Ch 10. Arithmetic Average Options and Asian Opitons
|
|
|
- Caren Barker
- 10 years ago
- Views:
Transcription
1 Ch 10. Arithmetic Average Options an Asian Opitons I. Asian Option an the Analytic Pricing Formula II. Binomial Tree Moel to Price Average Options III. Combination of Arithmetic Average an Reset Options Asian options are path epenent erivatives whose payoffs epen on the average of the unerlying asset prices uring the option life. They were originally issue in 1987 by Bankers Trust Tokyo on crue oil contracts an hence with the name Asian option. The features or avantages of Asian options are as follows. 1. Asian options are appropriate to meet the heging nees of users of commoities, energies, or foreign currencies who will be expose to the risk of average prices uring a future perio. 2. Since the volatility for the average of the unerlying asset prices is lower than the volatility for the unerling asset prices, Asian options are less expensive than corresponing vanilla options an are therefore more attractive for some investors. 3. Asian options are also useful in thinly-trae markets to prevent the manipulation of the unerlying asset price. In this chapter, for the teaching purpose, average options an Asian options are classifie epenent on either the price of the unerlying asset at maturity or the strike price being replace by the average price. average price call: max(save K, 0) Average options average price put: max(k Save, 0) average strike call: max(s T Save, 0) Asian option average strike put: max(save S T, 0) 10-1
2 I. Asian Option an Its Analytic Pricing Formula If Save is efine as the geometric average of stock prices, since the prouct of lognormally istribute ranom variables also follows the lognormal istribution, Save is lognormally istribute. In the risk-neutral worl, the process of Save over a certain perio T is with the expecte continuously compouning growth rate 2 1 σ2 (r q 6 )T (i.e., E[S ave] = S 0 e 1 σ2 (r q )T 2 6 ) an the volatility σ T / 3. For geometric average options, because the role of Save is the same of S T in the payoff function, base on the lognormal istribution of Save an the Black-Scholes formula, the price formula for geometric average option can be erive straightforwar. For a geometric average call, option value = S 0 e (a r)t N( 1 ) Ke rt N( 2 ) = e rt [S 0 e at N( 1 ) KN( 2 )] = e rt [E[geometric average until T ]N( 1 ) KN( 2 )] 1 = 2 = a = σ A = σ 3 ln(s0/k)+(a+ 1 2 σ2 A)T σ A T 1 σ A T 1 σ2 2 (r q 6 ) = ln(s0eat /K)+( 1 2 σ2 A)T σ A T Kemna an Vorst (1990), A Pricing Metho for Option Base on Average Asset Values, Journal of Banking & Finance 14, pp
3 If Save is efine as the arithmetic average of stock prices, it is more ifficult to price the arithmetic average option. An approximation metho is escribe as follows. First, calculate the first an the secon moments of Save uring the option life T. M 1 = e(r q)t 1 (r q)t S 0 = E[arithmetic average until T ] M 2 = 2e (2r 2q+σ2 )T S 2 0 (r q+σ 2 )(2r 2q+σ 2 )T 2 + 2S2 0 (r q)t 2 ( 1 2(r q)+σ 2 e(r q)t r q+σ 2 ) Secon, assume that Save is lognormally istribute with the first an secon moments mentione above. Finally, base on the Black-Scholes formula for futures options, the value of an arithmetic average call can be approximate as follows. c = e rt [F 0 N( 1 ) KN( 2 )] 1 = ln(f0/k)+σ2 T/2 σ T 2 = 1 σ T where F 0 = M 1, σ 2 = 1 T M2 ln( ) M1 2 (In the original formula for futures option, F 0 is the current futures price mature at T, an σ 2 is the corresponing variance of the futures price.) Turnbull an Wakeman (1991), A Quick Algorithm for Pricing European Average Option, Journal of Financial an Quantitative Analysis 26, pp
4 II. Binomial Tree Moel to Price Average Options The naive pricing metho base on the tree-base moel, which tracks all possible arithmetic average prices reaching each noe, is able to erive exact option values for both arithmetic an geometric average options. The naive pricing metho only works for geometric average options. It is intractable to price arithmetic average options ue to the exponential growth of the number of possible arithmetic average prices with respect to the number of time steps, n. Instea of keeping track of all possible arithmetic average prices, Hull an White (1993) introuce representative average prices to be (logarithmically) equally-space place between the maximum an minimum arithmetic average prices for each noe. In aition, the piece-wise linear interpolation is employe to approximate the corresponing option values for nonexistent average prices uring the backwar inuction. The algorithm of Hull an White (1993): (1) For any noe(i, j), the maximum arithmetic average price is contribute by a price path starting with i j consecutive up movements followe by j consecutive own movements, an the minimum arithmetic average price can be calculate from a price path starting with j consecutive own movements followe by i j consecutive up movements. Figure 10-1 S 0 A noe(1,0) S 0 u noe(0,0) noe(1,1) S 0 max ( i, j) A min ( i, j) noe(i, j) Su 0 i j j i j up movements j own movements { }} { { }} { A max (i, j) = S 0 (1 + u + u u i j + u i j + u i j u i j j )/ (i + 1) = (S 0 1 u i j+1 1 u + S 0 u i j 1 j )/(i + 1) 1 j own movements i j up movements { }} { { }} { A min (i, j) = S 0 ( j + j u + j u j u i j )/(i + 1) = (S 0 1 j S 0 j u 1 ui j )/(i + 1) 1 u 10-4
5 (2) For each noe, representative average prices are arraye (logarithmically) equallyspace from the maximum to the minimum arithmetic average prices for each noe via the following formula. A(i, j, k) = M k M A max(i, j) + k M A min(i, j), for k = 0,..., M. ( ( M k A(i, j, k) = exp M ln(a max(i, j)) + k ) ) M ln(a min(i, j)), for k = 0,..., M. (3) For each terminal noe(n, j), ecie the payoff for each representative average price A(n, j, k). Figure 10-2 M k k Amax ( i, j) Amin ( i, j), for k 0,1,2,..., M M M noe( n, j) Su 0 n j j M+1 representative average prices An (, j,0) A ( n, j) max An (, jk, ) An (, jm, ) A ( n, j) min max( An (, j,0) K,0) max( An (, jk, ) K,0) max( An (, jm, ) K,0) 10-5
6 (4) Backwar inuction Figure 10-3 noe( i1, j) S u 0 i1 j j Ai ( 1, j,0) A ( i1, j) max A( i 1, j, k 1) u Ci ( 1, j,0) C( i 1, j, k 1) u A i 1, j, k ) C i 1, j, k ) ( u ( u noe( i, j) S u 0 i j j A u Ai ( 1, jm, ) A ( i1, j) min Ci ( 1, jm, ) Ai (, j,0) A (, i j) max Ci (, j,0) A( i, j, k) C( i, j, k) noe( i1, j1) Ai (, jm, ) A (, i j) Ci (, jm, ) min S u 0 i1( j1) j1 A Ai ( 1, j1,0) A ( i1, j1) max A( i 1, j 1, k 1) Ci ( 1, j1,0) C( i 1, j 1, k 1) A i 1, j 1, k ) C i 1, j 1, k ) ( ( Ai ( 1, j1, M) A ( i1, j1) min Ci ( 1, j1, M) For A(i, j, k), 0 j i n, an k= 0, 1,..., M, A u = (i+1)a(i,j,k)+s0ui+1 j j i+2 Suppose A u is insie the range [A(i + 1, j, k u ), A(i + 1, j, k u 1)]. The corresponing option value C u for A u can be approximate by the linear interpolation, i.e., C u = w u C(i + 1, j, k u ) + (1 w u )C(i + 1, j, k u 1), where w u = A(i + 1, j, k u 1) A u A(i + 1, j, k u 1) A(i + 1, j, k u ). A = (i+1)a(i,j,k)+s0ui+1 (j+1) (j+1) i+2 Similarly, if A is insie the range [A(i+1, j +1, k ), A(i+1, j +1, k 1)]. The corresponing option value C for A can be approximate by the linear interpolation following the same logic as above. 10-6
7 C(i, j, k) = (P C u + (1 P ) C ) e r t If American arithmetic average options are consiere, the option value C(i, j, k) = max(a(i, j, k) K, (P C u + (1 P ) C ) e r t ). As a consequence, the interpolation error emerges an pricing results might not converge to exact option values unless the number of representative average prices for each noe, M, is sufficiently large an well collocate with the number of time steps, n, in the tree moel. Generally speaking, with the increase of the number of time steps in the tree moel, more representative average prices are neee for each noe to erive convergent results. 10-7
8 III. Combination of Arithmetic Average an Reset Options This section introuces a financial innovation to combine two attrative features, the Arithmetic Average an Reset Options, to form a new options. The pricing moel of this new option is first propose by Kim, Chang, an Byun (2003), Valuation of Arithmetic Average Reset Options, Journal of Derivatives 11, pp The payoff of a stanar reset call: max(s T K T, 0). Since the strike price is reset ownwar for calls, K T = min(k 0, S t1, S t2,, S ti ), where t 1, t 2,..., t I are reset ates. Arithmetic average reset calls: the same payoff function as that for stanar reset calls, except that K T = min(k 0, A t1, A t2,, A ti ). The avantages of the arithmetic average reset options: Avoi manipulation on (or near) the reset ate. The arithmetic average feature can reuce the option premium. Figure 10-4 Suppose t T / n, an the reset ates t nt. i i n 0 n 1...n i-1 n i m n i+1... n I-1 n I n I+1 t 0 t 1... t i-1 t i t i+1... t I-1 t I t I+1 = = 0 T At 1 A A ti t i 1 A ti = ( S S S )/( n n ) ( ni11) t ( ni12) t nit i i1 for n m n i i1 Am t( S( n 1) ( 2) )/( ) i ts ni t Sm t mni Km t min( K0, At, A,, ) 1 t A 2 ti 10-8
9 The evolution rule of state variables (K t, A t ): (i) For the root an the reset time points, the state variables at the next time point is (K t+ t, A t+ t ) = (K t, S t+ t ) (A t+ t = S t+ t inicates the start (or restart) of calculating the arithmetic average price at the next time point). (ii) For time points just before the reset time points, i.e., (n i 1) t, the state variables at the next time point is (K t+ t, A t+ t ) = (min(k t, G(A t, S t+ t )), G(A t, S t+ t )), where G(A t, S t+ t ) is an upating function for the arithmetic average price, which returns A t+ t given A t an S t+ t. (iii) For time points other than those in (i) an (ii), only upate the arithmetic average price such that the state variables at the next time point is (K t+ t, A t+ t ) = (K t, G(A t, S t+ t )). The ata structure of each noe: Representative values for A (an K) are logarithmically equally-space place with the ifference h between the maximum an minimum arithmetic average prices (an the maximum an minimum strike prices) for each noe. Figure 10-5 S(m+1,j+1) K(m,j,k)=K max (m,j) exp(-k h) K min A min K max A(m,j,l)=A max (m,j) exp(-l h) S(m,j) A u (m,j,l) ln( Amax ) ln( Amin ) 1 h K min A min A max K max ln( Kmax ) ln( Kmin ) 1 h A (m,j,l) A max K min A min S(m+1,j) K max A max 10-9
10 The upating function for the arithmetic average price, G(A t, S t+ t ): For A(m, j, l) an n i < m < n i+1 A u (m, j, l) = [(m n i )A(m, j, l) + S(m + 1, j + 1)]/(m n i + 1) A (m, j, l) = [(m n i )A(m, j, l) + S(m + 1, j)]/(m n i + 1) Backwar inuction (i) Decie the payoff for each pair of (K, A) on terminal noes. The payoff is max(s T K T, 0), which is inepenent of the average variable A, so for each column with the same representative values of K, the payoff is the same (see Figure 10-6). Figure 10-6 (i) S(n I+1,n I+1 ) S(n I+1,j) S(n I+1,0) n I n I+1 (ii) A min A max K min K(n I+1,j,k) K max max(s(ni+1,j)-kmin, 0) max(s(ni+1,j)-k(ni+1,j,k), 0) max(s(ni+1,j)-kmax, 0) (ii) For m = n I, n I + 1, n I + 2,..., n I+1 1, V (m, j, K(m, j, k), A(m, j, l)) = [P u V (m + 1, j + 1; K(m, j, k), A(m, j, l))+ P V (m + 1, j; K(m, j, k), A(m, j, l)]e r t (For the time perio between (n I + 1) t an (n I+1 1) t, the strike price K will not be reset, an the arithmetic average A will not change either at the next time point. Therefore, it is only necessary to fin option values at the next time point with state variable (K, A) ientical to the values of K(m, j, k) an A(m, j, l).) 10-10
11 (iii) If m t is one of the reset ates for m = n 1, n 2,..., n I 1, V reset (m, j; K(m, j, k), A(m, j, l)) = [P u V (m + 1, j + 1; K(m, j, k), S(m + 1, j + 1))+ P V (m + 1, j; K(m, j, k), S(m + 1, j))]e r t (Since K(m, j, k) represents the strike price after the reset, the strike price K will not change at the next time point. Therefore, fin option values with the state variable K which is ientical to the value of K(m, j, k). As to the average state variable A, because the calculation of the arithmetic average price will restart at the next time point, fin option values with the state variable A which is equal to the stock prices of the following chil noes.) (iv) If m is the time point just before the reset ate, V (m, j; K(m, j, k), A(m, j, l)) =[P u V reset (m + 1, j + 1; min(k(m, j, k), A u (m, j, l)), A u (m, j, l)) + P V reset (m + 1, j; min(k(m, j, k), A (m, j, l)), A (m, j, l))]e r t (First, the arithmetic average price will be upate to be A u (m, j, l) for the upper chil noe an A (m, j, l) for the lower chil noe. Secon, the both strike prices are reset to be the minimums between K(m, j, k) an A u (m, j, l) for the upper chil noe an K(m, j, k) an A (m, j, l) for the lower chil noe.) (v) For values of m other than those in cases (i), (ii), (iii), an (iv), V (m, j; K(m, j, k), A(m, j, l)) = [P u V (m + 1, j + 1; K(m, j, k), A u (m, j, l)) +P V (m + 1, j; K(m, j, k), A (m, j, l))]e r t (Since the strike price will not be reset at the next time point, it is only necessary to take the upate of the arithmetic average price into account. So, fin option values with the state variable (K, A) to be (K(m, j, k), A u (m, j, l)) for the upper chil noe an (K(m, j, k), A (m, j, l)) for the lower chil noe.) During the backwar inuction process, if there are no matche representative arithmetic average price an strike price, fin the ajacent representative arithmetic average prices an ajacent representative strike prices to contain the target arithmetic average price an strike price. Then apply the two-imensional linear interpolation to erive the corresponing option price. In aition to the above algorithm of the backwar inuction, it is also important to ecie K min, K max, A min, an A max for each noe. In fact, it is necessary to erive A min an A max for each noe first, then to etermine K min an K max for the noes at the time points just before the reset ates, an finally to erive K min an K max for other noes following a backwar inheritance process
12 For n i + 1 m n i+1, an i = 0, 1,..., I 1, [S(m, j) + S(m 1, j) + + S(n i + 1, j)]/(m n i ) if j n i + 1 A max (m, j) = {[S(m, j) + S(m 1, j) + + S(j, j)]+ [S(j 1, j 1) + S(j 2, j 2) + + S(n i + 1, n i + 1)]} /(m n i ) if j > n i + 1 (For the upper case, trace the upper parent noe backwar until m = n i + 1. For the lower case, trace the upper parent noe backwar first. Once reaching the uppermost noe of the tree, trace the lower parent noe backwar until m = n i + 1.) Figure 10-7 n i+1 n i n i +1 m A min (m, j) = [S(m, j) + S(m 1, j 1) + + S(n i + 1, j m + n i + 1)]/(m n i ) if j m n i 1 {[S(m, j) + S(m 1, j 1) + + S(m j, 0)]+ [S(m j 1, 0) + + S(n i + 1, 0)]} /(m n i ) if j < m n i 1 (For the upper case, trace the lower parent noe backwar until m = n i + 1. For the lower case, trace the lower parent noe backwar first. Once reaching the lowermost noe of the tree, trace the upper parent noe backwar until m = n i + 1.) Figure 10-8 n i+1 n i n i +1 m 10-12
13 For m = n i+1 1, an i = 1, 2,..., I, K max (m, j) = min(a max (n i, min(j, n i )), K 0 ), where the outsie minimum operator is to ensure the possible strike price after resets must be smaller than K 0. min(a min (n q 1, 0), K 0 ) if q < i + 1 K min (m, j) =, min(a min (n q, j (m n q )), K 0 ) otherwise where q is chosen to satisfy n q 1 m j < n q. Figure 10-9 n4 1 The path with the highest strike price noe( m, j) The path with the lowest strike price n1 n2 n3 n 4 For the time points n i+1 2, n i+1 3,..., n i, the K min an K max for each noe at these time points can be etermine backwar given the K min an K max for each noe at the time point of n i+1 1: { Kmin (m, j) = K min (m + 1, j + 1) (inherit from the upper chil noe) K max (m, j) = K max (m + 1, j) (inherit from the lower chil noe) The metho propose by Kim, Chang, an Byun (2003) to etermine K min an K max for each noe is complicate. In fact, K min an K max for each noe can be set to be 0 an K 0, respectively. Because the strike price is reset ownwar, the maximum value for K max of all noes must be K 0. In aition, since the stock price cannot be negative, it is impossible that the minimum value for K min becomes negative, an thus we can set K min for each noe to be 0. The above alternative by setting K min an K max to be globally minimum an maximum for each noe is much simpler. However, the larger ifference between K min an K max will increase the number of representative strike prices for each noe an in turn cause the heavier usage of the memory space an the CPU power to calculate the option value
Hull, Chapter 11 + Sections 17.1 and 17.2 Additional reference: John Cox and Mark Rubinstein, Options Markets, Chapter 5
Binomial Moel Hull, Chapter 11 + ections 17.1 an 17.2 Aitional reference: John Cox an Mark Rubinstein, Options Markets, Chapter 5 1. One-Perio Binomial Moel Creating synthetic options (replicating options)
CURRENCY OPTION PRICING II
Jones Grauate School Rice University Masa Watanabe INTERNATIONAL FINANCE MGMT 657 Calibrating the Binomial Tree to Volatility Black-Scholes Moel for Currency Options Properties of the BS Moel Option Sensitivity
Digital barrier option contract with exponential random time
IMA Journal of Applie Mathematics Avance Access publishe June 9, IMA Journal of Applie Mathematics ) Page of 9 oi:.93/imamat/hxs3 Digital barrier option contract with exponential ranom time Doobae Jun
Option Pricing for Inventory Management and Control
Option Pricing for Inventory Management an Control Bryant Angelos, McKay Heasley, an Jeffrey Humpherys Abstract We explore the use of option contracts as a means of managing an controlling inventories
10.2 Systems of Linear Equations: Matrices
SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix
Math 230.01, Fall 2012: HW 1 Solutions
Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms
Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13
Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption
Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market
RATIO MATHEMATICA 25 (2013), 29 46 ISSN:1592-7415 Optimal Control Policy of a Prouction an Inventory System for multi-prouct in Segmente Market Kuleep Chauhary, Yogener Singh, P. C. Jha Department of Operational
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,
On Adaboost and Optimal Betting Strategies
On Aaboost an Optimal Betting Strategies Pasquale Malacaria 1 an Fabrizio Smerali 1 1 School of Electronic Engineering an Computer Science, Queen Mary University of Lonon, Lonon, UK Abstract We explore
OPTION PRICING FOR WEIGHTED AVERAGE OF ASSET PRICES
OPTION PRICING FOR WEIGHTED AVERAGE OF ASSET PRICES Hiroshi Inoue 1, Masatoshi Miyake 2, Satoru Takahashi 1 1 School of Management, T okyo University of Science, Kuki-shi Saitama 346-8512, Japan 2 Department
JON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT
OPTIMAL INSURANCE COVERAGE UNDER BONUS-MALUS CONTRACTS BY JON HOLTAN if P&C Insurance Lt., Oslo, Norway ABSTRACT The paper analyses the questions: Shoul or shoul not an iniviual buy insurance? An if so,
MODELLING OF TWO STRATEGIES IN INVENTORY CONTROL SYSTEM WITH RANDOM LEAD TIME AND DEMAND
art I. robobabilystic Moels Computer Moelling an New echnologies 27 Vol. No. 2-3 ransport an elecommunication Institute omonosova iga V-9 atvia MOEING OF WO AEGIE IN INVENOY CONO YEM WIH ANOM EA IME AN
Lecture 21 Options Pricing
Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call
Minimum-Energy Broadcast in All-Wireless Networks: NP-Completeness and Distribution Issues
Minimum-Energy Broacast in All-Wireless Networks: NP-Completeness an Distribution Issues Mario Čagal LCA-EPFL CH-05 Lausanne Switzerlan [email protected] Jean-Pierre Hubaux LCA-EPFL CH-05 Lausanne Switzerlan
The one-year non-life insurance risk
The one-year non-life insurance risk Ohlsson, Esbjörn & Lauzeningks, Jan Abstract With few exceptions, the literature on non-life insurance reserve risk has been evote to the ultimo risk, the risk in the
A Data Placement Strategy in Scientific Cloud Workflows
A Data Placement Strategy in Scientific Clou Workflows Dong Yuan, Yun Yang, Xiao Liu, Jinjun Chen Faculty of Information an Communication Technologies, Swinburne University of Technology Hawthorn, Melbourne,
Optimal Energy Commitments with Storage and Intermittent Supply
Submitte to Operations Research manuscript OPRE-2009-09-406 Optimal Energy Commitments with Storage an Intermittent Supply Jae Ho Kim Department of Electrical Engineering, Princeton University, Princeton,
Enterprise Resource Planning
Enterprise Resource Planning MPC 6 th Eition Chapter 1a McGraw-Hill/Irwin Copyright 2011 by The McGraw-Hill Companies, Inc. All rights reserve. Enterprise Resource Planning A comprehensive software approach
Lagrangian and Hamiltonian Mechanics
Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying
American and European. Put Option
American and European Put Option Analytical Finance I Kinda Sumlaji 1 Table of Contents: 1. Introduction... 3 2. Option Style... 4 3. Put Option 4 3.1 Definition 4 3.2 Payoff at Maturity... 4 3.3 Example
Consumer Referrals. Maria Arbatskaya and Hideo Konishi. October 28, 2014
Consumer Referrals Maria Arbatskaya an Hieo Konishi October 28, 2014 Abstract In many inustries, rms rewar their customers for making referrals. We analyze the optimal policy mix of price, avertising intensity,
Professional Level Options Module, Paper P4(SGP)
Answers Professional Level Options Moule, Paper P4(SGP) Avance Financial Management (Singapore) December 2007 Answers Tutorial note: These moel answers are consierably longer an more etaile than woul be
A Generalization of Sauer s Lemma to Classes of Large-Margin Functions
A Generalization of Sauer s Lemma to Classes of Large-Margin Functions Joel Ratsaby University College Lonon Gower Street, Lonon WC1E 6BT, Unite Kingom [email protected], WWW home page: http://www.cs.ucl.ac.uk/staff/j.ratsaby/
TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13
TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:
Option Properties. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets. (Hull chapter: 9)
Option Properties Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 9) Liuren Wu (Baruch) Option Properties Options Markets 1 / 17 Notation c: European call option price.
ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop Clusters
ThroughputScheuler: Learning to Scheule on Heterogeneous Haoop Clusters Shehar Gupta, Christian Fritz, Bob Price, Roger Hoover, an Johan e Kleer Palo Alto Research Center, Palo Alto, CA, USA {sgupta, cfritz,
A SNOWBALL CURRENCY OPTION
J. KSIAM Vol.15, No.1, 31 41, 011 A SNOWBALL CURRENCY OPTION GYOOCHEOL SHIM 1 1 GRADUATE DEPARTMENT OF FINANCIAL ENGINEERING, AJOU UNIVERSITY, SOUTH KOREA E-mail address: [email protected] ABSTRACT. I introduce
Numerical Methods for Option Pricing
Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly
A New Evaluation Measure for Information Retrieval Systems
A New Evaluation Measure for Information Retrieval Systems Martin Mehlitz [email protected] Christian Bauckhage Deutsche Telekom Laboratories [email protected] Jérôme Kunegis [email protected]
Modelling and Resolving Software Dependencies
June 15, 2005 Abstract Many Linux istributions an other moern operating systems feature the explicit eclaration of (often complex) epenency relationships between the pieces of software
GPRS performance estimation in GSM circuit switched services and GPRS shared resource systems *
GPRS performance estimation in GSM circuit switche serices an GPRS share resource systems * Shaoji i an Sen-Gusta Häggman Helsinki Uniersity of Technology, Institute of Raio ommunications, ommunications
Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
Stock Market Value Prediction Using Neural Networks
Stock Market Value Preiction Using Neural Networks Mahi Pakaman Naeini IT & Computer Engineering Department Islamic Aza University Paran Branch e-mail: [email protected] Hamireza Taremian Engineering
MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION
MAXIMUM-LIKELIHOOD ESTIMATION The General Theory of M-L Estimation In orer to erive an M-L estimator, we are boun to make an assumption about the functional form of the istribution which generates the
State of Louisiana Office of Information Technology. Change Management Plan
State of Louisiana Office of Information Technology Change Management Plan Table of Contents Change Management Overview Change Management Plan Key Consierations Organizational Transition Stages Change
Search Advertising Based Promotion Strategies for Online Retailers
Search Avertising Base Promotion Strategies for Online Retailers Amit Mehra The Inian School of Business yeraba, Inia Amit [email protected] ABSTRACT Web site aresses of small on line retailers are often unknown
Option Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications
00 CHAPTER 5 Differential Equations SECTION 5. First-Orer Linear Differential Equations First-Orer Linear Differential Equations Bernoulli Equations Applications First-Orer Linear Differential Equations
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.
Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.
Calibration of the broad band UV Radiometer
Calibration of the broa ban UV Raiometer Marian Morys an Daniel Berger Solar Light Co., Philaelphia, PA 19126 ABSTRACT Mounting concern about the ozone layer epletion an the potential ultraviolet exposure
Risk Management for Derivatives
Risk Management or Derivatives he Greeks are coming the Greeks are coming! Managing risk is important to a large number o iniviuals an institutions he most unamental aspect o business is a process where
Inverse Trig Functions
Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that
Data Center Power System Reliability Beyond the 9 s: A Practical Approach
Data Center Power System Reliability Beyon the 9 s: A Practical Approach Bill Brown, P.E., Square D Critical Power Competency Center. Abstract Reliability has always been the focus of mission-critical
Exponential Functions: Differentiation and Integration. The Natural Exponential Function
46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential
Path-dependent options
Chapter 5 Path-dependent options The contracts we have seen so far are the most basic and important derivative products. In this chapter, we shall discuss some complex contracts, including barrier options,
Answers to the Practice Problems for Test 2
Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan
Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
Risk Adjustment for Poker Players
Risk Ajustment for Poker Players William Chin DePaul University, Chicago, Illinois Marc Ingenoso Conger Asset Management LLC, Chicago, Illinois September, 2006 Introuction In this article we consier risk
Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices
THE JOURNAL OF FINANCE VOL LIII, NO. 2 APRIL 1998 Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices YACINE AÏT-SAHALIA an ANDREW W. LO* ABSTRACT Implicit in the prices
ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs)
Problem ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 0,, 2, 8. October 2, 200 (Thurs) (i) The current exchange rate is 0.0$/. (ii) A four-year dollar-denominated European put option
Chapter 13 The Black-Scholes-Merton Model
Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)
Lecture L25-3D Rigid Body Kinematics
J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L25-3D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general three-imensional
Detecting Possibly Fraudulent or Error-Prone Survey Data Using Benford s Law
Detecting Possibly Frauulent or Error-Prone Survey Data Using Benfor s Law Davi Swanson, Moon Jung Cho, John Eltinge U.S. Bureau of Labor Statistics 2 Massachusetts Ave., NE, Room 3650, Washington, DC
ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, June 2014
ISSN: 77-754 ISO 900:008 Certifie International Journal of Engineering an Innovative echnology (IJEI) Volume, Issue, June 04 Manufacturing process with isruption uner Quaratic Deman for Deteriorating Inventory
Unsteady Flow Visualization by Animating Evenly-Spaced Streamlines
EUROGRAPHICS 2000 / M. Gross an F.R.A. Hopgoo Volume 19, (2000), Number 3 (Guest Eitors) Unsteay Flow Visualization by Animating Evenly-Space Bruno Jobar an Wilfri Lefer Université u Littoral Côte Opale,
A Theory of Exchange Rates and the Term Structure of Interest Rates
Review of Development Economics, 17(1), 74 87, 013 DOI:10.1111/roe.1016 A Theory of Exchange Rates an the Term Structure of Interest Rates Hyoung-Seok Lim an Masao Ogaki* Abstract This paper efines the
Week 12. Options on Stock Indices and Currencies: Hull, Ch. 15. Employee Stock Options: Hull, Ch. 14.
Week 12 Options on Stock Indices and Currencies: Hull, Ch. 15. Employee Stock Options: Hull, Ch. 14. 1 Options on Stock Indices and Currencies Objective: To explain the basic asset pricing techniques used
Modeling and Predicting Popularity Dynamics via Reinforced Poisson Processes
Proceeings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Moeling an Preicting Popularity Dynamics via Reinforce Poisson Processes Huawei Shen 1, Dashun Wang 2, Chaoming Song 3, Albert-László
How To Find Out How To Calculate Volume Of A Sphere
Contents High-Dimensional Space. Properties of High-Dimensional Space..................... 4. The High-Dimensional Sphere......................... 5.. The Sphere an the Cube in Higher Dimensions...........
Bond Calculator. Spreads (G-spread, T-spread) References and Contact details
Cbons.Ru Lt. irogovskaya nab., 21, St. etersburg hone: +7 (812) 336-97-21 http://www.cbons-group.com Bon Calculator Bon calculator is esigne to calculate analytical parameters use in assessment of bons.
Cross-Over Analysis Using T-Tests
Chapter 35 Cross-Over Analysis Using -ests Introuction his proceure analyzes ata from a two-treatment, two-perio (x) cross-over esign. he response is assume to be a continuous ranom variable that follows
Firewall Design: Consistency, Completeness, and Compactness
C IS COS YS TE MS Firewall Design: Consistency, Completeness, an Compactness Mohame G. Goua an Xiang-Yang Alex Liu Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712-1188,
Lecture 9. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 8
Lecture 9 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 8 Lecture 9 1 Risk-Neutral Valuation 2 Risk-Neutral World 3 Two-Steps Binomial
FAST JOINING AND REPAIRING OF SANDWICH MATERIALS WITH DETACHABLE MECHANICAL CONNECTION TECHNOLOGY
FAST JOINING AND REPAIRING OF SANDWICH MATERIALS WITH DETACHABLE MECHANICAL CONNECTION TECHNOLOGY Jörg Felhusen an Sivakumara K. Krishnamoorthy RWTH Aachen University, Chair an Insitute for Engineering
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
Session IX: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics
Session IX: Stock Options: Properties, Mechanics and Valuation Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Stock
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis review of pricing formulas assets versus futures practical issues call options
One-state Variable Binomial Models for European-/American-Style Geometric Asian Options
One-state Variable Binomial Models for European-/American-Style Geometric Asian Options Min Dai Laboratory of Mathematics and Applied Mathematics, and Dept. of Financial Mathematics, Peking University,
Unbalanced Power Flow Analysis in a Micro Grid
International Journal of Emerging Technology an Avance Engineering Unbalance Power Flow Analysis in a Micro Gri Thai Hau Vo 1, Mingyu Liao 2, Tianhui Liu 3, Anushree 4, Jayashri Ravishankar 5, Toan Phung
Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B);
1.1.4. Prouct of three vectors. Given three vectors A, B, anc. We list three proucts with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); a 1 a 2 a 3 (A B) C = b 1 b 2 b 3 c 1 c 2 c 3 where the
Differentiability of Exponential Functions
Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone ([email protected]) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an
Caput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
The most common model to support workforce management of telephone call centers is
Designing a Call Center with Impatient Customers O. Garnett A. Manelbaum M. Reiman Davison Faculty of Inustrial Engineering an Management, Technion, Haifa 32000, Israel Davison Faculty of Inustrial Engineering
Chapter 21 Valuing Options
Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher
CALCULATION INSTRUCTIONS
Energy Saving Guarantee Contract ppenix 8 CLCULTION INSTRUCTIONS Calculation Instructions for the Determination of the Energy Costs aseline, the nnual mounts of Savings an the Remuneration 1 asics ll prices
Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards
Mathematics Review for Economists
Mathematics Review for Economists by John E. Floy University of Toronto May 9, 2013 This ocument presents a review of very basic mathematics for use by stuents who plan to stuy economics in grauate school
Achieving quality audio testing for mobile phones
Test & Measurement Achieving quality auio testing for mobile phones The auio capabilities of a cellular hanset provie the funamental interface between the user an the raio transceiver. Just as RF testing
Forecasting and Staffing Call Centers with Multiple Interdependent Uncertain Arrival Streams
Forecasting an Staffing Call Centers with Multiple Interepenent Uncertain Arrival Streams Han Ye Department of Statistics an Operations Research, University of North Carolina, Chapel Hill, NC 27599, [email protected]
Dynamic Network Security Deployment Under Partial Information
Dynamic Network Security Deployment Uner Partial nformation nvite Paper) George Theoorakopoulos EPFL Lausanne, Switzerlan Email: george.theoorakopoulos @ epfl.ch John S. Baras University of Marylan College
Software Diversity for Information Security
for Information Security Pei-yu Chen, Gaurav Kataria an Ramayya Krishnan,3 Heinz School, Tepper School an 3 Cylab Carnegie Mellon University Abstract: In this paper we analyze a software iversification-base
Web Appendices of Selling to Overcon dent Consumers
Web Appenices of Selling to Overcon ent Consumers Michael D. Grubb A Option Pricing Intuition This appenix provies aitional intuition base on option pricing for the result in Proposition 2. Consier the
Which Networks Are Least Susceptible to Cascading Failures?
Which Networks Are Least Susceptible to Cascaing Failures? Larry Blume Davi Easley Jon Kleinberg Robert Kleinberg Éva Taros July 011 Abstract. The resilience of networks to various types of failures is
Dow Jones Sustainability Group Index: A Global Benchmark for Corporate Sustainability
www.corporate-env-strategy.com Sustainability Inex Dow Jones Sustainability Group Inex: A Global Benchmark for Corporate Sustainability Ivo Knoepfel Increasingly investors are iversifying their portfolios
Financial Options: Pricing and Hedging
Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial
View Synthesis by Image Mapping and Interpolation
View Synthesis by Image Mapping an Interpolation Farris J. Halim Jesse S. Jin, School of Computer Science & Engineering, University of New South Wales Syney, NSW 05, Australia Basser epartment of Computer
Factor Prices and International Trade: A Unifying Perspective
Factor Prices an International Trae: A Unifying Perspective Ariel Burstein UCLA an NBER Jonathan Vogel Columbia an NBER October 20 Abstract How o trae liberalizations a ect relative factor prices an to
The Quick Calculus Tutorial
The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,
From Binomial Trees to the Black-Scholes Option Pricing Formulas
Lecture 4 From Binomial Trees to the Black-Scholes Option Pricing Formulas In this lecture, we will extend the example in Lecture 2 to a general setting of binomial trees, as an important model for a single
How To Price Garch
2011 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (2011) (2011) IACSIT Press, Singapore A Study on Heston-Nandi GARCH Option Pricing Model Suk Joon Byun KAIST Business
