blood sugars levels Question: Does the drug have an impact on the blood sugar level? Null hypothesis There is no difference between the mean blood sugar levels before and after treatment Paired and unpaired data
10 Options available for the example considered Two paired t-tests Each group has an initial and a post treatment values Two paired t-tests are possible for each group This option is adapted to a research question examining the individual relevance of each drug One unpaired test test on final value This option is adapted to a research question comparing the two drugs Paired and unpaired data
11 Methods to calculate the paired t-test: Concept We test the probability that the difference between the paired data is equal to 0 Paired t-test
12 Methods to calculate the paired t-test: Formula (1/2) Number of pairs: n Value before Rx: a Value after treatment: b Difference: Mean (d):
13 Methods to calculate the paired t-test: Formula (2/2) Variance (d):
14 Illustration of an application of the t-test Drug No of patients Fasting blood sugar (mg%) Initial Final Decrease A * B * * Statistically Significant ( P < 0.05) Paired t-test
15 Numerical example of paired t - test Patient number Erythrocyte sedimentation rate - 1 hour (mm) Before Rx (a) After Rx (b) Difference (a b) = d Square of difference (d 2 ) 289 1,088 1, , Total ,652 Paired t-test
16 d = 256 ; n = 10 ; d = 256/10 = 25.6 d 2 = 7652 Variance (s 2 ) = 1 d n 1 ( d n 2 2 ) 1 (256) = = S s = = = d 25.6 s / n / 10 t = = = 7.33 with 9 d.f. 2 Paired t-test
17 Inference Calculated value of t= degrees of freedom (df) Tabulated value of t (df=9)(0.1%) = The value of t-cal exceeding the value of t-tab The treatment had a significant benefit in reducing the erythrocyte sedimentation rate (P < 0.001) The mean erythrocyte sedimentation rate after treatment (7.0 mm) is significantly lower than the mean pre-treatment ESR value (32.6 mm) Paired t-test
18 Methods to calculate the unpaired t-test: Concept The pooled variance is a weighted average of the two variances If the two sample sizes are equal, the pooled variance is the mean of the two variances The t-table is identical for unpaired and paired data Unpaired t-test
19 Methods to calculate the unpaired t-test: Formula Sample I Sample II Size n 1 n 2 Mean x 1 x 2 Variance s 2 1 s 2 2 To test the significance of the difference between the two sample means, calculate x1 x2 x x SE( x x2) 1 2 t = = 1 s 2 1 n 1 1 n 2 (n 1-1) s (n 2-1) s 2 2 where s 2 = (n 1-1) + (n 2-1) t follows a t distribution with (n 1 + n 2-2) df Unpaired t-test
20 Numerical example of unpaired t -test Comparing the 24-hour total energy expenditure among an obese and a lean group Null hypothesis: There is no difference between the mean energy expenditure between the two groups
21 t cal > t tab indicate that the mean energy expenditure in obese group (10.3) is significantly (P<0.001) higher than that of lean group (8.1) Unpaired t-test
22 Underlying assumptions of the unpaired t-test 1. The distributions of x1 and x2 are normal 2. The population variances of x1 and x2 are equal However, minor deviations from these assumptions do not affect the validity of the test Unpaired t-test
23 Un-paired t-test on paired data It would be inefficient to test paired observations as though they were unpaired Consequences: Underestimation of t - value Overestimation of probability value Undercalling of significant difference Unpaired t-test
24 Unequal variances Variances in the two samples may differ considerably from one another Example: Two technicians, one experienced (more consistent) and the other relatively inexperienced (more variable) undertake a blood count Both technicians are estimating the same population mean value The more experienced one will have a smaller variability in his readings than the less experienced one F test
25 Possible course of action for situations with unequal variances No course of action will suit all situations Options: Transform the values to some other scale (e.g. logarithmic) to equalize variances Use specific methods when this is not possible: Modified t test Fisher-Behren s test F test
26 Variance ratio test (F- test) To test the equality of two variances, s12 and s22, we use a statistical test called the variance ratio test (F-test) Calculate the ratio of the larger variance to the smaller variance s12 i.e., F = (s12 - larger variance) s22 F follows a F-distribution with (n1 1) and (n2 1) degrees of freedom F test
27 Example of variance ratio test (F-test) Variance in the infected group 10.9 (n1= 10) Variance in the control group 5.9 (n2 = 12) F is calculated as = 10.9 / 5.9 = ,11 degrees of freedom (n1 and n2-1) Tabulated F 9,11(5%) = 2.92 A calculated F (Fcal) smaller than the tabulated F (Ftab) indicates that the variances are equal F test
28 Assumptions of the variance ratio F test The two samples must be independent e.g., Two series of patients and not the same patients tested twice (before and after treatment) Both samples must have come from a normal distribution F test
29 What test should be used to test the difference between two means? Test the difference between two sample mean values Values are paired / matched Values are unpaired / unmatched Paired t-test Check if variances are equal Equal variances Different variances Unpaired t-test Modified t-test Fisher-Behren test
30 Key messages Determine whether the data are paired Used paired t-test for paired data Used unpaired t-test for unpaired data if the variances are comparable Test for the difference in variance with F- test and use other tests if variances differ
THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption
Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular
Chapter 2 Probability Topics SPSS T tests
Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform
Section 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
Difference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples
Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The
3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
Confidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
Statistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
Mind on Statistics. Chapter 13
Mind on Statistics Chapter 13 Sections 13.1-13.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question
Non-Parametric Tests (I)
Lecture 5: Non-Parametric Tests (I) KimHuat LIM [email protected] http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent
UNIVERSITY OF NAIROBI
UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER
Inference for two Population Means
Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)
Non-Inferiority Tests for Two Means using Differences
Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous
Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means
Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test
The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation
POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.
Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression
Math 108 Exam 3 Solutions Spring 00
Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8
Standard Deviation Estimator
CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of
CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
Two-Sample T-Tests Assuming Equal Variance (Enter Means)
Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of
UNDERSTANDING THE TWO-WAY ANOVA
UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
Lecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish
Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish Statistics Statistics are quantitative methods of describing, analysing, and drawing inferences (conclusions)
Principles of Hypothesis Testing for Public Health
Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine [email protected] Fall 2011 Answers to Questions
Two-sample hypothesis testing, II 9.07 3/16/2004
Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,
Introduction to Analysis of Variance (ANOVA) Limitations of the t-test
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only
Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.
Practice problems for Homework 1 - confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the
Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS
Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple
12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
2 Sample t-test (unequal sample sizes and unequal variances)
Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing
Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples
Statistics One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours
Erik Parner 14 September 2016. Basic Biostatistics - Day 2-21 September, 2016 1
PhD course in Basic Biostatistics Day Erik Parner, Department of Biostatistics, Aarhus University Log-transformation of continuous data Exercise.+.4+Standard- (Triglyceride) Logarithms and exponentials
DATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
Sample Size and Power in Clinical Trials
Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance
Hypothesis Testing: Two Means, Paired Data, Two Proportions
Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this
Odds ratio, Odds ratio test for independence, chi-squared statistic.
Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review
Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science [email protected]
Dept of Information Science [email protected] October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic
Module 5: Multiple Regression Analysis
Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance
Final Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
individualdifferences
1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,
General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n
HYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
DDBA 8438: The t Test for Independent Samples Video Podcast Transcript
DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,
Consider a study in which. How many subjects? The importance of sample size calculations. An insignificant effect: two possibilities.
Consider a study in which How many subjects? The importance of sample size calculations Office of Research Protections Brown Bag Series KB Boomer, Ph.D. Director, [email protected] A researcher conducts
13: Additional ANOVA Topics. Post hoc Comparisons
13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior
1 Basic ANOVA concepts
Math 143 ANOVA 1 Analysis of Variance (ANOVA) Recall, when we wanted to compare two population means, we used the 2-sample t procedures. Now let s expand this to compare k 3 population means. As with the
research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other
1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric
Skewed Data and Non-parametric Methods
0 2 4 6 8 10 12 14 Skewed Data and Non-parametric Methods Comparing two groups: t-test assumes data are: 1. Normally distributed, and 2. both samples have the same SD (i.e. one sample is simply shifted
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
Comparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion
Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion Learning Objectives Upon successful completion of Chapter 8, you will be able to: Understand terms. State the null and alternative
CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS
CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS Hypothesis 1: People are resistant to the technological change in the security system of the organization. Hypothesis 2: information hacked and misused. Lack
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
Chapter 7. One-way ANOVA
Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
EPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST
EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeated-measures data if participants are assessed on two occasions or conditions
Bill Burton Albert Einstein College of Medicine [email protected] April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1
Bill Burton Albert Einstein College of Medicine [email protected] April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on
Week 4: Standard Error and Confidence Intervals
Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.
13. Poisson Regression Analysis
136 Poisson Regression Analysis 13. Poisson Regression Analysis We have so far considered situations where the outcome variable is numeric and Normally distributed, or binary. In clinical work one often
C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.
Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample
Linear Models in STATA and ANOVA
Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
Types of Data, Descriptive Statistics, and Statistical Tests for Nominal Data. Patrick F. Smith, Pharm.D. University at Buffalo Buffalo, New York
Types of Data, Descriptive Statistics, and Statistical Tests for Nominal Data Patrick F. Smith, Pharm.D. University at Buffalo Buffalo, New York . NONPARAMETRIC STATISTICS I. DEFINITIONS A. Parametric
Statistiek I. Proportions aka Sign Tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. http://www.let.rug.nl/nerbonne/teach/statistiek-i/
Statistiek I Proportions aka Sign Tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://www.let.rug.nl/nerbonne/teach/statistiek-i/ John Nerbonne 1/34 Proportions aka Sign Test The relative frequency
Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics
Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Between-subjects manipulations: variable to
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
PRACTICE PROBLEMS FOR BIOSTATISTICS
PRACTICE PROBLEMS FOR BIOSTATISTICS BIOSTATISTICS DESCRIBING DATA, THE NORMAL DISTRIBUTION 1. The duration of time from first exposure to HIV infection to AIDS diagnosis is called the incubation period.
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
Independent t- Test (Comparing Two Means)
Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent
Projects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
Data Analysis Tools. Tools for Summarizing Data
Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool
Chapter 8 Paired observations
Chapter 8 Paired observations Timothy Hanson Department of Statistics, University of South Carolina Stat 205: Elementary Statistics for the Biological and Life Sciences 1 / 19 Book review of two-sample
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
t-test Statistics Overview of Statistical Tests Assumptions
t-test Statistics Overview of Statistical Tests Assumption: Testing for Normality The Student s t-distribution Inference about one mean (one sample t-test) Inference about two means (two sample t-test)
TI-Inspire manual 1. Instructions. Ti-Inspire for statistics. General Introduction
TI-Inspire manual 1 General Introduction Instructions Ti-Inspire for statistics TI-Inspire manual 2 TI-Inspire manual 3 Press the On, Off button to go to Home page TI-Inspire manual 4 Use the to navigate
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
Two-sample inference: Continuous data
Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As
Opgaven Onderzoeksmethoden, Onderdeel Statistiek
Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week
2 Precision-based sample size calculations
Statistics: An introduction to sample size calculations Rosie Cornish. 2006. 1 Introduction One crucial aspect of study design is deciding how big your sample should be. If you increase your sample size
One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups
One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The
Unit 31: One-Way ANOVA
Unit 31: One-Way ANOVA Summary of Video A vase filled with coins takes center stage as the video begins. Students will be taking part in an experiment organized by psychology professor John Kelly in which
Tests for Two Proportions
Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics
Pearson s Correlation
Pearson s Correlation Correlation the degree to which two variables are associated (co-vary). Covariance may be either positive or negative. Its magnitude depends on the units of measurement. Assumes the
Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.
1.0 Abstract. Title: Real Life Evaluation of Rheumatoid Arthritis in Canadians taking HUMIRA. Keywords. Rationale and Background:
1.0 Abstract Title: Real Life Evaluation of Rheumatoid Arthritis in Canadians taking HUMIRA Keywords Rationale and Background: This abbreviated clinical study report is based on a clinical surveillance
