Parameterized Algorithms for d-hitting Set: the Weighted Case Henning Fernau. Univ. Trier, FB 4 Abteilung Informatik Trier, Germany

Size: px
Start display at page:

Download "Parameterized Algorithms for d-hitting Set: the Weighted Case Henning Fernau. Univ. Trier, FB 4 Abteilung Informatik 54286 Trier, Germany"

Transcription

1 Parameterize Algorithms for -Hitting Set: the Weighte Case Henning Fernau Trierer Forschungsberichte; Trier: Technical Reports Informatik / Mathematik No. 08-6, July 2008 Univ. Trier, FB 4 Abteilung Informatik Trier, Germany Theoretische Informatik Trier fernau@uni-trier.e

2 Parameterize Algorithms for -Hitting Set: the Weighte Case Henning Fernau 1 Univ. Trier, FB 4 Abteilung Informatik, Trier, Germany fernau@uni-trier.e Abstract. We are going to analyze simple search tree algorithms for Weighte -Hitting Set. Although the algorithms are simple, their analysis is technically rather involve. However, this approach allows us to even improve on elsewhere previously publishe running time estimates for the more restricte case of (unweighte) -Hitting Set. 1 1 Introuction Our approach in general. We exhibit how to systematically esign an analyze search tree algorithms within the framework of parameterize algorithmics [3]. Here, we avocate a top-own approach as oppose to a rather bottom-up esign, because the resulting algorithms ten to be simpler than via the opposite approach, an they sometimes pretty much resemble heuristic pruning techniques as use in branch-an-cut algorithms for solving har problems. Moreover, this approach is quite moular in the sense that it prouces algorithms whose search tree backbone, i.e., the branching pattern of the algorithm as such, is not affecte by the optimization techniques reflecte in what we will call heuristic priorities (accoring to which the branching is performe) an the employe reuction rules. This not only moularizes correctness proofs for such algorithms, but also favors rapi prototyping of implementations. We will exemplify this approach by eveloping an analyzing simple algorithms for Weighte -Hitting Set (-WHS) problems. No prior research on parameterize algorithms has been reporte for these problems. Problem statement. Weighte -Hitting Set (-WHS) can be viewe as a weighte vertex cover problem on hypergraphs. More formally, this problem can be state as follows: Given: A weighte hypergraph G = (V, E, w) with ege size boune by, i.e., e E( e ), an a weight function w : V [1, ) Parameter: a non-negative integer k Question: Is there a (weighte) hitting set C of total weight of at most k, i.e., C V e E(C e ) an w(c) := x C w(x) k? 1 This is a full version of the paper presente in [9]. Most of the work on this material has been one while the author was with Univ. Tübingen, Germany, as well as with Univ. Hertforshire, Hatfiel, UK. The accoring support is gratefully acknowlege.

3 2 Why Hitting Set? Hitting Set problems show up in many places; e.g., Reiter s groun-breaking research on moel-base iagnosis [12,17] relates the automatic iagnosis of systems to Hitting Set. The thrive for minimum hitting sets is in that context motivate by the parsimony principle in two ways: (a) the simplest iagnosis tens to fin the actual cause, an (b) when the iagnosis implies exchanging (possibly) faulty components (as a consequence of a selfiagnosis of an autonomous system, e.g., in space), then a minimum hitting set might also be the cheapest repair solution; in that particular scenario, however, the weighte case seems to be even more interesting than the unweighte one. As a further application, in [10], connections between a two-tree rawing problem that is important in bioinformatics an 4-WHS are shown, where the weights reflect further natural restrictions from biological backgroun knowlege. The algorithmics of this paper can be immeiately transferre to both applications. Previous work. For the unweighte case (which is a special case of the weighte setting if all weights are equal to one), there is one publishe paper presenting a search tree algorithm for Unweighte -Hitting Set (-HS), > 2, from a parameterize perspective [13]. The exponential base of the running time estimate for these algorithms tens to 1 with growing, although in the simplest case = 3, it is still relatively far off from that boun: that basis is By an intricate case analysis of a comparatively complicate algorithm, they were able to arrive at an O (2.270 k ) algorithm for the (unweighte) 3-HS problem (i.e., all weights equal one). This was improve in [6] to about O (2.179 k ) by using a similar methoology as explaine here for the weighte case. In fact, this result was recently improve by Wahlström [19] by a ifferent although relate methoology to O ( k ). Notice that we are ealing with search tree algorithms an apply a parameterize analysis of the search tree size. If we then say that the algorithm has O (f(k)) running time, where k is the parameter, this means that the search tree has size (number of leaves) O(f(k)), since the work in each search tree noe will be at worst polynomial in n. In actual fact, all analysis that follows will be a clever estimate on the size of the search tree. For the special case of 2-HS, likewise known as Vertex Cover, in a kin of race (using more an more intricate case analysis) an O(1.285 k +kn)-algorithm [1] has been obtaine. For 2-WHS, likewise known as Weighte Vertex Cover, the best that was obtaine is on O (1.396 k ), see [14]. Our approach seems not to be suitable to tackle the case = 2. The results of this paper. As in the unweighte case [6], 2 our analysis is base on the introuction of a secon auxiliary parameter that allows us to account for gains obtaine by using appropriate reuction rules an heuristic priorities. This technique can be useful in other areas of parameterize algorithms, as we believe. We get the following table for the bases c of an O (c k ) algorithm for - WHS; the bases are better than those for the unweighte case publishe in [13]: 2 A revise version of that report is going to be publishe with Algorithmica.

4 c (1) General notions an efinitions. We introuce some terminology on hypergraphs as neee for Hitting Set. A hypergraph G = (V, E) is given by its finite set of vertices V an its set of (hyper)-eges E, where a hyperege is a subset of V. The carinality e of a hyperege e is also calle its size. The carinality of the set of eges which contain the vertex v is calle the egree of v, written δ(v). 2 Heuristics an reuctions for Weighte -Hitting Set 2.1 A simple branching algorithm Since each hyperege must be covere an the weights are all at least one, there exists a trivial O ( k )-algorithm for -WHS. simple-whs(g = (V, E, w), k, S): IF k > 0 AND G has some eges THEN choose some ege e; // to be refine S = ; // solution to be constructe FOREACH x e DO // recursively branch G = (V \ {x}, {e E x / e}); S = simple-whs(g, k w(x), S {x}) IF S failure THEN break return S ELSIF E = THEN return S ELSE return failure Obviously, the base of the exponential running time of this algorithm heavily epens on the necessary amount of branching. Observe that accoring to the problem specification, in a -WHS instance, there might be eges of size up to alreay in the very beginning. Small eges may also be introuce later uring the run of the algorithm. A natural heuristic woul first branch on small eges. We woul therefore refine: simple-whs(g, k, S): IF k > 0 AND G has some eges THEN choose some ege e of smallest size;... // as before Can we make use of this heuristic priority in our analysis? We therefore now efine reuction rules which we will always exhaustively apply at the beginning of each recursive call. Moreover, we switch towars a binary branching at vertices (instea of branching on eges), as can be seen in Alg. WHS-ST below.

5 4 2.2 Reuction rules First reuction rule: vertex omination. The vertex omination rule that was use in [6,13] for the unweighte case is invali in full generality in the weighte case, but has to be replace by the following weighte vertex omination rule: If, for all eges e, x e implies y e an if w(y) w(x), then elete x. This reuction rule implies the following one (reuction rule for egree-onevertices): If x, y e with δ(x) = 1 an w(y) w(x), then remove x. The sounness of this rule is easily seen: the only reason for taking a vertex x into the hitting set, in a situation as escribe by the reuction rule, is that it might be cheap. Conserving expensive vertices makes no sense. This reuction rule immeiately implies: Lemma 1. In a reuce instance, there is no ege with more than one vertex of egree one. The next lemma is again an easy consequence from the weighte vertex omination rule an is of particular importance when > 3. Lemma 2. In a reuce instance, for any two eges e 1 an e 2, there is at most one x e 1 e 2 with δ(x) = 2. Other rules state in [6] literally transfer to the weighte case: Secon reuction rule: ege omination. An ege e is ominate by another ege f if f e. Then, we elete e, since covering f will automatically also cover e. Thir reuction rule: small eges. Delete all eges of size one an place the corresponing vertices into the hitting set. The small ege rule, together with the vertex omination rule, proves the non-existence of isolate eges in the following precise sense: Lemma 3. In a reuce instance, there is no ege e such that all vertices x e have egree one. Fourth reuction rule: ege cover rule. If G contains a component C that is of maximum vertex egree two, then resolve C in polynomial time. This (last) rule is justifie by the following lemma: Lemma 4. If G is a weighte hypergraph of maximum vertex egree of two, then a minimum weighte hitting set can be foun in polynomial time. Proof. To G, there correspons an ege-weighte graph G whose vertices are the eges of G an whose vertex-ajacency relation is the ege-ajacency relation of G. Then, a minimum weighte hitting set of G correspons to a minimum weighte ege cover of G that can be compute in polynomial time.

6 5 2.3 Branching rules an their analysis The iea of making favorable branches first has also another bearing, this time on the way we are going to analyze the search tree algorithm, base on an auxiliary parameter l. Let T l (k), l 0 enote the size (more precisely, the number of leaves) of the search tree when assuming that at least l eges in the given instance (with parameter k) have a size of (at most) 1. The intuition is that T 3 (k) woul escribe a situation which is more like ( 1)-WHS than T 2 (k). The unerlying iea is that search trees with many small eges are smaller than search trees with only a few; hence: k : T l (k) T l+1 (k). (2) Regaring an upper boun on the size T (k) of the search tree of the whole problem, we can equate T (k) = T 0 (k) by following the same intuition. Eq. (2) also shows that, upon analyzing a T l -situation, we can always assume that there are exactly l eges that have a size of at most 1, an these small eges o have a size of exactly 1. Our algorithm will make choices with the bias of what we will call heuristic priorities. They can be refine if necessary along the analysis of the algorithm. The simplest list to start with might contain a single rule that shoul be intuitively clear: Choose a vertex of highest egree within an ege of smallest size. We will upate the list of priorities whenever necessary. WHS-ST(G = (V, E, w), k, S): exhaustively apply reuction rules; IF k > 0 THEN IF E = THEN return S; choose some vertex x accoring to the heuristic priorities S = ; // solution to be constructe E = { e E x / e }; S = WHS-ST((V \ {x}, E ), k w(x), S {x}); IF S ==failure THEN E = { e \ {x} e E }; S = WHS-ST((V \ {x}, E ), k, S); return S ELSIF G contains some eges or k < 0 return failure ELSE // G contains no eges an k is zero return S In the very beginning, given the instance (G, k), we call WHS-ST(G, k, ). We assume that reuction rules may also change the parameter value k an the solution S. The algorithm is quite generic: the list of reuction rules may grow an we might also change the heuristic priorities. The simple binary branching structure of WHS-ST enables a straight-forwar inuctive proof of its correctness:

7 6 Theorem 1. If the reuction rules are correct, then WHS-ST(G, k, ) either returns a correct hitting set to the -WHS instance (G, k) or it returns failure, if there is no solution of size at most k. Proof. The proof is by straightforwar inuction on the number of vertices of the hypergraph, similar to the unweighte case consiere in [6]. 3 A simple branching analysis We will now unertake a simple analysis, only consiering T 0, T 1 an (partially) T 2 an T 3. Lemma 5. T 0 (k) T 0 (k 1) + T 3 (k). Proof. Whenever we select an ege of size to branch on (accoring to the heuristic priorities), we can fin an ege that contains a vertex x of egree three or larger ue to the ege cover rule. One branch is that x is put into the hitting set. This reuces the amissible weight by at least one. If x is not put into the hitting set, then at least three new eges of size two are create. T 1 -branching. In the next lemma, we show a first step into a strategy which will finally give us better branching behaviors. Namely, we try to exploit the effect of reuction rules triggere in ifferent sub-cases. This alreay necessitates a refinement in the choice of heuristic priorities: within a smallest ege e of size j <, we prefer branching at x e that maximizes the number of incient eges of size j + 1. Lemma 6. T 1 (k) max{t 0 (k 1) + T 1 (k 1) + T 2 (k 1) + ( 4)T 3 (k 1), T 0 (k 1) + T 1 (k 1) + (j 2)T 2 (k 1) + ( 2 (2j + 1) + (j 2 + j))t 0 (k 2) : j = 2, 3,..., 2} if 4; if T 0 (k) ( 1) k or if = 3, this may be simplifie: T 1 (k) T 0 (k 1) + ( 2)T 1 (k 1). Proof. The instance G has an ege e = {x 1, x 2,..., x 1 } of size ( 1). Case 1. If there is an ege f of size such that 2 j := e f 2 (this can only happen if 4), then we woul first branch at the vertices in e f; ue to weighte vertex omination, at least one of the j branches that take one of the vertices of e f into the hitting set is an T 1 (k 1)-branch an j 2 are even T 2 (k 1)-branches (or better). If none of the vertices from e f goes into the hitting set, then, in orer to cover e, there are 1 j many possibilities left, an in orer to cover f, there are j remaining possibilities. This explains the other (( j) 1)( j) many T 0 (k 2)-branches. We can neglect these cases in our time analysis when assuming T 0 (k) ( 1) k. For reaability, we refer for this analysis to the appenix. Case 2. If the previous case oes not occur, then for all eges f e, e f 1. Assume that x 1 is the vertex of maximum egree in e, so that we branch at x 1. If δ(x 1 ) = 1, we can eterministically resolve the case with the reuction rules (apply 1 times the weighte vertex omination rule an then the small ege

8 7 rule) an get one T 0 (k 1)-branch. This is obviously better than the inequality claime in the lemma. Therefore, we can now assume that δ(x 1 ) 2. If we take x 1 into the hitting set, then we get a T 0 (k 1)-branch. If we o not take x 1 into the hitting set, we create one new ege e 1 of size ( 1) an we get the ege e = e \ {x 1 } of size ( 2). In the next recursive call, e is the ege of smallest size. There is no other ege of that size, since Case 1 i not apply. We therefore continue branching at the vertex (say x 2 ) of maximum egree in e. Again, δ(x 2 ) = 1 is better than the case we are going to pursue next. If δ(x 2 ) 2, then we again have two cases: either we take x 2 into the hitting set or not. If x 2 goes into the hitting set, then this is a T 1 (k 1)-branch; namely, since Case 1 i not apply, x 2 / e 1, so that the small ege e 1 will be preserve. If x 2 oes not go into the hitting set, then there will be a new ege e 2 of size ( 1) ( new ue to ege omination). In the next recursive call, e = e \ {x 1, x 2 } is the ege of smallest size. The argument continues an shows that branches of type T j (k 1) will show up, for j = 2, 3,..., 2. This shows the claim, taking into account that T j (k 1) T 3 (k 1) for j 3 ue to Eq. (2). Estimating branching numbers. By using the inequality T 3 (k) T 2 (k) T 1 (k), Lemmas 5 an 6 yiel: T 0 (k) T 0 (k 1) + T 1 (k) (3) T 1 (k) T 0 (k 1) + ( 2)T 1 (k 1) With c being the largest positive real root of the characteristic polynomial x 2 x + 2, i.e., c = = + ( 2) (4) we can see that by setting T 0 (k) = c k an T 1 (k) = (c 1)c k 1, the inequalities system (3) can be solve. The larger, the closer c gets to 1. Hence: T (k) 2.62 k 3.42 k 4.31 k 5.24 k 9.13 k k Obviously, this is worse than what Nieermeier an Rossmanith got in [13] for the (general) unweighte case (ue to the lack of the vertex omination rule in full generality), but shows the same limit behavior (when is large). Can we o better? Let us give a simple trial to incorporate T 2 an T 3 into the analysis in the special case of Weighte 3-Hitting Set. 4 Weighte 3-Hitting Set We will use subscripts in the functions that escribe the search tree sizes to inicate this special case. We branch accoring to the following heuristic priorities. Let s be the size of the smallest ege in the instance G = (V, E, w).

9 8 Let E s be the collection of smallest size eges. (P 3 1) Let the set of (first) branching caniates B be e E s e. (P 3 2) If e is a smallest ege that is isjoint with all other e E s, refine B = e. (P 3 3) If no such isolate smallest ege exists, then upate B to collect the vertices of maximum egree in the hypergraph ( e E s e, E s ). (P 3 4) Select x B to be a vertex of maximum egree in G. It is easy to check that the analyses of Lemmas 5 an 6 are still vali uner these heuristic priorities. Lemma 7. T 2 3 (k) max{t 1 3 (k 1) + T 2 3 (k 1), T 0 3 (k 1) + T 0 3 (k 2)} Proof. We consier first the situation that the two eges e 1 an e 2 of size two are isjoint (see (P 3 2)). Then, basically the analysis of Lemma 6 applies, showing the claim. More precisely, we have T3 2 (k) T3 1 (k 1) + T3 2 (k 1). Otherwise, e 1 e 2, i.e., e 1 = {x, y} an e 2 = {x, z}. Accoring to the heuristic priority (P 3 3), we branch at x. If we take x into the hitting set, we get a T3 0 (k 1)-branch. Not taking x into the hitting set enforces y an z into the hitting set, which is a T3 0 (k 2)-branch. T Lemma 8. T (k 1) + T3 0 (k 2), (k) max T3 0 (k 1) + T3 0 (k 3), T3 2 (k 1) + T3 3 (k 1) Proof. If there is a ege e of size two that has non-empty intersection with any other ege of size two, ue to (P 3 2) we branch on e without estroying the at least two other eges of size two. The reasoning given in Lemma 6 therefore yiels the upper boun T 2 3 (k 1) + T 3 3 (k 1) in this case. If the first case oes not apply, the all eges of size two are connecte. Let e 1, e 2, e 3 be three connecte eges of size two. If x e 1 e 2 e 3 exists, then we branch at x ue to (P 3 3). This gives the (trivial) upper boun of T 0 3 (k 1) + T 0 3 (k 3). Otherwise, we branch at some x containe in two small eges ue to (P 3 3); w.l.o.g.: x e 1 e 2. Since x / e 3, the case that we take x into the hitting set is inee a T 1 3 (k 1)-branch. This explains the upper boun T 1 3 (k 1) + T 0 3 (k 2). Theorem 2. Weighte 3-Hitting Set can be solve in time O ( k ). The algebra justifying this claim can be foun in the following subsection. We only mention for the reaer that likes to skip this section in a first rea that the exact solution of the inequalities system can be escribe by the largest positive root c 3 of the polynomial x 3 2x 2 x + 1, which then gives T3 0 (k) = c k 3, T 1 3 = c k 3/(c 3 1), T 2 3 (k) = c k 3/(c 3 1) 2, an T 3 3 (k) = c k 1 3 (c 3 1). This worst case is realize when all T 3 -branches are accoring to the T 1 3 (k 1) + T 0 3 (k 2)- estimate. Improving on that particular case woul not help too much, however, since the other extreme cases show also branching behaviors worse than 2.2 k. Observe that this also means that a search tree in the T 3 (k)-case is only about half the size of a search tree in the T 0 (k)-case.

10 9 4.1 The algebra for Weighte 3-Hitting Set In the following, we suppress the subscript 3, since we are only ealing with this case. Let us first show some algebra in case that we only analyze up to T 2 (k), i.e., if we put T 3 (k) = T 2 (k). What branching behavior o we observe in either case in Lemma 7? 1. If T 2 (k) T 1 (k 1) + T 2 (k 1), we get (by Lemma 5), (T 0 (k) T 0 (k 1)) = T 1 (k 1) + (T 0 (k 1) T 0 (k 2)), which gives as a recurrence By Lemma 6, T 1 (k 1) = T 0 (k) 2T 0 (k 1) + T 0 (k 2). T 0 (k + 1) 2T 0 (k) + T 0 (k 1) = T 0 (k 1) + T 0 (k) 2T 0 (k 1) + T 0 (k 2). Therefore, 0 = T 0 (k + 1) 3T 0 (k) + 2T 0 (k 1) T 0 (k 2). This is resolve by T 0 (k) k. 2. T 2 (k) T 0 (k 1)+T 0 (k 2) gives immeiately the characteristic polynomial x 2 2x 1 with largest positive real root x = ; this is hence the worst case here. It might be surprising at first glance that we treate the weak inequalities as if they were equalities. This is base on experience: taking this approach we were always able to come up with a solution to the envisage system of inequalities. However, these computations shoul be justifie by further analysis. Since this is only an (encouraging) intermeiate result, we refrain from giving such valiation here; we will however give it in the general case. For Weighte 3-Hitting Set, we erive the following recurrences: T 0 (k) T 0 (k 1) + T 3 (k) T 1 (k) T 0 (k 1) + T 1 (k 1) T 2 (k) max{t 1 (k 1) + T 2 (k 1), T 0 (k 1) + T 0 (k 2)} T 1 (k 1) + T 0 (k 2), T 3 (k) max T 0 (k 1) + T 0 (k 3), T 2 (k 1) + T 3 (k 1) How o we arrive at possible solutions? Firstly, we try to solve extreme cases that are obtaine by treating the weak inequalities as if they were equalities an by iscussing all possible combinations as escribe by the maximum operator. In our case, this woul in principle result in six systems of equations.

11 10 However, since T 2 shows up only in one place in a right-han sie of a T 3 (k) - inequality, we only get four cases. It is noteworthy to see that, when assuming T 0 (k) = c k, (for all situations) the first equation gives T 3 (k) = c k 1 (c 1) an the secon equation gives T 1 (k) = c k /(c 1). Notice that finally we are looking for an overall solution for all T j, i.e., T j (k) = α j c k 3 with c 3 an the α j still to be etermine. Our consierations so far entail: α 0 = 1 α 1 = 1/(c 3 1) α 2 α 3 = (c 3 1)/c 3 T 0 (k) = T 0 (k 1) + T 3 (k) T 1 (k) = T 0 (k 1) + T 1 (k 1) (T 2 (k) = max{t 1 (k 1) + T 2 (k 1), T 0 (k 1) + T 0 (k 2)}) T 3 (k) = T 1 (k 1) + T 0 (k 2) Obviously, the function T 2 (k) oes not come into play if we are primarily intereste in looking for solutions for T 0 (k) in this case. Plugging in the expressions for T 0 (k), T 1 (k) an T 3 (k) in the last equation yiels: c k 1 (c 1) = c k 1 /(c 1) + c k 2. After multiplication with (c 1)c 2 k an some reorering, this becomes the characteristic polynomial: 0 = c(c 1) 2 c (c 1) = c 3 2c 2 c + 1. Its largest positive real root can be boune by from above. As can be seen, this is the claime worst case. T 0 (k) = T 0 (k 1) + T 3 (k) T 1 (k) = T 0 (k 1) + T 1 (k 1) (T 2 (k) = max{t 1 (k 1) + T 2 (k 1), T 0 (k 1) + T 0 (k 2)}) T 3 (k) = T 0 (k 1) + T 0 (k 3) The same solution strategy provies: c k 1 (c 1) = c k 1 + c k 3. Multiplication with c 3 k an some reorering yiels: 0 = c 3 2c 2 1;

12 11 the largest positive real root can be boune by from above. In the following two cases, we have to istinguish the two ifferent upper bouns for T 2. T 0 (k) = T 0 (k 1) + T 3 (k) T 1 (k) = T 0 (k 1) + T 1 (k 1) T 2 (k) = T 1 (k 1) + T 2 (k 1) T 3 (k) = T 2 (k 1) + T 3 (k 1) From T 1 (k) = c k /(c 1), we can euce from the thir equation: T 2 (k) = c k /((c 1) 2 ). Therefore, the last equation gives: c k (c 1) = c k 1 /((c 1) 2 ) + c k 1 (c 1). Multiplication with c 1 k (c 1) 2 results in: 0 = (c 1) 4 c = c 4 4c 3 + 6c 2 5c + 1, whose largest positive real root can be estimate by A irect plug-in yiels: T 0 (k) = T 0 (k 1) + T 3 (k) T 1 (k) = T 0 (k 1) + T 1 (k 1) T 2 (k) = T 0 (k 1) + T 0 (k 2) T 3 (k) = T 2 (k 1) + T 3 (k 1) T 0 (k) = T 0 (k 1) + T 3 (k) = T 0 (k 1) + T 2 (k 1) + T 3 (k 1) This gives again = T 0 (k 1) + T 0 (k 2) + T 0 (k 3) + (T 0 (k 1) T 0 (k 2)) = 2T 0 (k 1) + T 0 (k 3) 0 = c 3 2c 2 1; the largest positive real root can be boune by from above. So, the worst scenario gives the characteristic polynomial c 3 2c 2 c + 1, whose largest positive real root c 3 can be boune from above by We haven t yet etermine α 2. From T 2 (k) T 1 (k 1)+T 2 (k 1), we woul get α 2 = 1/(c 3 1) 2, an from T 2 (k) T 0 (k 1) + T 0 (k 2), we arrive at α 2 = (c 3 +1)/c 2 3. However, c 2 3 = (c 3 +1)(c 3 1) 2 = (c 2 3 1)(c 3 1) = c 3 3 c 2 3 c 3 +1 is true, since c 3 is a root of the characteristic polynomial, so that both (seemingly ifferent) values of α 2 are in fact equal. In other wors, we foun:

13 12 α 0 = 1 α 1 = 1/(c 3 1) 0.80 α 2 = (c 3 + 1)/c α 3 = (c 3 1)/c After having obtaine these numbers, we shoul verify that inee T 0 (k) = c k 3, T 1 = c k 3/(c 3 1), T 2 (k) = c k 2 3 (c 3 +1), an T 3 (k) = c k 1 3 (c 3 1) satisfies the whole system of inequalities. This amounts in showing that the extreme case we foun is inee maximizing all right-han sie maxima functions. In fact, our reasoning with etermining α 2 in the preceing paragraph alreay shows that T 1 (k 1) + T 2 (k 1) = T 0 (k 1) + T 0 (k 2) for our functions. We still have to eal with the T 3 (k) -inequalities. 1. To show: T 1 (k 1) + T 0 (k 2) T 0 (k 1) + T 0 (k 3). Substituting the functions we erive an multiplying with c 3 k (c 1) leaves us to show: c 2 + (c 2 c) (c 3 c 2 ) + (c 1) 0 c 3 3c 2 + 2c 1 which is true for c = c To show: T 1 (k 1) + T 0 (k 2) T 2 (k 1) + T 3 (k 1). Substituting the functions we erive an iviing by c k 2 leaves us to show: c c c2 + c c 2 + c2 c = 1 + c2 c c This in turn means we have to verify (again) for c = c 3 : 0 c 3 3c 2 + 2c 1. 5 Weighte -Hitting Set with 4 How well o our consierations transfer to the more general case? We analyze possible T 2 -branches in what follows. Since the obtaine bases are quite satisfactory, we refrain from analyzing the T 3 -branches. In our analysis, we apply the following heuristic priorities to a given (reuce) instance G = (V, E, w): Let s be the size of the smallest ege in the instance G = (V, E, w). Let E s be the collection of smallest size eges. (P 1) Let the set of (first) branching caniates B be e E s e. (P 2) Define G B = (B, E s ) an upate B to be the set of vertices in G B of maximum egree. (P 3) Choose a vertex x B of maximum egree in G. One can check that Lemmas 5 an 6 are still vali when assuming these heuristic priorities. Since in our opinion solving -Hitting Set for larger is of less practical importance, we will efer some etails of the following analysis to the appenix. Analyzing T 2. We will istinguish several cases in what follows: Lemma 9. Let e 1 an e 2 be two eges of size 1. If e 1 e 2 =, then we can estimate T 2(k) T 1(k 1) + ( 2)T 2 (k 1).

14 13 This can be basically inherite from Lemma 6 ue to ege omination. As we will see, this is the secon worst case branching. Being the simplest case, we give some etails. As justifie in the appenix, we solve the next set of equations: T 0 (k) = T 0 (k 1) + T 2 (k) (5) T 1 (k) = T 0 (k 1) + T 1 (k 1) + ( 3)T 2 (k 1) T 2 (k) = T 1 (k 1) + ( 2)T 2 (k 1) This yiels, after some algebra: 0 = T 0 (k + 1) T 0 (k) + ( 1)T 0 (k 1) T 0 (k 2). (6) Theorem 3. Let c enote the largest positive real root of the polynomial x 3 x 2 + ( 1)x 1. Then T 0 (k) = ck, T 1 (k) = α,1c k with α,1 = (c + 2)(c 1)/c an T 2 (k) = α,2c k with α,2 = (c 1)/c solve the system (5). The following table lists some of the exponential bases c for (5): c (7) Lemma 10. Let e 1 an e 2 be two eges of size 1. If e 1 e 2 = j {1, 2,..., 2}, then we can estimate T 2 (k) T 0 (k 1) + T 1 (k 1) + (j 2)T 2 (k 1) + ( 1 j) 2 T 0 (k 2), thereby assuming that T 0 (k) ( 1)k, i.e., c 1. Proof. The priorities (P 1) an (P 2) let us branch at a vertex x e 1 e 2. If j > 1, the weighte vertex omination rule moreover guarantees that there is a vertex of egree at least three in e 1 e 2, an (P 3) will select one such vertex x for branching. Hence, when x is not taken into the hitting set, then we gain at least one ege of size 1 if j > 1 ue to vertex omination, see Lemma 2, since we will continue selecting vertices within e 1 e 2 accoring to (P 2). The case that eges that intersect with e 1 e 2 might contain more than one vertex in this intersection turns out not to be the worst case (assuming ( 1) k as a lower boun of our approach) along the lines of Lemma 6. If e 1 e 2 is exhauste, then in the case that we take none of the vertices from e 1 e 2 into the hitting set, we are left with two very small eges e 1 = e 1 \ e 2 an e 2 = e 2 \ e 1. P 1 lets us continue branching at say e 1. Having selecte x e 1 to go into the hitting set, e 2 will be the smallest ege (of size ( 1 j)), an hence P 1 continues to branch on e 2 in the next recursion step. This explains that we get (very grossly estimate) ( 1 j) 2 many T 0 (k 2)-branches. In orer to prove Theorem 4, the following technical lemma is important:

15 14 Lemma 11. If j > 1 an > 3, then T 1 (k 1) + ( 2)T 2 (k 1) T 0 (k 1) + T 1 (k 1) + (j 2)T 2 (k 1) + ( 1 j) 2 T 0 (k 2) for T 0 (k) = ck an T 2 (k) = ck c k 1 with 1 c, inepenent of T 1. We nee a somewhat stronger result (compare to Lemma 10) in the case j = 1 that escribes our worst case (for > 4): Lemma 12. Let e 1 an e 2 be two eges of size 1. If e 1 e 2 = 1, then we can estimate T 2 (k) T 0 (k 1) + ( 3)T 1 (k 2) + [( 2)( 3) + 1]T 0 (k 2). Moreover, T 1 (k 1)+( 2)T 2 (k 1) T 0 (k 1)+( 3)T 1 (k 2)+[( 2)( 3)+1]T 0 (k 2) for T l as efine in Theorem 4 below. Proof. We only explain the branching in what follows (for the algebra, see the appenix). Assume that {x} = e 1 e 2. x is selecte for branching accoring to (P 1). If x oes not go into the hitting set, then we may continue branching on e 1. The claim is that, for any y e 1 \ {x} (with one possible exception, if δ(y) = 1 for some y e 1 ; but ue to Lemma 1, there is at most one vertex of egree one in e 1 an (P 3) avois branching at that vertex), there is an ege e y e 1 with y e y such that there is a vertex z y e 2 \ e 1 with z y / e y. For, if (e 2 \{x}) e y, then the ege omination rule woul have triggere. The branch that takes y an z y into the hitting set is a T 1 (k 2)-branch (possibly better). Theorem 4. -WHS can be solve in time O (c k ), where c is the largest positive root of the characteristic polynomial x 4 3x 3 ( 2 5+5)x 2 +x+( 2 6+9). Some values of c are liste below: c (8) Is it worthwhile trying to further improve on the exponential bases as erive in this section? In principle, yes of course; however, one woul nee a ifferent approach for substantial improvements: (a) the secon-worst case is only slightly better than the worst case that we analyze, an (b) with growing, the lower boun ( 1) assume in (some) estimates is alreay quite well approximate. The most interesting case that remains seems to be = 4, which we tackle in the following separate section.

16 Hitting Set We are claiming that Lemma 9 actually provies the worst case for 4-WHS, base on a eeper analysis an (again) slightly change heuristic priorities (which we will not make explicit in this case but which will become clear from the analysis). So, we are going to show in the remainer of this section the following result: Theorem 5. Let c 4 enote the largest positive real root of the polynomial x 3 4x 2 +3x 1. Then T 0 4 (k) = c k 4, T 1 4 (k) = α 4,1 c k 4 with α 4,1 = (c 4 2)(c 4 1)/c 4 an T 2 4 (k) = α 4,2 c k 4 with α 4,2 = (c 4 1)/c 4 solve the system (12). Moreover, O (c k 4) is an upper boun on the running time of our algorithm for solving Weighte 4-Hitting Set. We can boun c 4 from above by As we have alreay seen before, the worst case (from above) we have to eal with is the case of two eges e 1, e 2 with e 1 = e 2 = 3 an {x} = e 1 e 2. We will analyze two sub-cases: (a) e 1, e 2: e i (e i \ {x}) but e i e 3 i = for i = 1, 2. (b) e 1, e 2 with e i (e i \ {x}) : e i e 3 i as well, for i = 1, 2. In case (a), we can branch as follows: Taking x into the hitting set gives a T 0 4 (k 1)-branch. Otherwise, ue to the conition, let us continue branching at {x 1 } = e 1 e 1. (Observe that ue to weighte vertex omination, not all e 1 satisfying the conition (a) may contain {x 1, x 2 } = e 1 \ {x}.) Similarly, there is some {y 1 } = e 2 e 2. So, if we take both x 1 an y 1 into the hitting set, we get a T 0 4 (k 2)-branch. If we take y 1 into the hitting set but not x 1, we must select x 2. Since y 1 / e 1 by (a), this is a T 1 4 (k 2)-branch. Similarly, taking x 1 into the hitting set but not y 1 is a T 1 4 (k 2)-branch. If neither x 1 nor y 1 go into the hitting set, then we gain two new small eges ue to conition (a), so this is even a T 2 4 (k 2)-branch. Altogether, we have erive in case (a): T 2 4 (k) T 0 4 (k 1) + T 0 4 (k 2) + 2T 1 4 (k 2) + T 2 4 (k 2). (9) In case (b), there must be an ege e with (e 1 \{x}) e an (e 2 \{x}) e, since otherwise (i.e., if the forall conition is vacuously satisfie) the weighte vertex omination rule woul trigger an result in the following branching: T 2 4 (k) T 0 4 (k 1) + 2T 0 4 (k 2). We will see that the case we are going to consier will result in a branching that is strictly worse, so that we can neglect this case. Moreover, we can also assume that (e 1 \ {x}) e = 1, for if not, the weighte vertex omination rule woul trigger in the case that x is not taken into the hitting set. This means that one of the two vertices from (e 1 \ {x}) e must go into the hitting set. Moreover, since e is now hit, two sub-cases arise: either both vertices from e 1 \ {x} are containe in e an there are no eges that contain vertices from e 2 \ {x} apart from e 2 an possibly e; then, the weighte vertex omination rule woul trigger once more an altogether yiel the branch we alreay observe before, namely: T 2 4 (k) T 0 4 (k 1) + 2T 0 4 (k 2);

17 16 or, say y 1 e 2 \ {x} is containe in one other ege e y besies e 2 an e, an no vertex from e 1 \ {x} is containe in e y. Branching at y 1 woul hence gain us one small ege at least in the situation that y 1 is not going into the hitting set. Altogether, we get as estimate: T 2 4 (k) T 0 4 (k 1) + T 0 4 (k 2) + T 1 4 (k 2). This is again always better than the general estimate that we erive now. So, we can assume now that {x 1 } = (e 1 \ {x}) e an that {y 1 } = (e 2 \ {x}) e. Assume we start branching at x 1. Let us call {x 2 } = e 1 \ {x, x 1 }. We istinguish two sub-cases regaring {y 2 } = (e 2 \ {x, y 1 }): (i) δ(y 2 ) = 1 an (ii) δ(y 2 ) 2. Case (i) is again split into two cases: (ia) {e E y 1 e, x 1 / e} = 1 an (ib) {e E y 1 e, x 1 / e} > 1. In case (ia), if x 1 is taken into the hitting set, we will elete either y 1 or y 2 ue to the weighte vertex omination rule, an then this ege is resolve by the small ege rule. This gives a T 0 4 (k 2)-branch. If x 1 is not taken into the hitting set, x 2 must be in. Moreover, if we continue branching at y 2, we get a T 0 4 (k 2)-branch when y 1 goes into the hitting set an two T 0 4 (k 3)-branches when not y 1 but y 2 is in the hitting set, since then one of the two remaining vertices from e must be in the hitting set, too. Overall, we get in this case: T 2 4 (k) T 0 4 (k 1) + 2T 0 4 (k 2) + 2T 0 4 (k 3). (Notice that this is strictly speaking a tight analysis for δ(y 1 ) = 2.) Again, this is not the worst case to consier. In case (ib), if x 1 is taken into the hitting set, we might take y 1 into the hitting set. This gives a T 0 4 (k 2)-branch. If y 1 oes not go into the hitting set, then y 2 will, giving a T 1 4 (k 2)-branch (gaining a small ege by the case assumption). If x 1 is not going into the hitting set but x 2, we get one T 0 4 (k 2)-branch an two T 1 4 (k 3)-branches. This yiels: T 2 4 (k) T 0 4 (k 1) + 2T 0 4 (k 2) + T 1 4 (k 2) + 2T 1 4 (k 3); again, this is not the worst case to consier. In case (ii), we can assume that there is an ege e y that contains y 2 but none of the vertices from {x, y 1, x 1 }. Namely, since δ(y 2 ) 2, there is at least one ege e y besies e 2 that contains y 2. As can be seen, δ(y 2 ) = 2 is the worst case we assume henceforth. If y 1 e y, the weighte ege omination rule woul have triggere, yieling a better branching as analyze before. If x 1 e y, we have a situation analyze uner case (i) above. We branch as follows: If x 1 goes into the hitting set, we can gain a small ege in the case that y 2 oes not go into the hitting set (assume we continue branching at y 2 ); hence, this is one T 0 4 (k 2)-branch an one T 1 4 (k 2)-branch. If x 1 is not in the hitting set, let us continue branching at y 1. By a simple analysis, we get one T 0 4 (k 2) an two T 0 4 (k 3)-branches (similar as in the previous cases). This means: T 2 4 (k) T 0 4 (k 1) + 2T 0 4 (k 2) + T 1 4 (k 2) + 2T 0 4 (k 3). (10) We will show now that the case that e 1 e 2 = is in fact the worst case that yiels the estimate T 2 4 (k) = T 1 4 (k 1) + 2T 2 4 (k 1).

18 17 We first consier Eq. (9): we have to fin an upper boun for T 2 4 (k) + T 0 4 (k 1) + T 0 4 (k 2) + 2T 1 4 (k 2) + T 2 4 (k 2). With the settings of the functions as formulate in Theorem 5, this expression means: c k 4 + 2c k c k (c 4 2)(c 4 1)c k c k 2 4 c k 3 4. After multiplication with c 3 k 4, we get the following chain: c c c (c 4 2)(c 4 1) 1 = c c c c 2 4 6c = [ c c 2 4 3c 4 + 1] c The expression in square brackets vanishes, since c 4 is a root of the characteristic polynomial mentione in Theorem 5, an the inequality follow from 3 c 4. Let us consier Eq. (10): we will fin an upper boun for T 2 4 (k) + T 0 4 (k 1) + 2T 0 4 (k 2) + T 1 4 (k 2) + 2T 0 4 (k 3) uner the settings of the functions as formulate in Theorem 5. This means we have to upperboun: c k 4 + 2c k c k (c 4 2)(c 4 1)c k c k 3 4. After multiplication with c 3 k 4, we get the following chain: c c c (c 4 2)(c 4 1) + 2 = c c 2 4 c = [ c c 2 4 3c 4 + 1] c c c c 4 = c 4 (3 c 4 ) 0 The expression in square brackets vanishes, since c 4 is a root of the characteristic polynomial mentione in Theorem 5, an the two inequalities follow from 3 c 4. 7 Conclusions Let us allow first one final remark regaring the correctness of our analysis: Remark 1. The astute reaer might have notice that there are possible situations say with two or more eges of size 1 where the reuction rules actually estroy all of them an replace them by one ege of size 2 or smaller. However, it can be easily verifie that, for all 3 an l 2 as far as analyze, T l (k) ( 2)k. This is base on the assumption c 1. Therefore, this omission in the analysis will never affect the worst case running time claime in the paper.

19 18 We have evelope an analyze a novel, top-own methoology for parameterize search tree algorithms. Up to now, we have applie this methoology to -Hitting Set [6], biplanarization problems [8] (thereby improving on the constants erive in [4]), linear arrangement problems (in the long version of [7]) an to Weighte -Hitting Set (this paper). A further natural caniate for applying this technique woul be (Weighte) Directe Feeback Vertex / Arc Set in Tournaments, as consiere in [15], as well as variants thereof [2]. In orer to apply this metho, we nee a kin of secon auxiliary parameter in the problem which we try to improve on in case the main parameter cannot be improve upon binary branching. In the case of (Weighte) Hitting Set, the number of eges of small size is such an auxiliary parameter. Our results show that this methoology is a quite powerful tool of algorithm analysis. For example, while the gap between the running times of the (very sophisticate) best search tree algorithms for Weighte Vertex Cover an for Vertex Cover [1,14] o iffer significantly (both algorithms being approximately of the same complexity), this paper shows that with our analysis metho of a comparatively simple algorithm for 3-WHS, we can even (slightly) improve on the previous analysis of a much more sophisticate algorithm for Unweighte 3-HS [13]. It may be interesting to compare the way the analysis of the recurrences guie by the auxiliary parameter is unertaken in this paper with the analysis metho of Wahlström [18] or with Eppstein s quasiconvex metho [5]. It woul be also interesting to see this approach applie to other, ifferent problems with accoringly ifferent auxiliary parameters. More generally speaking, there seems to be a recent thrive in Exact Algorithmics towars simple algorithms. The Minimum Dominating Set algorithm of Fomin, Granoni an Kratsch is only one more example (see [11]) that incientally also uses a (special) Hitting Set algorithm. This irection of research certainly brings practical an theoretical research on attacking har problems closer together, since one coul also envisage a kin of interplay between algorithm analysis an algorithm testing in the near future. Can an appropriate analysis then explain certain observe phenomena of the implementation? The moular ecomposition of such an algorithm into the actual recursive search tree backbone an the reuction rules an (in particular) the heuristic priorities also opens up a whole area of experimental algorithmics: uner which circumstances (or, in a more theoretical formulation: for which classes of hypergraphs) is a certain set of rules the most successful? Can this be prove? Due to the simple overall structure of the algorithms, also an analysis of expecte running times (possibly aing coin tossing into the heuristic priorities) might be possible. Incientally, improvements in parameterize algorithms for -Hitting Set also entail improvements in exact algorithms for Minimum -Hitting Set, measure in terms of number of vertices: in the case of 3-Hitting Set, the use of the algorithm exhibite in [6] improve Wahlström s algorithm [18] from

20 19 O ( n ) own to O ( n ) (personal communication by Wahlström ating from 2005). The results of this paper will immeiately entail new running time bouns for exact algorithms for Minimum Weighte Hitting Set. For example, along the lines sketche by Raman, Saurabh an Sikar, in [16], we get an exact algorithm for Minimum Weighte 4-Hitting Set that runs in time O (1.97 n ), using our parameterize Weighte 4-Hitting Set algorithm. References 1. J. Chen, I. A. Kanj, an W. Jia. Vertex cover: further observations an further improvements. Journal of Algorithms, 41: , M. Dom, J. Guo, F. Hüffner, R. Nieermeier, an A. Truß. Fixe-parameter tractability results for feeback set problems in tournaments. In T. Calamoneri, I. Finocchi, an G. F. Italiano, eitors, Conference on Algorithms an Complexity CIAC, volume 3998 of LNCS, pages Springer, R. G. Downey an M. R. Fellows. Parameterize Complexity. Springer, V. Dujmović, M. R. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Rage, F. A. Rosamon, M. Suerman, S. Whitesies, an D. R. Woo. A fixe-parameter approach to 2-layer planarization. Algorithmica, 45: , D. Eppstein. Quasiconvex analysis of backtracking algorithms. In Proc. 15th Symp. Discrete Algorithms SODA, pages ACM an SIAM, January H. Fernau. A top-own approach to search-trees: Improve algorithmics for 3- Hitting Set. Technical Report TR04-073, Electronic Colloquium on Computational Complexity ECCC, An upate version has been accepte to Algorithmica. 7. H. Fernau. Parameterize algorithmics for linear arrangement problems. In U. Faigle, eitor, CTW 2005: Workshop on Graphs an Combinatorial Optimization, pages University of Cologne, Germany, Long version to appear in Discrete Applie Mathematics. 8. H. Fernau. Two-layer planarization: improving on parameterize algorithmics. In P. Vojtáš, M. Bieliková, B. Charron-Bost, an O. Sýkora, eitors, SOFSEM, volume 3381 of LNCS, pages Springer, H. Fernau. Parameterize algorithms for hitting set: the weighte case. In T. Calamoneri, I. Finocchi, an G. F. Italiano, eitors, Conference on Algorithms an Complexity CIAC, volume 3998 of LNCS, pages Springer, H. Fernau, M. Kaufmann, an M. Poths. Comparing trees via crossing minimization. In R. Ramanujam an Saneep Sen, eitors, Founations of Software Technology an Theoretical Computer Science FSTTCS 2005, volume 3821 of LNCS, pages Springer, F. V. Fomin, F. Granoni, an D. Kratsch. Measure an conquer: omination a case stuy. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamiessi, an M. Yung, eitors, Automata, Languages an Programming, 32n International Colloquium, ICALP, volume 3580 of LNCS, pages Springer, J. e Kleer, A. K. Mackworth, an R. Reiter. Characterizing iagnoses an systems. Artificial Intelligence, 56: , R. Nieermeier an P. Rossmanith. An efficient fixe-parameter algorithm for 3-Hitting Set. Journal of Discrete Algorithms, 1:89 102, R. Nieermeier an P. Rossmanith. On efficient fixe parameter algorithms for weighte vertex cover. Journal of Algorithms, 47:63 77, 2003.

Firewall Design: Consistency, Completeness, and Compactness

Firewall Design: Consistency, Completeness, and Compactness C IS COS YS TE MS Firewall Design: Consistency, Completeness, an Compactness Mohame G. Goua an Xiang-Yang Alex Liu Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712-1188,

More information

Factoring Dickson polynomials over finite fields

Factoring Dickson polynomials over finite fields Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University

More information

10.2 Systems of Linear Equations: Matrices

10.2 Systems of Linear Equations: Matrices SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix

More information

A Generalization of Sauer s Lemma to Classes of Large-Margin Functions

A Generalization of Sauer s Lemma to Classes of Large-Margin Functions A Generalization of Sauer s Lemma to Classes of Large-Margin Functions Joel Ratsaby University College Lonon Gower Street, Lonon WC1E 6BT, Unite Kingom J.Ratsaby@cs.ucl.ac.uk, WWW home page: http://www.cs.ucl.ac.uk/staff/j.ratsaby/

More information

On Adaboost and Optimal Betting Strategies

On Adaboost and Optimal Betting Strategies On Aaboost an Optimal Betting Strategies Pasquale Malacaria 1 an Fabrizio Smerali 1 1 School of Electronic Engineering an Computer Science, Queen Mary University of Lonon, Lonon, UK Abstract We explore

More information

Modelling and Resolving Software Dependencies

Modelling and Resolving Software Dependencies June 15, 2005 Abstract Many Linux istributions an other moern operating systems feature the explicit eclaration of (often complex) epenency relationships between the pieces of software

More information

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market RATIO MATHEMATICA 25 (2013), 29 46 ISSN:1592-7415 Optimal Control Policy of a Prouction an Inventory System for multi-prouct in Segmente Market Kuleep Chauhary, Yogener Singh, P. C. Jha Department of Operational

More information

UNIFIED BIJECTIONS FOR MAPS WITH PRESCRIBED DEGREES AND GIRTH

UNIFIED BIJECTIONS FOR MAPS WITH PRESCRIBED DEGREES AND GIRTH UNIFIED BIJECTIONS FOR MAPS WITH PRESCRIBED DEGREES AND GIRTH OLIVIER BERNARDI AND ÉRIC FUSY Abstract. This article presents unifie bijective constructions for planar maps, with control on the face egrees

More information

Asymptotically Faster Algorithms for the Parameterized face cover Problem

Asymptotically Faster Algorithms for the Parameterized face cover Problem Asymptotically Faster Algorithms for the Parameterized face cover Problem Faisal N. Abu-Khzam 1, Henning Fernau 2 and Michael A. Langston 3 1 Division of Computer Science and Mathematics, Lebanese American

More information

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION MAXIMUM-LIKELIHOOD ESTIMATION The General Theory of M-L Estimation In orer to erive an M-L estimator, we are boun to make an assumption about the functional form of the istribution which generates the

More information

The one-year non-life insurance risk

The one-year non-life insurance risk The one-year non-life insurance risk Ohlsson, Esbjörn & Lauzeningks, Jan Abstract With few exceptions, the literature on non-life insurance reserve risk has been evote to the ultimo risk, the risk in the

More information

Math 230.01, Fall 2012: HW 1 Solutions

Math 230.01, Fall 2012: HW 1 Solutions Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

More information

A New Evaluation Measure for Information Retrieval Systems

A New Evaluation Measure for Information Retrieval Systems A New Evaluation Measure for Information Retrieval Systems Martin Mehlitz martin.mehlitz@ai-labor.e Christian Bauckhage Deutsche Telekom Laboratories christian.bauckhage@telekom.e Jérôme Kunegis jerome.kunegis@ai-labor.e

More information

State of Louisiana Office of Information Technology. Change Management Plan

State of Louisiana Office of Information Technology. Change Management Plan State of Louisiana Office of Information Technology Change Management Plan Table of Contents Change Management Overview Change Management Plan Key Consierations Organizational Transition Stages Change

More information

Data Center Power System Reliability Beyond the 9 s: A Practical Approach

Data Center Power System Reliability Beyond the 9 s: A Practical Approach Data Center Power System Reliability Beyon the 9 s: A Practical Approach Bill Brown, P.E., Square D Critical Power Competency Center. Abstract Reliability has always been the focus of mission-critical

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

More information

An intertemporal model of the real exchange rate, stock market, and international debt dynamics: policy simulations

An intertemporal model of the real exchange rate, stock market, and international debt dynamics: policy simulations This page may be remove to conceal the ientities of the authors An intertemporal moel of the real exchange rate, stock market, an international ebt ynamics: policy simulations Saziye Gazioglu an W. Davi

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

A Comparison of Performance Measures for Online Algorithms

A Comparison of Performance Measures for Online Algorithms A Comparison of Performance Measures for Online Algorithms Joan Boyar 1, Sany Irani 2, an Kim S. Larsen 1 1 Department of Mathematics an Computer Science, University of Southern Denmark, Campusvej 55,

More information

JON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT

JON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT OPTIMAL INSURANCE COVERAGE UNDER BONUS-MALUS CONTRACTS BY JON HOLTAN if P&C Insurance Lt., Oslo, Norway ABSTRACT The paper analyses the questions: Shoul or shoul not an iniviual buy insurance? An if so,

More information

2r 1. Definition (Degree Measure). Let G be a r-graph of order n and average degree d. Let S V (G). The degree measure µ(s) of S is defined by,

2r 1. Definition (Degree Measure). Let G be a r-graph of order n and average degree d. Let S V (G). The degree measure µ(s) of S is defined by, Theorem Simple Containers Theorem) Let G be a simple, r-graph of average egree an of orer n Let 0 < δ < If is large enough, then there exists a collection of sets C PV G)) satisfying: i) for every inepenent

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying

More information

Which Networks Are Least Susceptible to Cascading Failures?

Which Networks Are Least Susceptible to Cascading Failures? Which Networks Are Least Susceptible to Cascaing Failures? Larry Blume Davi Easley Jon Kleinberg Robert Kleinberg Éva Taros July 011 Abstract. The resilience of networks to various types of failures is

More information

Ch 10. Arithmetic Average Options and Asian Opitons

Ch 10. Arithmetic Average Options and Asian Opitons Ch 10. Arithmetic Average Options an Asian Opitons I. Asian Option an the Analytic Pricing Formula II. Binomial Tree Moel to Price Average Options III. Combination of Arithmetic Average an Reset Options

More information

Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm

Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm Sewoong Oh an Anrea Montanari Electrical Engineering an Statistics Department Stanfor University, Stanfor,

More information

Web Appendices of Selling to Overcon dent Consumers

Web Appendices of Selling to Overcon dent Consumers Web Appenices of Selling to Overcon ent Consumers Michael D. Grubb A Option Pricing Intuition This appenix provies aitional intuition base on option pricing for the result in Proposition 2. Consier the

More information

The Quick Calculus Tutorial

The Quick Calculus Tutorial The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,

More information

Minimum-Energy Broadcast in All-Wireless Networks: NP-Completeness and Distribution Issues

Minimum-Energy Broadcast in All-Wireless Networks: NP-Completeness and Distribution Issues Minimum-Energy Broacast in All-Wireless Networks: NP-Completeness an Distribution Issues Mario Čagal LCA-EPFL CH-05 Lausanne Switzerlan mario.cagal@epfl.ch Jean-Pierre Hubaux LCA-EPFL CH-05 Lausanne Switzerlan

More information

Differentiability of Exponential Functions

Differentiability of Exponential Functions Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an

More information

Mathematical Models of Therapeutical Actions Related to Tumour and Immune System Competition

Mathematical Models of Therapeutical Actions Related to Tumour and Immune System Competition Mathematical Moels of Therapeutical Actions Relate to Tumour an Immune System Competition Elena De Angelis (1 an Pierre-Emmanuel Jabin (2 (1 Dipartimento i Matematica, Politecnico i Torino Corso Duca egli

More information

Lecture L25-3D Rigid Body Kinematics

Lecture L25-3D Rigid Body Kinematics J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L25-3D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general three-imensional

More information

Risk Management for Derivatives

Risk Management for Derivatives Risk Management or Derivatives he Greeks are coming the Greeks are coming! Managing risk is important to a large number o iniviuals an institutions he most unamental aspect o business is a process where

More information

! # % & ( ) +,,),. / 0 1 2 % ( 345 6, & 7 8 4 8 & & &&3 6

! # % & ( ) +,,),. / 0 1 2 % ( 345 6, & 7 8 4 8 & & &&3 6 ! # % & ( ) +,,),. / 0 1 2 % ( 345 6, & 7 8 4 8 & & &&3 6 9 Quality signposting : the role of online information prescription in proviing patient information Liz Brewster & Barbara Sen Information School,

More information

An Introduction to Event-triggered and Self-triggered Control

An Introduction to Event-triggered and Self-triggered Control An Introuction to Event-triggere an Self-triggere Control W.P.M.H. Heemels K.H. Johansson P. Tabuaa Abstract Recent evelopments in computer an communication technologies have le to a new type of large-scale

More information

Department of Mathematical Sciences, University of Copenhagen. Kandidat projekt i matematik. Jens Jakob Kjær. Golod Complexes

Department of Mathematical Sciences, University of Copenhagen. Kandidat projekt i matematik. Jens Jakob Kjær. Golod Complexes F A C U L T Y O F S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N Department of Mathematical Sciences, University of Copenhagen Kaniat projekt i matematik Jens Jakob Kjær Golo Complexes Avisor:

More information

Optimal Control Of Production Inventory Systems With Deteriorating Items And Dynamic Costs

Optimal Control Of Production Inventory Systems With Deteriorating Items And Dynamic Costs Applie Mathematics E-Notes, 8(2008), 194-202 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.eu.tw/ amen/ Optimal Control Of Prouction Inventory Systems With Deteriorating Items

More information

Unsteady Flow Visualization by Animating Evenly-Spaced Streamlines

Unsteady Flow Visualization by Animating Evenly-Spaced Streamlines EUROGRAPHICS 2000 / M. Gross an F.R.A. Hopgoo Volume 19, (2000), Number 3 (Guest Eitors) Unsteay Flow Visualization by Animating Evenly-Space Bruno Jobar an Wilfri Lefer Université u Littoral Côte Opale,

More information

A Blame-Based Approach to Generating Proposals for Handling Inconsistency in Software Requirements

A Blame-Based Approach to Generating Proposals for Handling Inconsistency in Software Requirements International Journal of nowlege an Systems Science, 3(), -7, January-March 0 A lame-ase Approach to Generating Proposals for Hanling Inconsistency in Software Requirements eian Mu, Peking University,

More information

A Data Placement Strategy in Scientific Cloud Workflows

A Data Placement Strategy in Scientific Cloud Workflows A Data Placement Strategy in Scientific Clou Workflows Dong Yuan, Yun Yang, Xiao Liu, Jinjun Chen Faculty of Information an Communication Technologies, Swinburne University of Technology Hawthorn, Melbourne,

More information

The most common model to support workforce management of telephone call centers is

The most common model to support workforce management of telephone call centers is Designing a Call Center with Impatient Customers O. Garnett A. Manelbaum M. Reiman Davison Faculty of Inustrial Engineering an Management, Technion, Haifa 32000, Israel Davison Faculty of Inustrial Engineering

More information

Notes on tangents to parabolas

Notes on tangents to parabolas Notes on tangents to parabolas (These are notes for a talk I gave on 2007 March 30.) The point of this talk is not to publicize new results. The most recent material in it is the concept of Bézier curves,

More information

Hull, Chapter 11 + Sections 17.1 and 17.2 Additional reference: John Cox and Mark Rubinstein, Options Markets, Chapter 5

Hull, Chapter 11 + Sections 17.1 and 17.2 Additional reference: John Cox and Mark Rubinstein, Options Markets, Chapter 5 Binomial Moel Hull, Chapter 11 + ections 17.1 an 17.2 Aitional reference: John Cox an Mark Rubinstein, Options Markets, Chapter 5 1. One-Perio Binomial Moel Creating synthetic options (replicating options)

More information

A Universal Sensor Control Architecture Considering Robot Dynamics

A Universal Sensor Control Architecture Considering Robot Dynamics International Conference on Multisensor Fusion an Integration for Intelligent Systems (MFI2001) Baen-Baen, Germany, August 2001 A Universal Sensor Control Architecture Consiering Robot Dynamics Frierich

More information

Rules for Finding Derivatives

Rules for Finding Derivatives 3 Rules for Fining Derivatives It is teious to compute a limit every time we nee to know the erivative of a function. Fortunately, we can evelop a small collection of examples an rules that allow us to

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

More information

Consumer Referrals. Maria Arbatskaya and Hideo Konishi. October 28, 2014

Consumer Referrals. Maria Arbatskaya and Hideo Konishi. October 28, 2014 Consumer Referrals Maria Arbatskaya an Hieo Konishi October 28, 2014 Abstract In many inustries, rms rewar their customers for making referrals. We analyze the optimal policy mix of price, avertising intensity,

More information

How To Segmentate An Insurance Customer In An Insurance Business

How To Segmentate An Insurance Customer In An Insurance Business International Journal of Database Theory an Application, pp.25-36 http://x.oi.org/10.14257/ijta.2014.7.1.03 A Case Stuy of Applying SOM in Market Segmentation of Automobile Insurance Customers Vahi Golmah

More information

View Synthesis by Image Mapping and Interpolation

View Synthesis by Image Mapping and Interpolation View Synthesis by Image Mapping an Interpolation Farris J. Halim Jesse S. Jin, School of Computer Science & Engineering, University of New South Wales Syney, NSW 05, Australia Basser epartment of Computer

More information

Reading: Ryden chs. 3 & 4, Shu chs. 15 & 16. For the enthusiasts, Shu chs. 13 & 14.

Reading: Ryden chs. 3 & 4, Shu chs. 15 & 16. For the enthusiasts, Shu chs. 13 & 14. 7 Shocks Reaing: Ryen chs 3 & 4, Shu chs 5 & 6 For the enthusiasts, Shu chs 3 & 4 A goo article for further reaing: Shull & Draine, The physics of interstellar shock waves, in Interstellar processes; Proceeings

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

How To Understand The Structure Of A Can (Can)

How To Understand The Structure Of A Can (Can) Thi t t ith F M k 4 0 4 BOSCH CAN Specification Version 2.0 1991, Robert Bosch GmbH, Postfach 50, D-7000 Stuttgart 1 The ocument as a whole may be copie an istribute without restrictions. However, the

More information

BOSCH. CAN Specification. Version 2.0. 1991, Robert Bosch GmbH, Postfach 30 02 40, D-70442 Stuttgart

BOSCH. CAN Specification. Version 2.0. 1991, Robert Bosch GmbH, Postfach 30 02 40, D-70442 Stuttgart CAN Specification Version 2.0 1991, Robert Bosch GmbH, Postfach 30 02 40, D-70442 Stuttgart CAN Specification 2.0 page 1 Recital The acceptance an introuction of serial communication to more an more applications

More information

Measures of distance between samples: Euclidean

Measures of distance between samples: Euclidean 4- Chapter 4 Measures of istance between samples: Eucliean We will be talking a lot about istances in this book. The concept of istance between two samples or between two variables is funamental in multivariate

More information

Supporting Adaptive Workflows in Advanced Application Environments

Supporting Adaptive Workflows in Advanced Application Environments Supporting aptive Workflows in vance pplication Environments Manfre Reichert, lemens Hensinger, Peter Daam Department Databases an Information Systems University of Ulm, D-89069 Ulm, Germany Email: {reichert,

More information

Search Advertising Based Promotion Strategies for Online Retailers

Search Advertising Based Promotion Strategies for Online Retailers Search Avertising Base Promotion Strategies for Online Retailers Amit Mehra The Inian School of Business yeraba, Inia Amit Mehra@isb.eu ABSTRACT Web site aresses of small on line retailers are often unknown

More information

Product Differentiation for Software-as-a-Service Providers

Product Differentiation for Software-as-a-Service Providers University of Augsburg Prof. Dr. Hans Ulrich Buhl Research Center Finance & Information Management Department of Information Systems Engineering & Financial Management Discussion Paper WI-99 Prouct Differentiation

More information

RUNESTONE, an International Student Collaboration Project

RUNESTONE, an International Student Collaboration Project RUNESTONE, an International Stuent Collaboration Project Mats Daniels 1, Marian Petre 2, Vicki Almstrum 3, Lars Asplun 1, Christina Björkman 1, Carl Erickson 4, Bruce Klein 4, an Mary Last 4 1 Department

More information

11 CHAPTER 11: FOOTINGS

11 CHAPTER 11: FOOTINGS CHAPTER ELEVEN FOOTINGS 1 11 CHAPTER 11: FOOTINGS 11.1 Introuction Footings are structural elements that transmit column or wall loas to the unerlying soil below the structure. Footings are esigne to transmit

More information

Digital barrier option contract with exponential random time

Digital barrier option contract with exponential random time IMA Journal of Applie Mathematics Avance Access publishe June 9, IMA Journal of Applie Mathematics ) Page of 9 oi:.93/imamat/hxs3 Digital barrier option contract with exponential ranom time Doobae Jun

More information

Detecting Possibly Fraudulent or Error-Prone Survey Data Using Benford s Law

Detecting Possibly Fraudulent or Error-Prone Survey Data Using Benford s Law Detecting Possibly Frauulent or Error-Prone Survey Data Using Benfor s Law Davi Swanson, Moon Jung Cho, John Eltinge U.S. Bureau of Labor Statistics 2 Massachusetts Ave., NE, Room 3650, Washington, DC

More information

Pythagorean Triples Over Gaussian Integers

Pythagorean Triples Over Gaussian Integers International Journal of Algebra, Vol. 6, 01, no., 55-64 Pythagorean Triples Over Gaussian Integers Cheranoot Somboonkulavui 1 Department of Mathematics, Faculty of Science Chulalongkorn University Bangkok

More information

Mathematics Review for Economists

Mathematics Review for Economists Mathematics Review for Economists by John E. Floy University of Toronto May 9, 2013 This ocument presents a review of very basic mathematics for use by stuents who plan to stuy economics in grauate school

More information

How To Price Internet Access In A Broaban Service Charge On A Per Unit Basis

How To Price Internet Access In A Broaban Service Charge On A Per Unit Basis iqui Pricing for Digital Infrastructure Services Subhajyoti Banyopahyay * an sing Kenneth Cheng Department of Decision an Information Sciences Warrington College of Business Aministration University of

More information

Introduction to Integration Part 1: Anti-Differentiation

Introduction to Integration Part 1: Anti-Differentiation Mathematics Learning Centre Introuction to Integration Part : Anti-Differentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction

More information

Sensitivity Analysis of Non-linear Performance with Probability Distortion

Sensitivity Analysis of Non-linear Performance with Probability Distortion Preprints of the 19th Worl Congress The International Feeration of Automatic Control Cape Town, South Africa. August 24-29, 214 Sensitivity Analysis of Non-linear Performance with Probability Distortion

More information

CALCULATION INSTRUCTIONS

CALCULATION INSTRUCTIONS Energy Saving Guarantee Contract ppenix 8 CLCULTION INSTRUCTIONS Calculation Instructions for the Determination of the Energy Costs aseline, the nnual mounts of Savings an the Remuneration 1 asics ll prices

More information

Cross-Over Analysis Using T-Tests

Cross-Over Analysis Using T-Tests Chapter 35 Cross-Over Analysis Using -ests Introuction his proceure analyzes ata from a two-treatment, two-perio (x) cross-over esign. he response is assume to be a continuous ranom variable that follows

More information

Heat-And-Mass Transfer Relationship to Determine Shear Stress in Tubular Membrane Systems Ratkovich, Nicolas Rios; Nopens, Ingmar

Heat-And-Mass Transfer Relationship to Determine Shear Stress in Tubular Membrane Systems Ratkovich, Nicolas Rios; Nopens, Ingmar Aalborg Universitet Heat-An-Mass Transfer Relationship to Determine Shear Stress in Tubular Membrane Systems Ratkovich, Nicolas Rios; Nopens, Ingmar Publishe in: International Journal of Heat an Mass Transfer

More information

y or f (x) to determine their nature.

y or f (x) to determine their nature. Level C5 of challenge: D C5 Fining stationar points of cubic functions functions Mathematical goals Starting points Materials require Time neee To enable learners to: fin the stationar points of a cubic

More information

Minimizing Makespan in Flow Shop Scheduling Using a Network Approach

Minimizing Makespan in Flow Shop Scheduling Using a Network Approach Minimizing Makespan in Flow Shop Scheuling Using a Network Approach Amin Sahraeian Department of Inustrial Engineering, Payame Noor University, Asaluyeh, Iran 1 Introuction Prouction systems can be ivie

More information

How To Find Out How To Calculate Volume Of A Sphere

How To Find Out How To Calculate Volume Of A Sphere Contents High-Dimensional Space. Properties of High-Dimensional Space..................... 4. The High-Dimensional Sphere......................... 5.. The Sphere an the Cube in Higher Dimensions...........

More information

The Open University s repository of research publications and other research outputs

The Open University s repository of research publications and other research outputs Open Research Online The Open University s repository of research publications and other research outputs The degree-diameter problem for circulant graphs of degree 8 and 9 Journal Article How to cite:

More information

Web Appendices to Selling to Overcon dent Consumers

Web Appendices to Selling to Overcon dent Consumers Web Appenices to Selling to Overcon ent Consumers Michael D. Grubb MIT Sloan School of Management Cambrige, MA 02142 mgrubbmit.eu www.mit.eu/~mgrubb May 2, 2008 B Option Pricing Intuition This appenix

More information

Using research evidence in mental health: user-rating and focus group study of clinicians preferences for a new clinical question-answering service

Using research evidence in mental health: user-rating and focus group study of clinicians preferences for a new clinical question-answering service DOI: 10.1111/j.1471-1842.2008.00833.x Using research evience in mental health: user-rating an focus group stuy of clinicians preferences for a new clinical question-answering service Elizabeth A. Barley*,

More information

Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs

Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis Research Academic Computer Technology Institute

More information

CURRENCY OPTION PRICING II

CURRENCY OPTION PRICING II Jones Grauate School Rice University Masa Watanabe INTERNATIONAL FINANCE MGMT 657 Calibrating the Binomial Tree to Volatility Black-Scholes Moel for Currency Options Properties of the BS Moel Option Sensitivity

More information

The concept of on-board diagnostic system of working machine hydraulic system

The concept of on-board diagnostic system of working machine hydraulic system Scientific Journals Maritime University of Szczecin Zeszyty Naukowe Akaemia Morska w Szczecinie 0, 3(04) z. pp. 8 90 0, 3(04) z. s. 8 90 The concept of on-boar iagnostic of working machine hyraulic Leszek

More information

Short Cycles make W-hard problems hard: FPT algorithms for W-hard Problems in Graphs with no short Cycles

Short Cycles make W-hard problems hard: FPT algorithms for W-hard Problems in Graphs with no short Cycles Short Cycles make W-hard problems hard: FPT algorithms for W-hard Problems in Graphs with no short Cycles Venkatesh Raman and Saket Saurabh The Institute of Mathematical Sciences, Chennai 600 113. {vraman

More information

Stock Market Value Prediction Using Neural Networks

Stock Market Value Prediction Using Neural Networks Stock Market Value Preiction Using Neural Networks Mahi Pakaman Naeini IT & Computer Engineering Department Islamic Aza University Paran Branch e-mail: m.pakaman@ece.ut.ac.ir Hamireza Taremian Engineering

More information

Definition of the spin current: The angular spin current and its physical consequences

Definition of the spin current: The angular spin current and its physical consequences Definition of the spin current: The angular spin current an its physical consequences Qing-feng Sun 1, * an X. C. Xie 2,3 1 Beijing National Lab for Conense Matter Physics an Institute of Physics, Chinese

More information

Option Pricing for Inventory Management and Control

Option Pricing for Inventory Management and Control Option Pricing for Inventory Management an Control Bryant Angelos, McKay Heasley, an Jeffrey Humpherys Abstract We explore the use of option contracts as a means of managing an controlling inventories

More information

Example Optimization Problems selected from Section 4.7

Example Optimization Problems selected from Section 4.7 Example Optimization Problems selecte from Section 4.7 19) We are aske to fin the points ( X, Y ) on the ellipse 4x 2 + y 2 = 4 that are farthest away from the point ( 1, 0 ) ; as it happens, this point

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

Performance And Analysis Of Risk Assessment Methodologies In Information Security

Performance And Analysis Of Risk Assessment Methodologies In Information Security International Journal of Computer Trens an Technology (IJCTT) volume 4 Issue 10 October 2013 Performance An Analysis Of Risk Assessment ologies In Information Security K.V.D.Kiran #1, Saikrishna Mukkamala

More information

Optimal Energy Commitments with Storage and Intermittent Supply

Optimal Energy Commitments with Storage and Intermittent Supply Submitte to Operations Research manuscript OPRE-2009-09-406 Optimal Energy Commitments with Storage an Intermittent Supply Jae Ho Kim Department of Electrical Engineering, Princeton University, Princeton,

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Even Faster Algorithm for Set Splitting!

Even Faster Algorithm for Set Splitting! Even Faster Algorithm for Set Splitting! Daniel Lokshtanov Saket Saurabh Abstract In the p-set Splitting problem we are given a universe U, a family F of subsets of U and a positive integer k and the objective

More information

Sage Match Terms and Conditions of Use (Last updated: 9 November 2015)

Sage Match Terms and Conditions of Use (Last updated: 9 November 2015) 1. Acknowlegement an Acceptance 1.1. This Agreement is between: (1) you, the person or organisation registere to use or using the Sage accountancy network service known as Sage Match ; an (2) us, as follows:

More information

How To Solve A K Path In Time (K)

How To Solve A K Path In Time (K) What s next? Reductions other than kernelization Dániel Marx Humboldt-Universität zu Berlin (with help from Fedor Fomin, Daniel Lokshtanov and Saket Saurabh) WorKer 2010: Workshop on Kernelization Nov

More information

A simple criterion on degree sequences of graphs

A simple criterion on degree sequences of graphs Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

More information

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400 hsn.uk.net Higher Mathematics UNIT OUTCOME 4 Circles Contents Circles 119 1 Representing a Circle 119 Testing a Point 10 3 The General Equation of a Circle 10 4 Intersection of a Line an a Circle 1 5 Tangents

More information

15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications

15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications 00 CHAPTER 5 Differential Equations SECTION 5. First-Orer Linear Differential Equations First-Orer Linear Differential Equations Bernoulli Equations Applications First-Orer Linear Differential Equations

More information

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric

More information

Low-Complexity and Distributed Energy Minimization in Multi-hop Wireless Networks

Low-Complexity and Distributed Energy Minimization in Multi-hop Wireless Networks Low-Complexity an Distribute Energy inimization in ulti-hop Wireless Networks Longbi Lin, Xiaojun Lin, an Ness B. Shroff Center for Wireless Systems an Applications (CWSA) School of Electrical an Computer

More information

FACTORING IN THE HYPERELLIPTIC TORELLI GROUP

FACTORING IN THE HYPERELLIPTIC TORELLI GROUP FACTORING IN THE HYPERELLIPTIC TORELLI GROUP TARA E. BRENDLE AND DAN MARGALIT Abstract. The hyperelliptic Torelli group is the subgroup of the mapping class group consisting of elements that act trivially

More information

ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop Clusters

ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop Clusters ThroughputScheuler: Learning to Scheule on Heterogeneous Haoop Clusters Shehar Gupta, Christian Fritz, Bob Price, Roger Hoover, an Johan e Kleer Palo Alto Research Center, Palo Alto, CA, USA {sgupta, cfritz,

More information

The influence of anti-viral drug therapy on the evolution of HIV-1 pathogens

The influence of anti-viral drug therapy on the evolution of HIV-1 pathogens DIMACS Series in Discrete Mathematics an Theoretical Computer Science Volume 7, 26 The influence of anti-viral rug therapy on the evolution of HIV- pathogens Zhilan Feng an Libin Rong Abstract. An age-structure

More information

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce

More information

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1 Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)

More information

There are two different ways you can interpret the information given in a demand curve.

There are two different ways you can interpret the information given in a demand curve. Econ 500 Microeconomic Review Deman What these notes hope to o is to o a quick review of supply, eman, an equilibrium, with an emphasis on a more quantifiable approach. Deman Curve (Big icture) The whole

More information